
Mining and Exploiting (Mobile)
Payment Credential Leaks

in the Wild

Shangcheng Shi, Xianbo Wang, Wing Cheong Lau

The Chinese University of Hong Kong

#BHASIA @BLACKHATEVENTS

#BHASIA @BLACKHATEVENTS

Outline
• Introduction to Third-Party Payment Service for Mobile Apps

• Overview on Payment Credentials

• Leaking Sources of Payment Credentials

• Exploiting the Leaked Payment Credentials

• Automatic Mining for Payment Credentials Leaked in the Wild

• Resolving the Leaking App Identity

• Suggested Fixes

#BHASIA @BLACKHATEVENTS

Outline
• Introduction to Third-Party Payment Service for Mobile Apps

• Overview on Payment Credentials

• Leaking Sources of Payment Credentials

• Exploiting the Leaked Payment Credentials

• Automatic Mining for Payment Credentials Leaked in the Wild

• Resolving the Leaking App Identity

• Suggested Fixes

#BHASIA @BLACKHATEVENTS

Third-Party Payment Service for Mobile Apps

Merchant App
(MA)

Cashier App
(CA)

Merchant Server (MS)

Cashier Server (CS)

1. Authentication in Merchant App (e.g., SSO)
2. Order Request

3. Payment Order: app info + order info

4. Payment
Order

5. Payment Request and User Consent

9. Extra
Interactions

(e.g., Refund)

6a. Synchronous Notification

6b. Asynchronous
Notification

7. Synchronous
Notification

8. Synchronous Notification

{“merchant":"M1",“backURL":
"https://merchant.com/
payment/backURL.php"}

#BHASIA @BLACKHATEVENTS

Outline
• Introduction to Third-Party Payment Service for Mobile Apps

• Overview on Payment Credentials

• Leaking Sources of Payment Credentials

• Exploiting the Leaked Payment Credentials

• Automatic Mining for Payment Credentials Leaked in the Wild

• Resolving the Leaking App Identity

• Suggested Fixes

#BHASIA @BLACKHATEVENTS

Overview on Payment Credentials
• Most payment-related messages, in italic, are protected cryptographically.

• The related payment credentials are defined by the Cashiers without a standard.

• We study four first-tier Cashiers in this work and anonymize them here due to their request.

Merchant App
(MA)

Cashier App
(CA)

Merchant Server (MS)

Cashier Server (CS)

1. Authentication in Merchant App (e.g., SSO)

2. Order Request
3. Payment Order: app info + order info

4. Payment
Order

5. Payment Request and User Consent

9. Extra
Interactions

(e.g., Refund)

6a. Synchronous Notification

6b. Asynchronous
Notification

7. Synchronous
Notification

8. Synchronous Notification

#BHASIA @BLACKHATEVENTS

Payment Credentials: Payment Key
• The Merchants can choose either digital signature or HMAC to secure the messages.

• The security setting of the payment keys differs among the Cashiers.

Cashier Payment Key Usage Assigned by
the Cashier?

Shared Cashier’s
Public Key

Cashier1
Secret Key HMAC n/a

RSA Key Digital Signature

RSA’ Key Digital Signature

Cashier2 Secret Key HMAC n/a

Cashier3 Secret Key HMAC n/a

PFX Certificate Digital Signature

Cashier4 Secret Key HMAC n/a

#BHASIA @BLACKHATEVENTS

Payment Credentials: Other Credentials
• Android Signing Key (in Cashier2 and Cashier4)

• Client Certificate (in Cashier2)

Merchant App
(MA)

Cashier App
(CA)

Merchant Server (MS)

Cashier Server (CS)

1. Authentication in Merchant App (e.g., SSO)

2. Order Request
3. Payment Order: app info + order info

4. Payment
Order

5. Payment Request and User Consent

9. Extra
Interactions

(e.g., Refund)

6a. Synchronous Notification

6b. Asynchronous
Notification

7. Synchronous
Notification

8. Synchronous Notification

#BHASIA @BLACKHATEVENTS

Outline
• Introduction to Third-Party Payment Service for Mobile Apps

• Overview on Payment Credentials

• Leaking Sources of Payment Credentials

• Exploiting the Leaked Payment Credentials

• Automatic Mining for Payment Credentials Leaked in the Wild

• Resolving the Leaking App Identity

• Suggested Fixes

#BHASIA @BLACKHATEVENTS

Leaking Sources of Payment Credentials
• Public Git Repositories: (1) GitHub (2) GitLab

• Mobile Apps (e.g., Android APKs): Leaked credentials may only exist in old app versions.

