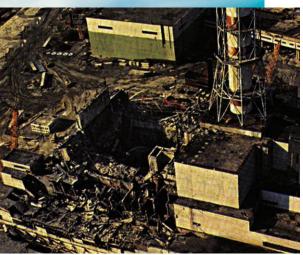


Stuxnet-in-a-Box: In-Field Emulation and Fuzzing of PLCs to Uncover the Next Zero-Day Threat in Industrial Control Systems

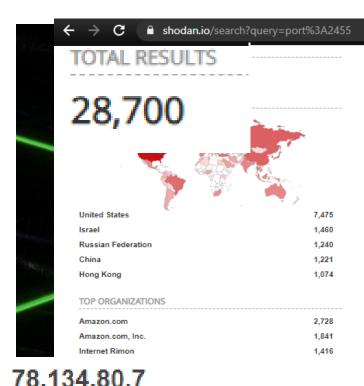
Dimitrios Tychalas

Michail Maniatakos

- Industrial Control Systems \bullet
 - What are they?? ullet
 - What do they do?? ullet
- **ICS** categories
 - Supervisory Control and Data Acquisition (SCADA) •
 - **Distributed Control Systems (DCS)** •
 - Programmable Logic Controllers (PLC) •
- Variable configurations
 - Complexity •
 - Platform •
 - System Software •



- Deployment in critical infrastructures
 - Power grids
 - Various industrial plants
 - Nuclear facilities
- Paramount criticality
 - Serious disruptions
 - Loss of revenue
 - Loss of lives
- Safety depends on security


- Industry 4.0 and IIoT
 - Ditch this, get this, or this
- ICS evolve into typical computers
 - Generic third-party SoCs
 - General-purpose OS
 - Internet connection ullet

- Typical computer threats jump over to ICS
 - Control flow hijacking, privilege escalation, network spoofing...
 - ICS can be indexed by a search engine (!) -> Shodan

New Service: Keep track of what you have connected to the Internet. Check out Shodan Monitor

99.83.203.209 aa4708569b0b79c3b.awsglobalaccelerator.com

Amazon.com, Inc. Added on 2021-03-22 18:40:38 GMT United States, Seattle

110.11.157.225 SK Broadband Co Ltd

Added on 2021-03-22 18:42:43 GMT Korea, Republic of, Seoul

HTTP/1.1 400 Bad Request Server: nginx/1.13.8 Date: Mon, 22 Mar 2021 18:42:43 GMT Content-Type: text/html Content-Length: 173 Connection: close

<html> <head><title>400 Bad Request</title></head> <body bgcolor="white"> <center><h1>400 Bad Request</h1></center>

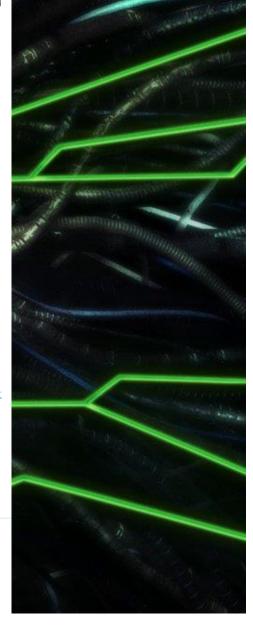
Operating System: Linux Operating System Details: 3.18.13-pfcxxx-02.00.02_00+6-rt Product: 3S-Smart Software Solutions

Microsoft ftpd Microsoft IIS httpd

78-134-80-7.static.eolo.it

Added on 2021-03-22 18:46:33 GMT

EOLO S.p.A.


Italy, Rome

39

23

ded on 2021-05-22 16:42:12 OW 🏥 New Zealand, Gore

Server: Apache/2.4.25 (Debian) Set-Cookie: PHPSESSID=v477u71sc3jetb7a20e0tq9vfh; path=/ Expires: Thu. 19 Nov 1981 08:52:00 GMT Cache-Control: no-store, no-cache, must-revalidate Pragma: no-cache Content-Length: 4565 Content-Type: text/ht.

black hat Industrial Control Systems - Security

tripwire

The State of Security

NEWS TRENDS INSIGHTS

ITProPorta

Best VPN Reviews

Features Resources Security Eboo

Oct 7 2010 06:00am ED

The Story Behind The Stuxnet Virus

Bruce Schneier Former Contributor ① I am the CTO of Resilient Sustems, Inc

ansomware a

dustrial cont

s ransomware is designed to tar

ition" in malware.

() This article is more than 10 years old.

