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Abstract

Over the past decade, an increasing number of mobile apps have integrated the third-party payment function from
service providers, or so-called Cashiers. Thus, end-users can perform the payment within the smartphone through these
Cashiers readily. To secure their services, the Cashiers define various payment credentials, e.g., PKCS#12 certificates,
and share them with mobile apps for authentication and authorization operations, such as refund. Despite the security-
critical nature of these payment credentials, the existing works focus on the specific credential leaks from known
sources, e.g., Android APKs or GitHub. In contrast, little effort has been spent to study the prevalence of payment
credential leaks in the wild and their security impacts. In this white paper, we begin by giving the background of the
mobile payment service from four first-tier Cashiers that serve over 1 billion users globally. After that, we introduce
the potential leaking sources of the payment credentials, including the new ones that have not been investigated on a
large scale before. For example, we find that the backend servers of mobile apps can expose payment credentials to the
public inadvertently, which is caused by the insecure SDKs from the Cashiers. Then, we describe four exploits enabled
by the payment credential leaks when combining other implementation flaws. These exploits all bring about serious
consequences, ranging from direct financial loss to the mobile apps and privacy violations to end-users. Specifically,
with the leaked payment credentials, the attacker may steal money from the account of the mobile apps directly
and obtain all the user payment records. Further, we design and implement an automatic tool to conduct large-scale
mining for payment credential leaks. Consequently, we manage to discover around 20,000 leaked payment credentials,
which affect thousands of mobile apps and millions of end-users. Finally, we give some suggestions to Cashiers as the
mitigations.

1. Background

A typical online payment service involves three parties, i.e., the User (or User-Agent), the Cashier, and the Merchant.
As to the mobile payment service, the Cashier and Merchant map to their backend servers, i.e., Cashier Server (CS) and
Merchant Server (MS), while the User-Agent becomes their frontend mobile apps, i.e., Cashier App (CA) and Merchant
App (MA). For ease of presentation, we will use the notations in parentheses in the rest of this paper.

The target of mobile payment is to convince the MS that the User has paid the order with the balance in his Cashier
account. Despite its widespread usage, there is no unified standard for mobile payment, and the services from the Cashiers
are diverse. Specifically, their workflows and definitions of payment credentials differ, so we will briefly discuss them here.

1.1. Workflow of Mobile Payment Service

After reviewing the documents from four first-tier Cashiers1, we summarize a general workflow for mobile payment and
present it in Figure 1. The step-to-step illustration is given as follows.

1) The user needs to log into the MA, which may be conducted through the SSO service from a third-party Cashier.
2) After choosing products in an MA, the user selects a Cashier to check out. Then, the app sends a request containing

the ordering details to MS.
3) The MS generates a payment order and feeds it back to the MA.
4) The MA passes the payment order to the CA, which then displays the details, i.e., trade amount and payee.
5) Once the user confirms the payment, the CA sends a payment request to its server (CS).
6) The CS processes the request. Afterward, the Cashier notifies the MS (through the backURL specified in the payment

order in Step 3), i.e., asynchronous notification, and the CA, i.e., synchronous notification, about the payment by
the user.

7) The CA returns synchronous notification to the MA.

1. We use Cashier1 to Cashier4 to denote these four studied Cashiers because they require us to anonymize their names in their response to our
responsible disclosure.
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Figure 1. Workflow of Mobile Payment Service

8) The MA feeds the received notification back to its server and queries the payment status of the order.
9) The MS may request the Cashier, i.e., CS, directly for privileged operations, e.g., refund.

1.2. Payment Credential Overview

1.2.1. Payment Key. Most steps in Figure 1, in italic, are secured by either a Hash-based Message Authentication Code
(HMAC) or digital signature. Thus, Cashiers and apps need to share some payment keys beforehand. Table 1 summarizes
the various payment keys defined by the Cashiers, which can be categorized into the following two types.

Secret Key. All the Cashiers under study support HMAC to secure payment-related messages. Once adopted, both the
MS and CS will use the secret key as the salt of a hash function to generate the HMAC. Apart from Cashier2, this type of
key is generated by Cashiers.

Signing Key. Other credentials in Table 1 belong to this type and are used to generate the digital signatures of network
messages during mobile payment. For the actual production, both the MS and CS need to maintain a pair of RSA keys (or
the equivalent) and share their public keys. In runtime, either party will sign the request with its own private key and verify
the response with the other’s public key.