#BHASIA @BLACKHATEVENTS

Leaking Sources of Payment Credentials
• Merchant Server: Caused by (1) flawed backend SDKs by the Cashier

(2) insecure access control setting by the Merchant

• The attacker can infer the URL endpoint of the payment credentials from backURL, e.g.,
https://merchant.com/payment/backURL.php => https://merchant.com/payment/cred/privateKey.pem

Merchant App
(MA)

Cashier App
(CA)

Merchant Server (MS)

Cashier Server (CS)

1. Authentication in Merchant App (e.g., SSO)
2. Order Request

3. Payment Order: app info + order info

4. Payment
Order

5. Payment Request and User Consent

9. Extra
Interactions

(e.g., Refund)

6a. Synchronous Notification

6b. Asynchronous
Notification

7. Synchronous
Notification

8. Synchronous Notification

{…, “backURL":
"https://merchant.com/
payment/backURL.php"}

#BHASIA @BLACKHATEVENTS

Outline
• Introduction to Third-Party Payment Service for Mobile Apps

• Overview on Payment Credentials

• Leaking Sources of Payment Credentials

• Exploiting the Leaked Payment Credentials

• Automatic Mining for Payment Credentials Leaked in the Wild

• Resolving the Leaking App Identity

• Suggested Fixes

#BHASIA @BLACKHATEVENTS

Exploits with Leaked Payment Credentials
• Merchant Impersonation: (1) transaction record (2) refund (3) money transfer*

• Android Package Signature Forgery: Overall, 400+ valid signing keys are detected.

Merchant App
(MA)

Cashier App
(CA)

Merchant Server (MS)

Cashier Server (CS)

1. Authentication in Merchant App (e.g., SSO)

2. Order Request
3. Payment Order: app info + order info

4. Payment
Order

5. Payment Request and User Consent

9. Extra
Interactions

(e.g., Refund)

6a. Synchronous Notification

6b. Asynchronous
Notification

7. Synchronous
Notification

8. Synchronous Notification

#BHASIA @BLACKHATEVENTS

Exploits with Leaked Payment Credentials
• Backward SSO Attack

a) Some Cashiers provide third-party SSO service but fail to isolate their services, e.g., shared user ids.

b) With Profile Exploit [1], the attacker can then hijack the victim account in the Merchant Apps.

c) Re-usage of payment key as the SSO secret

Ref: [1] Ronghai Yang, Wing Cheong Lau, Tianyu Liu, “Signing into One Billion Mobile App Accounts Effortlessly with OAuth2.0,” Black Hat Europe 16

(missing)

#BHASIA @BLACKHATEVENTS

Exploits with Leaked Payment Credentials
• Cross-App Notification Forgery

a) In the case of digital signature, the public key of the Cashier are usually shared across Merchants.

b) Some Merchant Servers do not verify payment notifications properly and overlook the app identifiers.

c) The attacker may use leaked payment keys to craft valid notifications to cheat another Merchant App.

#BHASIA @BLACKHATEVENTS

Outline
• Introduction to Third-Party Payment Service for Mobile Apps

• Overview on Payment Credentials

• Leaking Sources of Payment Credentials

• Exploiting the Leaked Payment Credentials

• Automatic Mining for Payment Credentials Leaked in the Wild

• Resolving the Leaking App Identity

• Suggested Fixes

#BHASIA @BLACKHATEVENTS

Automatic Mining Tool
• We develop an automatic tool to enable large-scale mining for payment credentials leaked in the

wild.