Computer security experts are often surprised at which stories get picked up by the mainstream media. Sometimes it makes no sense. Why this particular data breach, vulnerability, or worm and not others? Sometimes it's obvious. In the case of Stuxnet, there's a great story.

As the story goes, the Stuxnet worm was designed and released by a government--the U.S. and Israel are the most common suspects--specifically to attack the Bushehr nuclear power plant in Iran. How could anyone not report that? It combines computer attacks, nuclear power, spy agencies and a country that's a pariah to much of the world. The only problem with the story is that it's almost entirely speculation.

Here's what we do know: Stuxnet is an Internet worm that infects Windows computers. It primarily spreads via USB sticks, which allows it to get into computers and networks not normally connected to the Internet. Once inside a network, it uses a variety of mechanisms to propagate to other machines within that network and gain privilege once it has infected those machines. These mechanisms include both known

The world-changing 2015 cyberattack on Ukraine's power grid

ITProPortal is supported by its audience. When you purchase through links on our site, we may

By Roman Marshanski a month ago

In 2015, Ukrainian power plant operators fell victim to a sophisticated cyberattack.

() 💟 🖗 🔿

Home > Features

CRUDE BUT CONCERNING -

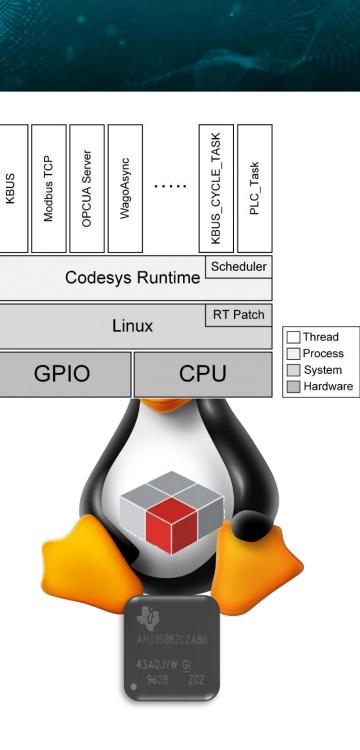
ars technica

New ransomware doesn't just encrypt data. It also meddles with critical infrastructure

Ekans represents a "new and deeply concerning" evolution in malware targeting control

ıre

BIZ & IT TECH SCIENCE POLICY CARS GAMING & CULTURE


- How can one defend against an unknown threat?
 - Reactive solutions most commonly deployed
 - Can ICS security be proactive?

- Highly sophisticated attacks -> State actors
 - Can smaller teams develop a Stuxnet-level threat?
- Our answer
 - A tool collection to expose underlying vulnerabilities (IFFSET, ICSFuzz)
 - A demonstration of what threat an actor with limited resources can unleash (Stuxnet-in-a-box)

SFuzz) n unleash

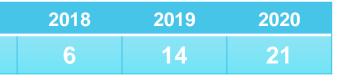
- PLCing evolved
 - Monolithic firmware? Sure, if it's an ELF!
 - 3rd party popular SoC
 - "Firmware" hosted as an application in an open-source OS
 - Fast industry response -> Codesys holds ~25% market share
- Dedicated hardware replaced by software threads
 - HMI Connectivity -> Linux thread
 - PLC I/O (sensors/actuators) -> Linux thread
 - MODBUS communication -> Linux thread
 - Control logic functionality -> Linux thread (and some more)

blackhat ASIA 2021 Codesys Runtime

				P <i>a</i> 100	441400-//-
root@PFC100-4414DB:/etc/rc.	d cat /proc/730/maps				4414DB:/etc/1
00008000-00196000 r-xp 0000	0000 b3:02 19483	/usr/bin/codesys3	730	730	? 00:1
0019e000-001a1000 rw-p 0018e	e000 b3:02 19483	/usr/bin/codesys3 ^r	oot@P	FC100-	4414DB:/etc/i
001a1000-0024d000 rw-p 0000	0000 00:00 0		130	130	2 00:1
017f0000-01a4f000 rw-p 0000	0000 00:00 0	[heap]	730	745	
b4c77000-b4c78000p 0000	0000 00:00 0	-	730	818	
b4c78000-b4c97000 rwxp 0000	0000 00:00 0	[stack:3669]	730	819	
b4c97000-b4c98000p 0000		2	730	820	
b4c98000-b4cb7000 rwxp 0000		[stack:3670]	730	837	
b4cb7000-b4cb8000p 0000		[]	730 730	838 872	
b4cb8000-b4cd7000 rwxp 0000		[stack:3671]	730	876	
b4cd7000-b4cd8000p 0000			730	878	
b4cd8000-b4cf7000 rwxp 0000		[stack:3694]	730	879	
b4cf7000-b4d17000 rw-s 0000		/dev/uio0	730	880	
b4d17000-b4d18000p 0000		, act, area	730	881	
b4d18000-b4d37000 rwxp 0000		[stack:3672]	730	926	
	<u>-</u>		730	927	
S02_determine_hostname	S21_logforward	S91_virtua	730	928	? 00:0
S02_networking	S21_networking-finis	sh S92_rt-set	730	3562	
S04 auto firmware restore	S22 ifplugd	S97 serial	730	3669	? 00:0
S05 logsystemstart	S22 ipwatchd	S98 runtin	730	3670	? 00:0
S09 pureftpd	S24dnsmasq	S99 finali	730	3671	? 00:0
S10 crond	S48 mounthd2	S99 ssl po	730	3672	? 00:0
S10 ⁻ lighttpd	S54 keymap	`	730	3694	? 00:0
S10syslog-ng	S60 mdmd	r	oot@P	FC100-	4414DB:/etc/1
root@PFC100-4414DB:/etc/rc		grep daemon grei	o cod	esvs	
start-stop-daemon -K -qx /usr/bin/codesys3					
root@PFC100-4414DB:/etc/rc					
	• a				