As Cashier1 supports two methods to generate the digital signature, it defines two types of payment keys, i.e., RSA key
and RSA’ key. Another crucial difference between the two is that Cashier1 shares its public key across all the apps in RSA
keys, which is instead app-specific in RSA’ keys.

In comparison, Cashier3 assigns the (Merchant) apps PFX certificates to secure outgoing requests. These certificates are
PKCS#12 files issued by a specific Certificate Authority and protected by user-defined passwords. As such, the MS needs
to unlock the file to extract the private key for generating the signature. Similar to the RSA key in Cashier1, the public key
of Cashier3 is shared among all its apps and is included in the official backend SDK.

TABLE 1. SUMMARY OF PAYMENT KEYS OR THE EQUIVALENT

Cashier Payment Key Usage Assigned by
the Cashier?

Shared Cashier’s
Public Key?

Cashier1

Secret Key HMAC X N/A

RSA Key Digital Signature × X

RSA’ Key Digital Signature × ×
Cashier2 Secret Key HMAC × N/A

Cashier3 Secret Key HMAC X N/A
PFX Cert Digital Signature X X

Cashier4 Secret Key HMAC X N/A

1.2.2. Other Payment Credentials. Some Cashiers define other credentials to enhance the security of their payment services.
Android Signing Key. The mobile apps of Cashier2 and Cashier4 will validate the integrity of the MA when receiving

the payment order, i.e., Step 4 in Figure 1, by checking its package signature. Thus, the app developers should also keep
the associated Android signing keys, in the form of .jks or .keystore files, private.



Client Certificate [1]. Cashier2 issues a per-app-based certificate for each app to support its service. This file is in the
format of PKCS#12 and password-protected. Then, the MS needs to unlock and present it in each critical API call, e.g.,
refunding requests (Step 9 in Figure 1), to the CS for the authentication purpose.

2. Payment Credential Leaks

Here, we talk about the potential leaking sources of payment credentials, among which public GitLab repositories and
Merchant Servers, i.e., MSs, have never been discovered before.

2.1. Public Git Repositories

As discovered by [2], some developers push the production code to GitHub without removing sensitive credentials. Even
if the developers have noticed the leaks, they may not take the correct fix, namely, updating the credentials to hide the
leaked credentials. Thus, the attackers can steal them from the public repositories.

On the other hand, we find that some companies establish GitLab services on public IPs and make their repositories
public, which may also contain payment credentials. The companies assume that others cannot find and access these public
repositories. However, the powerful web crawlers from search engines like Google break the assumption. Consequently, the
attacker can easily identify and download these GitLab repositories and further extract payment credentials from them.

2.2. Mobile Apps

Many developers deploy some server-side operations in their mobile apps, which thus embed credentials [3]. Then,
the attacker can decompile the MA to get the desired credentials. Since the iOS ecosystem is proprietary, most of the app
packages are encrypted and available from the official app store only so that they are not suitable for large-scale testing.
Therefore, our work mainly focuses on Android apps. Nevertheless, we still consider the leaks within the iOS projects from
public git repositories, which contain the whole frontend source codes.

2.3. Merchant Servers

We surprisingly discover that the servers of (Merchant) apps, i.e., MSs, can be another source of payment credential leaks.
This is caused by the insecure design of Cashiers’ backend SDKs and the lack of protection on the associated credential
files by Merchant Servers.

backend_php_sdk

├ …

├cred
│  ├privateKey.pem

│  └cashierKey.pem

├paymentConfig.php

├backURL.php

└ …
Figure 2. Structure of an Official Backend SDK

Cashiers provide SDKs to facilitate the deployment of payment service. Figure 2 shows the structure of an official SDK
from a Cashier with over 300 million daily active users. For this SDK, the “backURL.php” file processes the asynchronous
payment notifications from the CS (Step 6b in Figure 1). Besides, the “paymentConfig.php” file specifies the location of
the Merchant’s signing key (Section 1.2.1) to a static file, namely “cred/privateKey.pem”, where the document also requires
the developer to store his private key. Consequently, the insecure design enables the attacker to retrieve the key file from
Merchant Servers by applying the following trick.

• The location of “backURL.php”, i.e., the value of backURL in the payment order (Step 3 of Figure 1), is visible to
the attacker-controlled handset. Based on the SDK structure in Figure 2, the attacker can then infer the location of
the Merchant’s private key, namely “privateKey.pem”.

• If the Merchant Server (i.e., MS) does not block the access to this private key file, the attacker can then directly
retrieve this file. Notably, this Cashier does not give such a warning in its document to protect this private key file.