#BHASIA @BLACKHATEVENTS

Automatic Mining Tool: Crawler
• We use GitHub Search API and Search Engines (i.e., Google, Bing, Yahoo, and Baidu) to collect

public GitHub and GitLab repositories.

• We summarize and construct the query strings based on the invariants in the integration of payment
service.

Type Cashier Sample Illustration

Data Cashier3 CUYx*** Part of Cashier’s
public key

Code Cashier2 **PayConfig Classes defined in
backend SDK

File Cashier1 **PayPlugin.a SDK files for iOS apps

#BHASIA @BLACKHATEVENTS

Automatic Mining Tool: Crawler
• We crawl Android APKs, including older versions, from third-party app markets to set up a full-scale

database.

• The tool preprocesses the collected APKs to identify the payment-related ones with the following two
heuristics.

a) Frontend SDK from the Cashiers

b) Activities Registered in AndroidManifest.xml

#Total Cashier1 Cashier2 Cashier3 Cashier4

#Android App 233550 29269 (12.5%) 46408 (19.9%) 7234 (3.1%) 466 (0.2%)

#App Version 1240961 182124 (14.7%) 233262 (18.8%) 53516 (4.3%) 3596 (0.3%)

Merchant App
(MA)

Cashier App
(CA)

Merchant Server (MS)

Cashier Server (CS)

1. Authentication in Merchant App (e.g., SSO)
2. Order Request

3. Payment Order: app info + order info

4. Payment
Order

5. Payment Request and User Consent

9. Extra
Interactions

(e.g., Refund)

6a. Synchronous Notification

6b. Asynchronous
Notification

7. Synchronous
Notification

8. Synchronous Notification

#BHASIA @BLACKHATEVENTS

Automatic Mining Tool: Scanner
• The module recognizes all potential payment credentials.

• Whitebox Scanning: (1) back tracing the history (2) text pattern matching (3) file format filtering

• Blackbox Scanning: Some Merchant Apps embed the value of their backURLs. Thus, our tool can
extract them from the APKs and probe the Merchant Servers behind.

Merchant App
(MA)

Cashier App
(CA)

Merchant Server (MS)

Cashier Server (CS)

1. Authentication in Merchant App (e.g., SSO)
2. Order Request

3. Payment Order: app info + order info

4. Payment
Order

5. Payment Request and User Consent

9. Extra
Interactions

(e.g., Refund)

6a. Synchronous Notification

6b. Asynchronous
Notification

7. Synchronous
Notification

8. Synchronous Notification

{…, “backURL":
"https://merchant.com/
payment/backURL.php"}

#BHASIA @BLACKHATEVENTS

Automatic Mining Tool: Detector
• Some output from the Scanner is false positive caused by stored files, e.g., system logs.

a) We deploy a classifier to distinguish configuration files and stored files.

• Some payment keys are generated by the Cashiers and have similar Shannon entropy.

a) We use an entropy filter to remove the false positive.

• The credential files, i.e., PFX certificate, client certificate, and Android signing keys, are password-
guarded.

a) Our tool takes different strategies to crack these credential files.

b) The activeness of the given Android signing key can be checked here by comparing the hash value
of the related APK, i.e., Android Package Name => Android APK => Hash Comparison.

#BHASIA @BLACKHATEVENTS

Automatic Mining Tool: Detector
• Further, we use an online method to validate the refined payment credentials.

a) Using the potential payment key, the tool prepares an order query request with invalid parameters.

b) The validity of input credentials can be inferred from the error code from the Cashier.

c) We properly control the intervals between the prepared requests. The average testing time is roughly
300 seconds.

#BHASIA @BLACKHATEVENTS

Test Result
• Overall, around 20,000 unique payment credentials are detected by our tool.

Cashier Cashier1 Cashier2 Cashier3 Cashier4

Source \ Credential Secret
Key

RSA
Key

RSA’
Key

Secret
Key

Client
Cert

Android
Key

Secret
Key

PFX
Cert

Secret
Key

Android
Key

GitHub Repo 900 1518 1737 6651 3131 491 0 188 25 1

GitLab Repo 9 20 20 57 31 1 0 1 0 0

Android APK 75 1950 354 2567 3 0 2 0 10 0

Merchant Server 0 44 0 0 11 0 0 2 0 0

Overall 975 3332 2085 9093 3170 492 2 189 34 1

#BHASIA @BLACKHATEVENTS

Test Result: Public Git Repositories
• Overall, we collect and test more than 140,000 public git repositories from various sources.

