
The last line of defense:
understanding and
attacking Apple File
System on iOS

Xiaolong Bai
@Alibaba Orion Security Lab

Xiaolong Bai
• Security Engineer @Alibaba Orion Security Lab

• Ph.D. graduated from Tsinghua University

• Published papers on the top 4: S&P, Usenix Security, CCS, NDSS

• Twitter, Weibo, Github: bxl1989 Blog: bxl1989.github.io

Alibaba Orion Security Lab: a research lab aiming at securing applications and systems with
innovative techniques. We hunt for high-impact vulnerabilities in high-value targets like iOS,
macOS, Android, Linux, Windows, and IOT devices, and protect them with highly automated tools.
Our research has been published on top conferences like Black Hat, DEFCON, and HITB.

Co-author: Min (Spark) Zheng
• Security Expert @Alibaba Orion Security Lab, SparkZheng @ Twitter

APFS basics

Previous attacks on APFS

APFS’s mitigation

Our new bypass

Other bypass methods

Conclusions

Agenda

APFS basics

Previous attacks on APFS

APFS’s mitigation

Our new bypass

Other bypass methods

Conclusions

Agenda

APFS basics

• Important structures in the kernel to manage filesystems and files

• mount: represents a mounted partition

• Important structures in the kernel to manage filesystems and files

• vnode: represents a file or directory

APFS basics

…

mount0 mount1 mnt_list

mnt_op

mnt_vnodelist

mnt_data
vnode0

vnode1

… mountN

vnodeX

…

v_parent

v_op

v_mount

v_data

vfs_mount

vfs_start

vfs_unmount

…

apfs_vfsop_mount()

mount

vnode

apfs_vfsops

vnop_lookup_desc()

apfs_vnop_lookup()

vnop_create_desc()

…

apfs_vnodeop_p

apfsmount

APFS basics

• A special partition: root partition (/)

• /Applications: unsandboxed and system application

• /bin: system binaries

• /dev: device files

• /etc: configuration files

• /lib: libraries

• /private

• /System

• …

APFS basics

• On Sept 17, 2018, Apple published Apple File System Reference

manual, which describes in detail data structures used in APFS. This is a

perfect reference for research on APFS

• https://developer.apple.com/support/apple-file-system/Apple-File-System-

Reference.pdf

• But, when this talk was being prepared and submitted, the reference

has not been published yet. All knowledge in this talk is acquired from

reverse engineering.

APFS basics

APFS basics

Previous attacks on APFS

APFS’s mitigation

Our new bypass

Other bypass methods

Conclusions

Agenda

• By default, root partition is read-only

• To modify any file or directory, attackers* need to remount / as read-write

* Basic assumption for all attacks and bypasses described below: the attacker already has
root privilege and the capability to arbitrarily read/write kernel memory

Previous attacks on APFS

• hook_mount_check_remount ()

• Get the mnt_flag of the mounted

partition

• Check whether the mnt_flag has

0x4000 (MNT_ROOTFS)

• If true, get the partition’s root

vnode and evaluate policy

Previous attacks on APFS

• Attack method proposed by Xerub and explained in JL’s HITB AMS 18:

• Clear the root partition’s MNT_ROOTFS and MNT_RDONLY flags

• Then remount, and set the MNT_ROOTFS again

Previous attacks on APFS

APFS basics

Previous attacks on APFS

APFS’s mitigation

Our new bypass

Other bypass methods

Conclusions

Agenda

• Apple has changed the way how root partition is mounted after iOS 11.3

• If we use the old method, we will get a kernel panic when we change a file

APFS’s mitigation

• The panic indicates a new mitigation in iOS APFS

• But, what happens here?

• Let’s first run the command “mount” to check the root partition (with # on iOS)

com.apple.os.update-CA59XXXX@/dev/disk0s1s1 on / (apfs, local, nosuid, read-only, journaled, noatime)

devfs on /dev (devfs, local, nosuid, nobrowse)

/dev/disk0s1s2 on /private/var (apfs, local, nodev, nosuid, journaled, noatime, protect)

/dev/disk0s1s3 on /private/var/wireless/baseband_data (apfs, local, nodev, nosuid, journaled, noatime, nobrowse)

/dev/disk3 on /Developer (hfs, local, nosuid, read-only)

APFS’s mitigation

• What is “com.apple.os.update-CA59XXXX@/dev/disk0s1s1” ?

