
Cutting Edge
Microsoft Browser Security – From
People Who Owned It

Chuanda Ding (@FlowerCode_)

Zhipeng Huo (@R3dF09)

Wei Wei (@Danny__Wei)

Abstract

We have seen too much focus on finding Win32k bugs. Is the sandbox itself too secure to escape?

Microsoft Edge, the new default browser for Windows 10, is heavily sandboxed.

In fact, it is probably the only browser with its main process running inside a sandbox. Microsoft
even goes to great length to design and implement platform security features exclusively for
Microsoft Edge.

In this paper, we will take a deep dive into the Microsoft Edge security architecture. This includes
sandbox initialization, browser broker implementation, inter-process communication, and
renderer security isolation.

We will present two logical sandbox escape bug chain consists of three bugs for Microsoft Edge.

One of which we have used in Pwn2Own, and the other two are completely new. They are entirely
different from memory corruption bugs, as all we have done is abusing normal features
implemented in the browser and operating system.

Table of Contents
Abstract ... 2

1. Introduction ... 4

1.1. Microsoft Edge ... 4

1.2. Universal Windows Platform.. 4

1.2.1. AppContainer .. 5

1.2.2. Child AppContainer ... 7

1.2.3. The Brokers ... 7

1.3. Microsoft Edge Architecture .. 8

2. Process Startup and Privilege Separation .. 10

2.1. Manager Process Startup ... 10

2.2. Content Process Startup .. 12

3. Inter-Process Communication ... 16

3.1. RPC ... 16

3.2. COM.. 17

3.2.1. Overview ... 17

3.2.2. COM Security .. 20

3.3. LCIE IPC ... 21

3.3.1. Overview ... 21

3.3.2. LCIE IPC Message Security .. 24

4. Vulnerabilities .. 25

4.1. Sandbox Escape Chain 1 ... 25

4.1.1. Browser Broker Bug .. 25

4.2. Sandbox Escape Chain 2 ... 31

4.2.1. Flash Broker Bug ... 31

4.2.2. SOP Bypass .. 38

4.2.3. Exploit Chain ... 41

4.2.4. Patches ... 42

5. Conclusion ... 43

Acknowledgments ... 43

References ... 43

1. Introduction

1.1. Microsoft Edge

Microsoft Edge is a new web browser developed by Microsoft. It is the default web browser on
Windows 10, replacing Internet Explorer. According to Microsoft, it is a fast and secure browser
designed for Windows 10 and “the faster way to get things done on the web”. The largest change
in Microsoft Edge security is that the new browser is a Universal Windows Platform app. This
fundamentally changes the process model, so that both the manager process, and the assorted
content processes (renderers), run within AppContainer sandboxes[1]. Making browser runs inside
a sandbox will prevent arbitrary code execution vulnerabilities from affecting the underlaying OS.
Microsoft Edge has been a target of Pwn2Own contest starting from 2016.

1.2. Universal Windows Platform

UWP apps are built with Windows Runtime APIs (WinRT API), which was introduced in Windows
8. WinRT is based on an enhanced version of COM. Language projections are provided for
C++, .NET languages, and JavaScript. These projections make it easy to access WinRT types,
methods, properties, and events from developers’ familiar environments.[2]

“WinRT” stands for “Windows Runtime”. However, this is not a runtime in the same way that .NET
Runtime or Oracle’s Java Runtime Environment is a runtime. WinRT is still layered on top of the
Windows subsystem DLLs. It has a set of libraries offering a range of services through APIs.[3]

Following diagram shows the relationship between UWP app, WinRT, and Win32.

Universal Windows Platform

1.2.1. AppContainer

From the security perspective, UWP apps run in a new type of sandbox called AppContainer.
Isolation is the primary goal of AppContainer. It introduces many isolation technologies, such as
securable object restrictions, object namespace isolation, global atom table restrictions,
enhanced UIPI, and network isolation. All these isolation techniques use the AppContainer’s
LowBox token for access checking.

The LowBox token was also introduced in Windows 8. It has three key members: Integrity level,
AppContainer SID and Capability SIDs. All UWP apps run at low integrity level with a special SID
(begin with S-1-15-2) and a set of Capability SIDs.