On the other hand, some official SDKs include payment credentials in scripts or other inaccessible files such that the
attacker cannot steal them in most cases, while the other SDKs can still suffer the leakage issue. We automate the detection
of the kind of payment credential leaks in Merchant Servers (by the URL Enumerator in Figure 4). The result turns out
that 7.11% of the tested servers fail to protect their payment credentials.

3. Exploiting Payment Crednedential Leaks

This section discusses four types of exploits enabled by payment credential leaks. These exploits can cause direct
financial loss to the leaking app and its end-users. Since some of the studied Cashiers provide SSO service, it is also
possible to crack the authentication mechanism of the app.

3.1. Merchant Impersonation Attack

With the leaked payment credentials, the attacker can forge requests to the Cashiers as benign Merchants for conducting
privileged operations, i.e., refunding and money transferring.

3.1.1. Refunding. The operation enables the attacker to shop for free. The attacker may first purchase merchandise in the
target app as a normal user. Then, he needs to obtain the related trade num to forge the refunding request, which is always
available from the transaction record from the CS. Besides, the attacker may even refund the other orders related to normal
users to hide his identity.

The exploit is feasible for all the leaking apps in Cashier1, Cashier3, and Cashier4, where we have conducted the proof
of concept experiments with official demo accounts or under sandbox environments. Although Cashier2 requires the client
certificate in the function call (Section 1.2.2), our mining tool detects over 3,000 certificates in the wild, which can also be
uncovered by the attacker (in Table 2).

3.1.2. Money Transferring. Except for Cashier3, all the Cashiers under our study provide the service such that the
(Merchant) app can transfer the money from its own Cashier account to an arbitrary user account. Once the leaking app
activates the service, the attacker can forge a request to steal the money directly. With the services like [4], he may exchange
the stolen money into bitcoin and move it abroad.

On the other hand, although Cashier2 asks for the client certificate in the interface, these certificates can also be leaked
(in Table 2). Besides, Cashier2 requires the SSO user id of the payee in the request, which is app-specific and unknown to
end-users. However, its value appears in the transaction record such that the attacker can pay for a forged order to get it.

3.2. Android Package Signature Forgery

As stated in Section 1.2.2, Cashier2 and Cashier4 authenticate the MA in each payment. However, many Android signing
keys are leaked in public git repositories (in Table 2) as the developers push the whole frontend project online. Thus, the
attacker can modify several lines of code and forge malicious apps with valid signatures. Then, the malicious apps can trick
the users into paying for the attacker’s order unintentionally by replacing the payment order (Step 4 in Figure 1).

Using the leaked Android signing keys, we have managed to package apps that can pretend to be the benign one to the
CAs in Cashier2 and Cashier4 and bypass their verification. Overall, our mining tool detects 493 such leaks (in Table 2).
The statistics from third-party app markets show that 10 of the related apps have more than one million downloads.

Figure 3. Workflow of Mobile SSO Services from the Cashiers



3.3. Backward SSO Attack

Some of the Cashiers, e.g., Cashier2, provide authentication service via SSO. We find some flaws in their systems such
that the credential leaks in the payment service can reversely affect the authentication mechanism of the apps.

Specifically, these Cashiers use the same set of user ids for both payment and SSO services, which are available to the
attacker once their payment credentials are leaked. Although the protocol has been proven secure [5] by design, some apps
do not follow the standard workflow of OAuth [6] and rely on the user id from the client-side (in Figure 3) to authenticate
the user instead of querying the CS in Step 2. Consequently, these apps become vulnerable to Profile Attack [7], meaning
that the attacker can replace the user id that goes through his smartphone to hijack the accounts of victim users.

Besides, we find that some developers reuse the values of their payment keys to be the SSO secret, which amplifies the
impact of payment credential leaks to SSO. According to our test, 2% of the payment keys also work as the SSO secret.

3.4. Cross-App Notification Forgery

Leveraging some poor implementations by both the Cashiers and apps, the attacker can use the leaked payment credentials
to compromise the payment service of other apps.

As stated in Section 1.2.1, the public key of the Cashier in Cashier1 and Cashier3 can be shared among apps (in Table 1).
Thus, the attacker can elaborately forge some payment notifications from the CS with the leaked payment credentials and
inject them into the session of another app, which is cryptographically-consistent but logically-incorrect. However, the MS
may fail to check the app identifier inside, i.e., whether the message is sent to itself or not. Then, the app will be cheated
and enable the attacker to shop for free.