• Let’s do some experiments by the tool tmutil on macOS

$ tmutil localsnapshot /
Created local snapshot with date: 2018-05-30-154704
$ tmutil listlocalsnapshots /
com.apple.TimeMachine.2018-05-30-154704
$ sudo mount -t apfs -o -s=com.apple.TimeMachine.2018-05-30-154704 / /tmp
mount_apfs: snapshot implicitly mounted readonly
$ mount
/dev/disk1s1 on / (apfs, local, journaled)
devfs on /dev (devfs, local, nobrowse)
/dev/disk1s4 on /private/var/vm (apfs, local, noexec, journaled, noatime, nobrowse)
com.apple.TimeMachine.2018-05-30-154704@/dev/disk1s1 on /private/tmp (apfs, local, read-only, journaled)

Create a snapshot for root partition

List snapshots on the root partition

Mount the snapshot onto /tmpList all mounted partition

APFS’s mitigation

• So, the prefix before “@” represents a “snopshot” of the mounted device

• Wait, what is a snapshot?

• A specific feature of APFS, Apple explained as follows

A volume snapshot is a point-in-time, read-only instance
of the file system. The operating system uses snapshots to
make backups work more efficiently and offer a way to
revert changes to a given point in time.

APFS’s mitigation

• That means, on iOS, the root partition is a “point-in-time, read-only

instance of the file system”

• That is the root cause that fails past attacks and panics the kernel

• Though we modify the mount flag of the partition, the partition still

represents a read-only snapshot.

• A “writable” read-only snapshot: Apparently conflict!

APFS’s mitigation

• Let’s further check what conditions cause the panic

• Reexamine the panic log

• Search the strings in APFS binary (/System/Library/Extensions/apfs.kext)

APFS’s mitigation

• The panic happens in alloc_space_for_write_with_hint(), which is

called by apfs_vnop_write(), i.e., APFS’s handler for file write operation

• “you must have an extent covering the alloced size”, what is extent?

• “extent” is an internal data structure representing a file’s location and size.

APFS’s mitigation

• By reverse engineering, we found

• File extents are organized as btrees and stored

in the mnt_data of a partition’s “mount” structure

• A snapshot mount’s mnt_data does not have

extents, even if the mount’s flag changed to RW

APFS’s mitigation

APFS basics

Previous attacks on APFS

APFS’s mitigation

Our new bypass

Other bypass methods

Conclusions

Agenda

• With above findings, several thoughts for new bypass come into my mind

• Make another writable mount of /, make changes to wanted files in the new

mount, and then reboot. The file changes may take effects

• Make another writable mount of /, replace the original root vnode with the new

mount’s root

• Reconstruct a new mnt_data from scratch, representing a writable root partition,

and replaces the original root mount’s mnt_data with the new one

• …

Our new bypass

Thought 1

• Basic Idea:

• In another writable mount of the root, make changes
to wanted files or dirs.

• After reboot, the changes may take effect.

• Result: Failed!

• Every time after reboot, the root partition will be
reverted back to the original snapshot

Make another writable
mount of /

Make changes to wanted
files or dirs in the new

mount

Reboot

The changes take effects

Our new bypass

Thought 2

• Basic idea:

• Vnodes are organized as a tree

• If we change a partition’s root vnode,
the vnode tree of a partition may also
be changed

• Result: Failed!

• System doesn’t traverse from the root
vnode to look up for a vnode in a partition

Make another writable mount of /

Find root vnode of the original mount

Replace the content of the original root
vnode with content of the new one

Find the root vnode of the new mount

Our new bypass

Thought 3

• Basic idea:

• The main panic reason is that root partition’s snapshot
mount does not have a mnt_data with valid extents to
support write operations

• Create a new valid mnt_data from scratch, and replace
the root mount’s mnt_data with the new one

• Result: Failed!

• mnt_data is too complicated to be created from scratch

Create a valid mnt_data
from scratch, to

represent a writable
root partition

Replace the root mount’s
mnt_data with

the new mnt_data

Our new bypass

Thought 4: the final method

• Basic idea:

• Instead of creating a mnt_data from scratch, ask the system to create a new valid
mnt_data representing a writable partition

• Replace the original root mount’s mnt_data with the new one

• How to “ask the system to create a new valid mnt_data”?