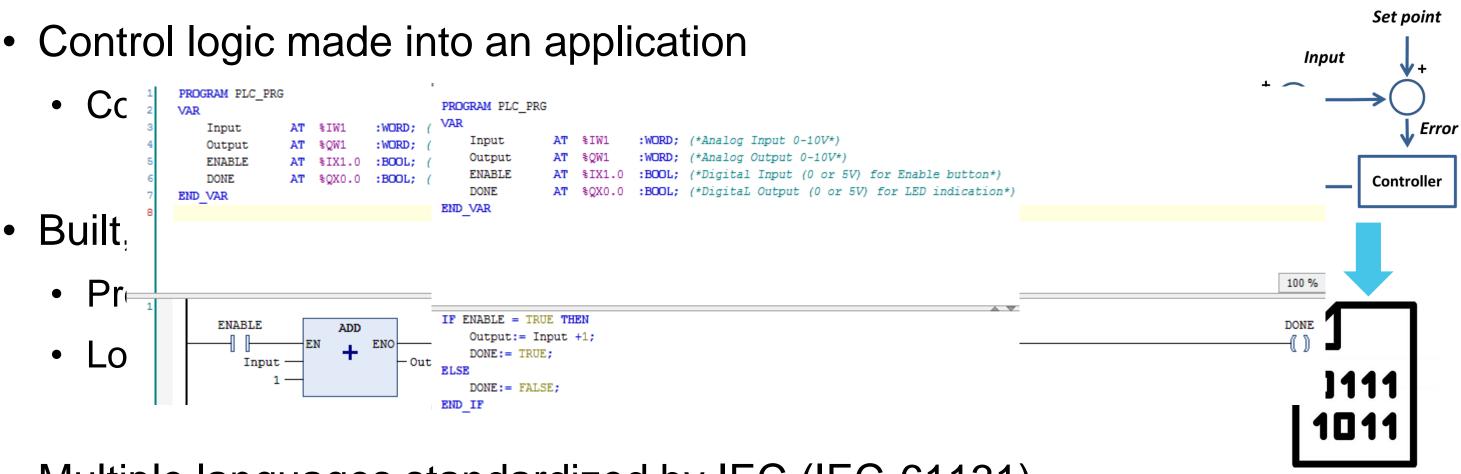
- 00:00 DAL evt dispatc
- 00:24 KBUS dbus
- 00:05 com DBUS worker
- 00:00 wdbw_TermReg_cO
- 00:03 ModbusSlaveTCP
- 00:02 ModbusSlaveUDP
- 00:00 Oms Watch Threa
- 00:00 WagoIpcMsgCom
- 00:00 CAAEventTask
- 00:00 SchedProcessorL
- 00:00 SchedException
- 23:34 Schedule
- 00:47 BlkDrvTcp
- 01:14 BlkDrvUdp
- 01:12 OPCUAServer
- 00:00 WagoAsyncRtHigh
- 00:01 ProcessorLoadWa
- 02:36 KBUS CYCLE TASK
- 00:06 PLC Task
- 00:17 VISU TASK
- 00:30 WebServerTask

rc.d



- Codesys runtime
 - Great concept/implementation, still evolving ullet
 - Prolific research target
 - CVE's ramping up throughout the years \bullet