UWP

Windows Runtime

UWP app

Win32 Subsystem

UWP app

Microsoft Edge AppContainer SID and Capability SIDs

Windows use these members to determine if an UWP app has access to resources in the same
user account. Unlike the IE’s Protected Mode, which only uses integrity level to limits write and
execute access to resources that belongs to same user account, AppContainer can also be used
for limiting read access.

Developers can also configure UWP apps' AppxMainfest.xml file to restrict their access more
granularly. For example, the access to internet, camera, clipboard, shared user certificates, etc.
These restrictions are implemented with Capability SIDs. User security is protected with
AppContainer sandbox.

MicrosoftEdge’s Capabilities defined in AppxManifest.xml

1.2.2. Child AppContainer

One AppContainer is enough for most UWP apps. This is true for all other pre-installed apps, such
as Calculator, Maps and OneNote. However, an UWP app can also create another type of
AppContainer called child AppContainer, if it wants to create its own nested AppContainer to
further lock down the app.

Microsoft Edge needs to run several types of renderers with different privileges. It creates child
AppContainers with different capabilities for several types of renderers.

A child AppContainer has four more RIDs in addition to AppContainer SID’s eight RIDs to uniquely
identify it. Chapter 2.1.2 will detail the creation process of child AppContainer.

1.2.3. The Brokers

As we mentioned earlier, UWP app runs in AppContainer and built with the WinRT API. Windows
Runtime is responsible for the resource operations of UWP app. Many WinRT APIs runs in a broker
called Runtime Broker, since many resource operations require permissions higher than
AppContainer, such as reading and writing user files, accessing the clipboard, etc.

Brokers

Browser also needs a broker for privileged operations, such as changing permission of
downloaded files or access other services.

There are already many articles detailing UWP, AppContainer, Runtime Broker etc. You can learn
more about them from referenced articles[2][3][4].

1.3. Microsoft Edge Architecture

The following diagram illustrates the architecture of Microsoft Edge.

Microsoft Edge Architecture

MicrosoftEdge.exe is the manager process, responsible for managing renderer processes
and providing basic functions. Unlike other browsers, the manager process is a UWP app that runs
in an AppContainer sandbox.

There are several types of renderers in Microsoft Edge. They are also called content processes,
with process name MicrosoftEdgeCP.exe.

AppContainer

Windows OS

Child
AppContainer Brokers

Create

CreateFileCreateFile CreateFile

Microsoft Edge app

Manager AC

#!001
Internet
Child AC

#!002
NTP

Child AC

#!003
Ext.

Child AC

#!004
Settings
Child AC

#!005
BCHost
Child AC

#!006
JIT

Child AC

#!121
Local

Child AC

Brow
ser Broker

Runtim
e Broker

Shell Infra. Host

Renderer types

Moniker Type
001 Internet zone renderer
002 New tab page renderer
003 Extensions page renderer
004 Settings page renderer
005 Flash Player enabled page renderer
006 Just-In-Time energy renderer
121 Local zone & Intranet zone renderer

Bowser Broker, Runtime Broker and Shell Experience Host all runs with normal user privilege.

2. Process Startup and Privilege Separation

In this section we will talk about the startup of Microsoft Edge app. We are not going to cover
every detail. What we really care about is privileges assigned to each Edge process, especially the
Internet AC process.

2.1. Manager Process Startup

Manager process is the first started process during the activation of Microsoft Edge. It is
responsible for creating child processes, also known as content process or renderer.

The following is startup sequence of manager process.

1. Activating Edge

There are many ways to activate an UWP app. The most common way is by double clicking
shortcut. Shortcut is a lnk file that is parsed and handled by the shell program.

Activating UWP apps is different from starting traditional Win32 applications. Instead of
directly creating a new process, explorer.exe sends an activation request to
sihost.exe.