• Make another writable mount of / , and retrieve mnt_data from this new mount

• Writable file extents can be found in this new mnt_data

Our new bypass

Make another writable mount of /

Get mnt_data from the new mount

Change root partition’s mount flag
and remount

Replace root mount’s mnt_data with
new mount’s mnt_data

Our new bypass

mnt_list

mnt_op

…

mnt_data

original mount
on /

mnt_list

mnt_op

…

mnt_data

new mount on
/var/mobile/tmp

mnt_list

mnt_op

…

mnt_data

original mount
mnt_list

mnt_op

…

mnt_data

new mount

root partition device file: /dev/disk0s1s1

Valid extents
can be

found here

void remountRootAsRW(){
char *devpath = strdup(“/dev/disk0s1s1”);
/* 1. make a new mount of the device of root partition */
char *newMPPath = strdup(“/private/var/mobile/tmp”);
createDirAtPath(newMPPath);
mountDevAtPathAsRW(devPath, newMPPath);

/* 2. Get mnt_data from the new mount */
uint64_t newMPVnode = getVnodeAtPath(newMPPath);
uint64_t newMPMount = readKern(newMPVnode + off_v_mount);
uint64_t newMPMountData = readKern(newMPMount + off_mnt_data);

/* 3. Modify root mount’s flag and remount */
uint64_t rootVnode = getVnodeAtPath(“/”);
uint64_t rootMount = readKern(rootVnode + off_v_mount);
uint32_t rootMountFlag = readKern(rootMount + off_mnt_flag);
writeKern(rootMount + off_mnt_flag, rootMountFlag & ~ (MNT_NOSUID | MNT_RDONLY | MNT_ROOTFS));
mount(“apfs”, “/”, MNT_UPDATE, &devpath);

/* 4. Replace root mount’s mnt_data with new mount’s mnt_data */
writeKern(rootMount + off_mnt_data, newMPMountData);

}

pseudocode

Our new bypass

Implementation Detail 1

• getVnodeAtPath(): given any path, get the address of its vnode in the kernel

• int namei (struct nameidata *ndp): a utility kernel function used by the kernel to

retrieve the vnode of a path

• Use KCALL gadget proposed by Ian Beer to call namei() function in the kernel

• Note: After namei() called, must call vnode_put() kernel function to adjust vnode’s

reference count

Our new bypass

Implementation Detail 1

• getVnodeAtPath(): given any path, get the address of its vnode in the kernel

uint64_t getVnodeAtPath(char *path){
uint64_t fake_nd_in_kern = kalloc(sizeof(struct nameidata));
KCALL(copyin_addr, &nd, fake_nd_in_kern, sizeof(struct nameidata), NULL, NULL, NULL, NULL);
KCALL(namei_addr, fake_nd_in_kern, NULL, NULL, NULL, NULL, NULL, NULL);
KCALL(copyout_addr, fake_nd_in_kern, &nd, sizeof(struct nameidata), NULL, NULL, NULL, NULL);
uint64_t vp = nd.ni_vp;
if(nd.ni_vp)

KCALL(vnode_put_addr, nd.ni_vp, NULL, NULL, NULL, NULL, NULL, NULL);
if(nd.ni_dvp)

KCALL(vnode_put_addr, nd.ni_dvp, NULL, NULL, NULL, NULL, NULL, NULL);
return vp;

}

Our new bypass

Implementation Detail 2

• readKern() and writeKern():

• Gadget to read/write arbitrary kernel memory

• Implementation can be found in Xerub, Electra, V0rtex, mach_portal , or Qilin toolkit

Our new bypass

Implementation Detail 3

• mountDevAtPathAsRW(): mount a device file at a path as RW

• A wrapper function of the “mount” system call with special mounting arguments

Our new bypass

int mount (const char *type, const char *dir, int flags, void *data);

The filesystem type of
the mounting partition,
i.e., “apfs”

The directory path
for the partition to
be mounted on

The mount flags,
e.g., MNT_UPDATE

The mount arguments,
including the path of the
device file and specific
mounting arguments
for apfs

Implementation seems easy, huh?

No! The implementation is not easy at all.