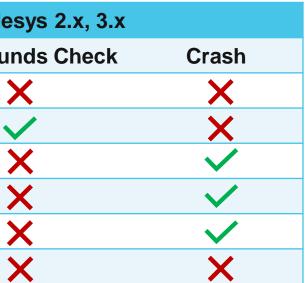
•	Examples	(2020)
---	----------	--------


	2014	2015	2016	2017
# CVEs	3	3	-	2

- CVE-2020-7052 : Uncontrolled memory allocation (6.5/10, medium)
- CVE-2020-12068: Privilege escalation in visualization modules (6.5/10, medium) ●
- CVE-2020-15806: Uncontrolled memory allocation (7.5/10, high) •
- CVE-2020-6081: Exploitable code execution in PLC program loading (8.8/10, critical) \bullet
- CVE-2020-10245: Remote code execution through heap overflow in web server (9.8/10, critical)

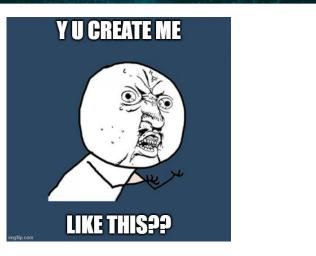
Control logic made into an application

- Multiple languages standardized by IEC (IEC-61131)
 - Ladder Logic (simplest, most ubiquitous) ullet
 - Function Block Diagram (moderately complex, like LL but beefier) \bullet
 - Structured Text (complex, based on Pascal)


- Compilation
 - Variable input
 - Input used for indexing ullet
 - Compiler cannot predict threat lacksquare
 - Out-of-bounds read/write
- Third party libraries
 - C-like libs developed
 - Low-level memory management ullet
 - May lack bounds checks ullet
 - **Buffer overflow**

	PROGRAM PLC	PRG		
	VAR			
	snoop_a	rray: ARRAY[1	10]	
	<pre>input1 AT %IW1:WORD;</pre>			
	outputl	AT %QW1:WORD	;	
	C/C++		Code	
	Function Name	Function Name	Bou	
String	<pre>strcpy()</pre>	SysStrCpy()		
Operations	<pre>strcat()</pre>	Concaat()		
	<pre>memcpy()</pre>	SysMemCpy()	•	
Memory	<pre>memset()</pre>	SysMemSet()		
Operations	<pre>memmove()</pre>	SysMemMove()		
	<pre>memcmp()</pre>	SysMemCmp()		

x := 16 # DEAFBEEF;


snoop array[WORD TO INT(input1)+16#DEADCAFE] := x;

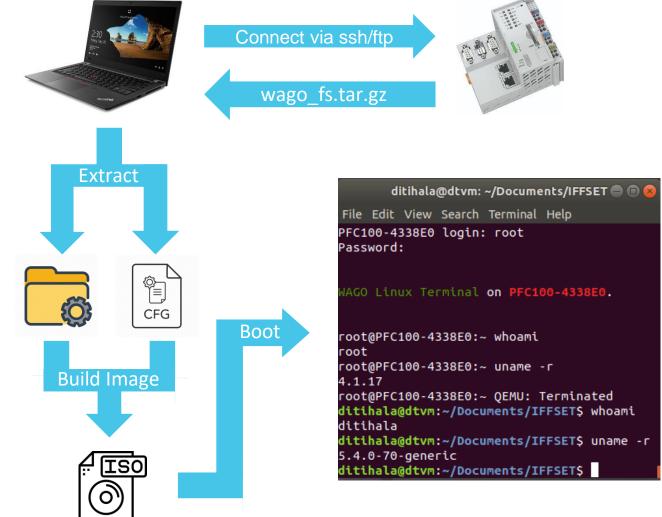
OF UDINT;

- Challenge 1
 - Compiler has inherent weaknesses
 - Untested 3rd party libraries
- Challenge 2
 - PLC are expensive
 - PLC are slow
 - PLC must be perpetually engaged
- Solution
 - Challenge 1: Fuzzing
 - Challenge 2 : Emulation

totally_legit.dll

- Fuzzing
 - Input testing with corner cases (the fuzzy outliers)
 - Input mutation ullet
 - Binary instrumentation •
- Emulation
 - QEMU
- What about here?
 - Many, many targets! ullet
 - System binaries
 - Codesys runtime
 - PLC application