2. sihost.exe

“sihost” stands for “Shell Infrastructure Host” and runs with medium integrity level.
sihost.exe is a part of Windows shell environment. The activation request from
explorer.exe is processed by
activationmanager!Execution::ActivationManagerShim::ActivateAppli
cationForContractByAppId

The activation request passed into the function contains:

AppId: Microsoft.MicrosoftEdge_8wekyb3d8bbwe!MicrosoftEdge

Contract: Windows.Launch

Just like out-of-process COM activation, the activation requests will be sent to RPCSS service.
And there are many other functions to handle different activation requests:

activationmanager!Execution::ActivationManagerShim::ActivateAppli
cationFor*

3. RPCSS

RPCSS service is the Service Control Manager (SCM) for COM, DCOM, and the new WinRT
technology. It handles object activations requests and object exporter resolutions. RPCSS service
is divided into several processes on newer OS’s. It is an important part of RPC, COM, DCOM, and
WinRT. For example, when we want to launch an out-of-process COM, the client will communicate
with RPCSS to request an activation. It will also help connect client and server.

UWP app is based on WinRT, and WinRT is based on COM. The implementation of WinRT is similar
with COM. The real activation of UWP also happens in the RPCSS service.

a. Get activation information

After RPCSS gets the application name, it would find the application activation information.

The needed information is stored in this directory:

%ProgramData%\Microsoft\Windows\AppRepository\Packages

The system gets the directory through function

kernelbase!GetSystemMetaDataPathForPackage

RPCSS then gets full name of the package. For Edge, the package full name is

Microsoft.MicrosoftEdge_42.17074.1000.0_neutral__8wekyb3d8bbwe

There is a ActivationStore.dat in the directory. This file is a hive file that could be loaded
by NtLoadKeyEx. It will be loaded dynamically at runtime to get the activation information. For
example, the target executable path for activation. The registry hierarchy looks like this:

\REGISTRY\A\{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}

\ActivatableClassId

\REGISTRY\A\{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}

\Server

As shown in above screenshot, for MicrosoftEdge, the ActivationType is 1, which means
out-of-process activation. Executable path of the server is also available in the hive by querying
server’s full name. This is similar with local server COM activation. All other activation information
is under the Server key.

b. Createing MicrosoftEdge.exe

The program path for MicrosoftEdge is:

"C:\Windows\SystemApps\Microsoft.MicrosoftEdge_8wekyb3d8bbwe\Micr
osoftEdge.exe"

But there are some differences with the common process creation. RPCSS will create an
AppContainer process.

How to create AppContainer process?

1) Get Package SID from Package Family Name

DeriveAppContainerSidFromAppContainerName

2) Get Capability SIDs

Capability SIDs of an UWP app is stored in registry.

Capability SIDs comes from AppXManifest.xml, current package capability, and an
additional cellularData capability.

3) Create LowBox Token

nt!NtCreateLowBoxToken

4) Create MicrosoftEdge.exe

Finally, a manager process named MicrosoftEdge.exe is started by RPCSS service.

2.2. Content Process Startup

Content process or renderer is a type of child AppContainer process of Edge manager process.

1. MicrosoftEdge.exe

Edge manager process is responsible for creating child AppContainer process.

MicrosoftEdge.exe is an AppContainer process that has limited privileges. To create child
processes, it calls Runtime Broker through COM.

2. Runtime Broker

Runtime Broker creates a LowBox token from child AppContainer package SID. The SID is
calculated from the token of MicrosoftEdge.exe and a restricted name via
DeriveRestrictedAppContainerSidFromAppContainerSidAndRestrictedNa
me.

MicrosoftEdge.exe package SID is:

S-1-15-2-3624051433-2125758914-1423191267-1740899205-1073925389-
3782572162-737981194

The value is the SHA-256 of “Microsoft.MicrosoftEdge_8wekyb3d8bbwe”

SHA-256 of “001” is:

S-1-15-2-1912002900-2594761559-4142726862-4256926629-1688279915-
2739229046-3928706915

The child AppContainer SID combines two SID values. The SID of
“Microsoft.MicrosoftEdge_8wekyb3d8bbwe/001” is:

S-1-15-2-3624051433-2125758914-1423191267-1740899205-1073925389-
3782572162-737981194-4256926629-1688279915-2739229046-3928706915

Next, where to get capability SIDs of child AppContainer process?