• 10.3% of these git repositories leak valid payment credentials

• 7.8% of the detected payment credentials only exist in history.

• It takes around 51 days for the developers to take the wrong fix, i.e., pushing new git commits to hide
the leaked credentials.

• 712 payment credentials have been detected from the iOS-related GitHub repositories.

• Most of the public GitLab repositories with leaks belong to some outsourcing companies.

#BHASIA @BLACKHATEVENTS

Test Result: Android APKs
• 4958 payment keys and 3 client certificates are detected from 7492 Android apps.

• 31.9% of the detected keys only exist in old app versions.

• Other finding:

a) Re-usage of Official Android Demo

b) Credential Leaks by the Payment Aggregator

#BHASIA @BLACKHATEVENTS

Test Result: Merchant Servers
• Our tool identifies around 800 Merchant Servers from their frontend apps.

• 57 of these tested servers (7.1%) use flawed SDKs and fail to protect their credentials.

• From the GitHub result, we have manually found that iOS apps can make the same mistake.

#BHASIA @BLACKHATEVENTS

Responsible Disclosure & Longitudinal Study
• After the initial testing, we reported over 3,000 payment keys to two of the studied Cashiers.

• We conduct regular monitoring of the related GitHub repositories to study the responses from the
Merchants.

• There are 5 types of responses (12 months after our report):
Cashier Cashier1 Cashier2

#Total 718 3662

#Updating the Key 255 (35.5%) 443 (12.1%)

#Hiding the GitHub Repositories 146 (20.3%) 651 (17.8%)

#Deleting Related Git Commits 65 (9.1%) 198 (5.4%)

#Pushing New Git Commits 3 (0.4%) 24 (0.6%)

#No Actions 249 (34.7%) 2346 (64.1%)

#BHASIA @BLACKHATEVENTS

Outline
• Introduction to Third-Party Payment Service for Mobile Apps

• Overview on Payment Credentials

• Leaking Sources of Payment Credentials

• Exploiting the Leaked Payment Credentials

• Automatic Mining for Payment Credentials Leaked in the Wild

• Resolving the Leaking App Identity

• Suggested Fixes

#BHASIA @BLACKHATEVENTS

Resolving the Leaking App Identity
• Some credentials are detected from GitHub and we use three approaches to identify the related

Merchant Apps.

a) Crafting Payment Request: Some payment credentials also support website payment.

b) Parsing Client Certificate: The Merchant App information is available in the file attributes after
unlocking the client certificate.

c) Hooking the Cashier App: The Cashier App extracts the information of the Merchant App, e.g.,
Android Package Name, from its server in each session.

#BHASIA @BLACKHATEVENTS

Outline
• Introduction to Third-Party Payment Service for Mobile Apps

• Overview on Payment Credentials

• Leaking Sources of Payment Credentials

• Exploiting the Leaked Payment Credentials

• Automatic Mining for Payment Credentials Leaked in the Wild

• Resolving the Leaking App Identity

• Suggested Fixes

#BHASIA @BLACKHATEVENTS

Suggested Fixes
• We would like to give the following suggestions to mitigate the credential leak issue:

a) The Cashiers should explicitly warn their Merchants about the serious consequences of payment
credential leaks.

b) The Cashiers should review their services and fix the insecure implementations, e.g., flawed SDKs
and misleading frontend demo projects.

c) The Cashiers should proactively monitor and revoke the leaked payment credentials.

d) The Merchants should periodically change their credentials.

#BHASIA @BLACKHATEVENTS

Thanks!
Q&A

Shangcheng Shi

ss016@ie.cuhk.edu.hk

Xianbo Wang

xianbo@ie.cuhk.edu.hk

Wing Cheong Lau

wclau@ie.cuhk.edu.hk