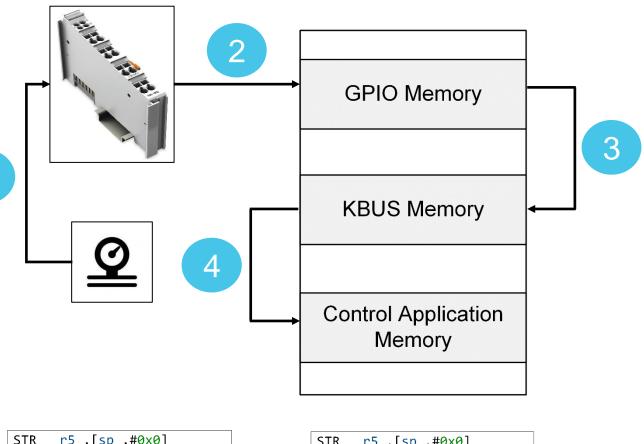
c014: 5e c015: 75 f8 c017: c9 c018: c3




```
c000: #compute -0x8(%rbp) and copy it to a buffer
c008: 48 89 7d f8 mov %rdi, -0x8(%rbp)
c00c: #compute (%rsp) and copy it to a buffer
                  pop %rsp
                  ine 0xc004
                  leaveq
                   retq
                    #BHASIA @BLACKHATEVENTS
```


- Connect to PLC (SSH/FTP)
- Extract necessary resources
 - Kernel configuration
 - File system
- Build bootable QEMU disk image
 - Mount image for processing
 - Modify init scripts ${}^{\bullet}$
 - Add fuzzer
- Boot system
 - Login through default credentials lacksquare
 - AFL to fuzz system binaries

- Binary format not suitable for fuzzing
- Binary must exist in Codesys context
- Fuzzing broken down:
 - Execution control
 - Input control
- Execution control
 - PLC applications run on a cycle
 - Leverage this cycle for continuous execution
- Input control
 - Reverse engineer input delivery to the PLC


Read Sensor Inputs

> Update Actuator Output

Execute Program

black hat Fuzzing - PLC application (ICSFuzz)

- Input control (contd.)
 - Follow the input flow
 - Choose the most controllable point \bullet
 - Force new values in-memory
 - Mutate values based on established schemes lacksquare
- Instrumentation
 - No source code No party
 - Scan for opportunities
 - Why not NOPs? lacksquare
 - Replace NOPs with controllable code ullet

STR	r5 ,[sp ,#0x0]	
STR	r4 ,[sp ,#0x8]	
STR	r6 ,[sp ,#0xc]	
LDR	r11 ,=0xB4F22A8Ch	
LDR	r6 ,[r11 ,#0x0]	
CPY	r0,sp	
STR	r10 ,[sp ,#0x38]!	
LDR	r10 ,=0xCDE1F2CDh	
STR	r10 ,[sp ,#0x24]!	
MOV	r10 ,#0x0	
MOV	r0 ,r0	
MOV	lr ,pc	

1

JIK	1 J J[JP J#0A0]
STR	r4 ,[sp ,#0x8]
STR	r6 ,[sp ,#0xc]
LDR	r11 ,=0xB4F22A8Ch
LDR	r6 ,[r11 ,#0x0]
CPY	r0,sp
STR	r10 ,[sp ,#0x38]!
LDR	r10 ,=0xCDE1F2CDh
STR	r10 ,[sp ,#0x24]!
MOV	r10 ,#0x0
STR	<pre>pc , [r0 ,#0xDEADBEEF]</pre>
MOV	lr ,pc
	,

- Combine all information uncovered through assessment
 - 1. Reverse-engineer PLC application function
 - 2. Manipulate functionality
 - 3. Fuzz for vulnerabilities
 - 4. Exploit vulnerability
 - 5. Synthesize new attack vector
- A novel attack methodology that
 - Manipulates a PLC application functionality
 - Inserts a kernel rootkit to spoof correct function

- System
 - Updates based on assessment
- Codesys platform
 - Open-up for researchers
 - Control application loading redesign
- Application
 - Hot patching
 - Compiler run-time awareness
 - 3rd party library auditing
 - NX-bit enforcement
 - Coding limitation?

- Limited software-based standardization in ICS
 - Network communication
 - Language structure
 - Firmware structure?
 - Code production?
- Industry leaders stick to in-house solutions
 - In-house SoC
 - Self-developed firmware
- Codesys a step to the right direction
 - Multi-platform compatibility
 - Centralized security assessment efforts

SIEMENS

- Current PLC programming practices introduce vulnerabilities as easily exploitable as buffer overflows that can hijack a whole industrial process.
- Modern Linux-based soft PLC platforms are exploitable from a simple DoS to a full-blown take-over of an industrial setting or a critical infrastructure.
- The lack of standardization practices across the various ICS vendors limits the potential for a thorough security assessment of industrial devices, such as PLC, which opens the way for more zero-day vulnerabilities.

Thank you!

Questions?