These capability SIDs are hardcoded in Edge, it’s in edgeIso!GetRACEnumerationFlags.

Runtime Broker get the capabilities from MicrosoftEdge.exe through COM callback.

The capabilities are as below:

For restricted name higher than 071 there are two more capabilities:

privateNetworkClientServer

enterpriseAuthentication

With package SID and capability SIDs, a LoxBox token could be created with
nt!NtCreateLoxboxToken.

The Runtime Broker would pass the activation requests and the LoxBox token to sihost.exe.

3. sihost.exe

The process gets the token from Runtime Broker and registers RAC activation token with RPCSS
through combase!CoRegisterRacActivationToken.

After that, it sends an activation request to RPCSS service.

4. RPCSS

internetClient
sharedUserCertificates
location
microphone
webcam
registryRead
lpacWebPlatform
lpacCom
lpacAppExperience
lpacCryptoServices
lpacIdentityServices
lpacInstrumentation
lpacEnterprisePolicyChangeNotifications
lpacMedia
lpacPnPNotifications
lpacServicesManagement
lpacSessionManagement
lpacPrinting
lpacPayments
lpacClipboard
childWebContent

RPCSS then performs the following operations:

1) Lookup RAC token

Get RAC token that registered previously

2) Get WinRT runtime class

Get the activation information

3) Create content process

Now a content process is started.

3. Inter-Process Communication

IPC components are most vulnerable to privilege escalation bugs.

In this chapter, we will talk about inter-process communication mechanisms used by Microsoft
Edge. There are three types of IPC mechanisms: RPC, COM and LCIE IPC. These IPCs provide a large
attack surfaces for sandbox.

3.1. RPC

RPC (Remote Procedure Call) is an inter-process communication mechanism. It allows client and
server to communicate over several protocol sequences, such as ALPC ports, named pipes,
Winsock etc.

The server's interface (identified by an UUID) will be bound on an endpoint with specified protocol.
Then a client can access the interface with the identity.

RPC server can use security descriptor to control access permission of an endpoint. It can also use
interface security callback function to check permissions of a client.

By default, there are many RPC servers in Windows. Some of them are accessible in a sandbox.

In Microsoft Edge, the JavaScript JIT engine runs in a separate renderer. Other processes use RPC
to communicate with JIT renderer. For example, internet renderer sends JavaScript code to JIT
renderer via RPC for compilation. JIT renderer will reply with generated machine code.

JIT renderer registers an RPC server:

status = RpcServerRegisterIf3(

ServerIChakraJIT_v0_0_s_ifspec,

NULL,

NULL,

RPC_IF_AUTOLISTEN,

RPC_C_LISTEN_MAX_CALLS_DEFAULT,

(ULONG)-1,

NULL,

securityDescriptor);

You can find the complete source code in ChakraCore repository:
ChakraCore/lib/JITServer

3.2. COM

3.2.1. Overview

COM comes from OLE technology. After years of evolution, COM has become the foundation of
Windows. COM is widely used in Windows shell components and service components, because it
provides strong reusability, scalability, and isolation. For example, Microsoft Office uses COM/OLE
to implement compound document. Windows also uses COM to implement ActiveX control. Many
local and remote services use COM/DCOM to communicate with each other.

COM defines a binary interoperability standard for creating reusable software libraries that
interact at runtime. A reusable interface implementation is called a component, a component
object, or a COM class object (Identified by a CLSID). A component implements one or more COM
interfaces. And a COM interface (Identified by an IID) is a collection of member functions. All
communication among COM components occurs through interfaces, and all services offered by a
component are exposed through its interface. A caller can access only the interface member
functions. Internal state is unavailable to a caller unless it is exposed in the interface.[5]

The Client / Server Model

A COM class implements several COM interfaces. The implementation consists of binaries that
run when a caller interacts with an instance of the COM class. COM enables using a class in
different applications, including applications written without knowledge of a class. On a Windows
platform, classes exist either in a dynamic-linked library (DLL) or in another application (EXE).