Due to ethical considerations, we cannot fully quantify the exact impact of the exploit without attacking real Merchants.
Nevertheless, we have identified an open-source framework for MSs to be vulnerable, which integrates the payment services
from the studied Cashiers and has over 100,000 downloads. Towards this end, we set up our own Merchant with this
framework and complete a Proof-of-Concept (PoC) experiment on it.

4. Automatic Mining Tool for Leaked Payment Credentials

To support large-scale mining for payment credential leaks, we develop an automatic tool. The framework of our tool
is given in Figure 4, which consists of three modules. The Crawler first identifies the public git repositories and Android
APKs that are likely to support the payment function from the public data sources. Then, the Scanner analyzes the filtered
input and recognizes all the potential credentials. Notably, relying on the backURLs embedded in Android APKs, the URL
Enumerator inside the Scanner probes the MSs to detect the exposed credential files (mentioned in Section 2.3). Finally,
the Detector processes the suspected credentials and verifies their validity.

5. Empirical Testing

5.1. Dataset

Our mining tool takes public GitHub/ GitLab repositories and Android APKs as the input dataset. Overall, we clone
139,206 GitHub repositories that integrate the payment services from the Cashiers. Meanwhile, we collect 943 GitLab
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repositories from four search engines, i.e., Google, Yahoo, Bing, and Baidu. On the other side, we crawl 233,550 Android
apps, with overall 1,240,961 versions (i.e., APKs), from three first-tier app markets in September 2019.

5.2. Test Results

Table 2 shows the test results, where our tool has detected around 20,000 unique payment credentials. Specifically,
10.34% of public git repositories, 3.21% of Android APKs, and 7.11% of the MSs leak payment credentials. The average
running time for each input is around 300 seconds.

TABLE 2. SUMMARY OF THE LEAKED PAYMENT CREDENTIALS

Cashier Cashier1 Cashier2 Cashier3 Cashier4

Source\Credential Secret
Key

RSA
Key

RSA’
Key

Secret
Key

Client
Cert

Android
Key

Secret
Key

PFX
Cert

Secret
Key

Android
Key

GitHub Repo 900 1518 1737 6651 3131 491 0 188 25 1
GitLab Repo 9 20 20 57 31 1 0 1 0 0
Android APK 75 1950 354 2567 3 0 2 0 10 10

Merchant Server 0 44 0 0 11 0 0 2 0 0
Overall 975 3332 2085 9093 3170 492 2 189 34 1

* The table has removed the duplicate credentials in each row.
†The overlapping among different data sources is removed.

5.2.1. Git Repositories. Overall, 14,493 public git repositories leak 23,011 payment credentials before removing duplicate
credentials. Among the results, 1,792 credentials (7.79%) only appear in the history, indicating that some developers have
noticed the leak issue but used the wrong method, i.e., pushing new commits, to fix it. On average, it takes developers about
51 days to make the wrong fix. In contrast, the others exist in the latest code and are available from the search result [8].

Notably, as mentioned in Section 2.2, we also search for payment credential leaks in iOS-related git repositories. From
the collected input, our mining tool has identified 365 and 347 unique payment keys in Cashier1 and Cashier2 separately.

Meanwhile, the four search engines perform differently in detecting public GitLab repositories, where Google contributes
most of the results. Besides, we find that most of these repositories are owned by some outsourcing companies.

5.2.2. Android APKs. Our mining tool detects 9,008 payment keys (including 4,958 unique ones) from 7,603 APKs that
are associated with 7,492 apps. Surprisingly, we find 3 client certificates in Cashier2 are leaked with payment keys, where
the developers implement the server-side operations, e.g., refunding, in their apps. Notably, 31.9% of these credentials only
exist in old app versions. The affected apps range from an official tax-payment app to a financial app.

There are two other interesting findings when we study the result from Android APKs. First, we study the leaking
locations of these payment credentials and find that around 2,000 keys are from the same location or Android activity. This
activity actually belongs to the official frontend demo project provided by one Cashier. Although this Cashier claims that
the project is only for demo use and gives a strong warning about the leak issue in this demo. Many Merchant Apps still
reuse it for their own payment service.



Meanwhile, we find one certain payment key appearing in hundreds of Merchant Apps, which belongs to a payment
aggregator. Figure 5 presents the workflow of the payment aggregator, which works as the proxy between the real Merchant
Server and Cashier Server. However, this aggregator leaks its key in the frontend SDK and affects all the related apps.