There are still many checks and restrictions in iOS and APFS

Our new bypass

In mount_common() In vfs_mountedon()

Our new bypass

Issue 1: iOS doesn’t allow a device to be mounted more than once

• Solution: clear the SI_MOUNTEDON flag of the device vnode’s v_specflags

Issue 1: iOS doesn’t allow a device to be mounted more than once

• Solution: clear the SI_MOUNTEDON flag of the device vnode’s v_specflags

char *nmz = strdup(“/dev/disk0s1s1");
uint64_t devvp = getVnodeAtPath(nmz);
uint64_t devvp_v_specinfo = readKern(devvp+120);
uint64_t devvp_v_specflags = readKern(devvp_v_specinfo+16);
writeKern(devvp_v_specinfo+16, 0);

Our new bypass

Issue 2: Inconsistency between mount and mnt_data

• A pointer in mnt_data points to its belonging mount structure, APFS
checks consistency in apfs_jhash_getvnode_stream()

• Solution:

• before replacing root mount’s mnt_data with new mount’s mnt_data, do
writeKernel64(newMPMountData+416, rootMount);

Our new bypass

Issue 3: kernel’s sandbox checks on the “mount" system call

• In attacks before iOS 11.3: root privilege is enough (see Electra 11)

• But, after iOS 11.3, you will fail and get

• Why? Sandbox checks in the “mount” system call:

Sandbox: mount_apfs(235) System Policy: deny(1) file-mount XXX

Our new bypass

sb_evaluate()

mount_common() prepare_coveredvp() mac_mount_check_mount()

hook_mount_check_mount()cred_sb_evaluate()

Our new bypass

Issue 3: kernel’s sandbox checks on the “mount" system call

• Solution: A detour in mac_mount_check_mount()

Our new bypass

Set the ucred of our thread with kernel’s ucred:

writeKern(current_uthread + 344, kernel_thread);
writeKern(current_uthread + 352, kern_ucred);
writeKern(our_proc+0x100, kern_ucred);

Issue 3: kernel’s permission checks on the “mount" system call

• Solution: A detour in mac_mount_check_mount()

Our new bypass

Issue 3: kernel’s permission checks on the “mount" system call

• Keep using kernel ucred after the “mount” system call?

• Kernel will panic with

• “shenanigans!”@/BuildRoot/Library/Caches/com.apple.xbs/
Sources/Sandbox_executables/Sandbox-XXX/src/kext/evaluate.c:

Our new bypass

Issue 3: kernel’s permission checks on the “mount" system call

• Why “shenanigans” ?

• If the operation target does
not belong to the kernel,
but current process has
kernel ucred, sandbox will
panic the system

• Solution:

• restore the ucred of our proc to its original after the “mount” system call

Finally! iOS 11.3.1 jailbreak

• Install untrusted apps in

/Applications directory

• Create files in /

Our new bypass

Several notes and limitations of our attack method

• This is a temporary remounting!

• Our method only modifies structures in the kernel memory and does not
modify any configuration files

• After rebooting, the root partition will still be reverted to the original
snapshot, all changes to files/dirs are discarded.

• It is proposed at the time of iOS 11.3.1, not working on iOS 12!

Our new bypass

APFS basics

Previous attacks on APFS

APFS’s mitigation

Our new bypass

Other bypass methods

Conclusions

Agenda

• Umang Raghuvanshi proposed a persistent remounting solution, which is
built upon temporary remounting (e.g. our bypass method)
• https://blog.umangis.me/persistent-r-w-on-ios-11-2-6/

• Basic idea:
• After temporary remount, make changes to wanted files/dirs.

• Rename the root partition’s snapshot as a dummy name

• Create a new snapshot for the root partition

• Rename the new snapshot with the original snapshot’s name

• All file/dir changes are persistent after reboot!

Temporary
remount / as RW

Make changes
to files/dirs

Rename the
original snapshot

Create a new
snapshot

Rename the new snapshot
as the original name

Other bypass methods 👍

https://blog.umangis.me/persistent-r-w-on-ios-11-2-6/

• CoolStar proposes another persistent remounting in Electra 11.3.1
• https://coolstar.org/electra/

• Basic idea:
• Rename the root partition’s

snapshot to a dummy name

• Reboot

• System can not find the original
snapshot, and mount / regularly

• Remount / as RW with old
method before 11.3

Other bypass methods

Make another
writable mount of /

Rename the original
snapshot

Reboot
Remount / as RW with

method before 11.3

👍

https://coolstar.org/electra/

APFS basics

Previous attacks on APFS

APFS’s mitigation

Our new bypass

Other bypass methods

Conclusions

Agenda

•APFS basics

•Past attacks to remount root partition as RW

• iOS APFS’s current protection on the root partition

•Our new method to bypass iOS APFS’s current

protection and some other methods

Conclusions

Q&A
bxl1989@twitter
https://bxl1989.github.io