5.2.3. Merchant Servers. URL Enumerator (in Figure 4) has identified 802 backURLs and found 57 credentials. Notably,
some of the results are only available from this leaking source. For example, 38 RSA keys (in Cashier1) do not appear
elsewhere. As many apps do not embed backURLs, our tool cannot obtain the values from APKs directly. Nevertheless, the
attacker may shop normally in the app and intercept payment order, i.e., Step 4 in Figure 1, to extract it. Moreover, iOS
apps can suffer the same issue, and we have manually found an example from the collected GitHub repositories.

6. App Identity Resolution

To exploit the leaked credential, we need to get the identity of the associated Merchant App. Notably, some payment
credentials are extracted from the backend code in git repositories so that we cannot know the related apps directly. Therefore,
we resort to the Cashiers for help, which host all the app information. In short, we use the following three methods to get
app identities.

6.1. Crafting Payment Request

In most cases, the Cashiers do not force the verification of the MA. Consequently, right before the payment (between
Step 4 and 5 in Figure 1), the CA will extract app information, e.g., name and logo, from CS and present it to the user for
consent. Thus, we can craft payment requests by ourselves with the detected keys, send them to the CA, and rely on the
returned information to resolve the app identities. We automate the approach in Web App Payment and recognize 1,590
apps. The remaining credentials only support in-app payment and need manual efforts to identify their owners.

6.2. Parsing Client Certificates

Cashier2 performs strict verifications on the MA, such that the first method is not applicable. Fortunately, over 40%
of the payment keys in Cashier2 are leaked along with the associated client certificates (Section 1.2.2) in git repositories.
Meanwhile, it is Cashier2 that issues the certificate, which includes the desired app information. We have identified 2,812
apps by parsing their client certificates.

6.3. Hooking the Cashier App

In Cashier2, the CA verifies the integrity of MA by checking its signature before processing the incoming payment order,
i.e., Step 4 in Figure 1. This process is called app registration and is initiated by MA through invoking Cashier2’s frontend
SDK, with its app identifier as the input. The process inside the CA involves two steps: 1) getAppInfo: the CA exchanges
the app identifier (from the payment order) for the app information from its server. 2) verifyAppInfo: the CA compares the
package name and signature locally and refuses to proceed upon a check failure.

Based on the observation, the attacker can fetch the app information from the CS with solely the app identifier. Although
the network protocol of Cashier2, i.e., the interactions between the CA and CS, is proprietary, the attacker can take the
hooking approach as a bypass. Firstly, he can reverse engineer the CA to locate the registration function (i.e., getAppInfo).
Then, he can dynamically hook the function, inject the suspected app identifier, and intercept the response message for
resolving the app identity. We have developed the proof of concept code for the approach above.

7. Responsible Disclosure and Mitigations

We have reported the detected credentials to all the four studied Cashiers and got their confirmations. According to the
response, the Cashiers will send a warning to the leaking apps. Unfortunately, 12 months after our first report (submitted in
September 2019), we find that less than 20% of these leaking apps have revoked their credentials, while the other leaking apps
take various wrong fixes without updating the leaked payment credentials. For example, some of them choose to remove
the GitHub repositories with leaks, which can actually be archived by some online service, e.g., Google BigQuery [9].
Consequently, it is still feasible for the attacker to steal the leaked payment credentials.

Considering the severe consequence of payment credential leaks discussed in Section. 3, we give the following sugges-
tions for the mitigations.

• The Cashiers should explicitly alarm developers about the serious consequences of payment credential leaks.



• The Cashiers should review their services and timely fix the insecure implementations, e.g., flawed backend SDKs
(in Section 2.3) and shared user ids across services (in Section 3.3).

• The Cashiers should proactively monitor and revoke the leaked payment credentials to mitigate the potential exploits
(mentioned in Section 3).

• The Merchants should periodically change their payment credentials.

8. Conclusion

In this white paper, we perform an empirical study on mobile payment credential leaks. Specifically, we study the service
from four first-tier Cashiers and identify new leaking sources of their payment credentials. To present the impacts of the leak
issue, we construct 4 practical attacks with severe security consequences, which allow the attacker to cause direct financial
loss or privacy violation to either mobile apps or their end-users. We also develop an automatic tool to conduct large-scale
testing, leading to the discovery of around 20,000 leaked payment credentials that affect thousands of apps and millions of
users.
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