On client/server’s host system, COM maintains a registration database of all the CLSIDs for the
COM objects installed on the system. The registration database is a mapping between each CLSID
and the location of the DLL or EXE that houses the corresponding class. COM queries this database
whenever a caller wants to create an instance of a COM class. The caller needs to know only the
CLSID to request a new instance of the class.

COM uses client/server model for object interaction. The client is the caller that requests a COM
object from the system, and the server is the module that houses COM objects that provides
services to clients.[5]

In-Process COM Server and Out-of-Process COM Server

There are two types of COM servers, in-process COM server and out-of-process COM server. In-
process COM servers are implemented in a dynamic linked library (DLL). Out-of-process COM

servers are implemented in an executable file (EXE). Some out-of-process COM servers can reside
on a remote computer or have different permissions than their client. This type of COM server is
also called DCOM server.

We can call CoCreateInstance with CLSCTX_INPROC_SERVER to create an in-process
COM server and call CoCreateInstance with CLSCTX_LOCAL_SERVER to create an out-
of-process COM server. The client communicates with out-of-process COM server through
LPC/RPC.

From the security perspective, we are more interested in out-of-process COM, since they run in
separate processes and their permissions may be higher than AppContainer. They opened up a
large attack surface for sandboxed processes.

For example, we found Microsoft Edge uses a COM server ImeBroker to create dictionaries,
learn words etc. ImeBroker runs at medium integrity level and had a sandbox escape bug in the
past.

ImeBroker operating on dictionaries

Out-of-Process COM Activation

To launch or activate an out-of-process COM server, the COM runtime in the client will send a
launch or activation request to system activator that runs in RPCSS service, by calling
RPCSS!SCMActivatorCreateInstance through RPC.

Out-of-process COM Activation

The launch and activation permission is checked in
RPCSS!CClassData::LaunchOrActivationAllowed, which is a child function of
RPCSS!SCMActivatorCreateInstance. If client has launch/activation permission, RPCSS
will launch/activate associated out-of-process COM server with appropriate user account. When
an out-of-process COM server starts, it will register its class and interface information to RPCSS
service through RPCSS!ServerRegisterClsid.

Out-of-process COM Activation

Then RPCSS service will return an ActivationPropertiesOut structure back to the client.
The structure is an OBJREF that contains information about out-of-process COM server. The
client can query more information about the server, such as RPC endpoint. Then client could
establish an RPC connection to the server. James Forshaw has detailed this process [6].

Client

RPCSS

Server

Client

RPCSS

Server6. Communicate with RPC endpoint

3.2.2. COM Security

COM security heavily depends on Windows and RPC security mechanisms. COM security relies on
authentication (the process of verifying a caller's identity) and authorization (the process of
determining whether a caller is authorized to do what it is asking to do).

There are two main types of security in COM: activation security and call security. Activation
security determines whether a client can launch a server at all. After a server is launched, it can
use call security to control client access to server objects.[7]

Security Settings

System-wide

System-wide security settings control the default launch and access permission and call-level
security capabilities for COM servers that do not have process-wide security settings or call
CoInitializeSecurity explicitly. These settings associated with the key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Ole.

The following are security related settings:

Key Description Remarks
DefaultLaunchPermission Define default launch ACL for the

computer

DefaultAccessPermission
Define default access permission list
for the computer

By default, this value has no entries
in it. Only the server principal and
system are allowed to call the
server.

MachineLaunchRestriction Principals not given permissions
here cannot obtain them even if the
permissions are granted by the
DefaultLaunchPermission
registry value or by the
CoInitializeSecurity
function.

MachineAccessRestriction Principals not given permissions
here cannot obtain them even if the
permissions are granted by the
DefaultAccessPermission
registry value or by the
CoInitializeSecurity
function.

LegacyAuthenticationLevel Sets the default authentication level
for applications that do not call
CoInitializeSecurity

the default authentication level
established by the system is
RPC_C_AUTHN_CONNECT

LegacyImpersonationLevel Sets the default level of
impersonation for applications that
do not call
CoInitializeSecurity

the default impersonation level
established by the system is
RPC_C_IMP_LEVEL_IDENTIFY

Process-wide

COM server can use process-wide security settings to supply their own security values. The
process-wide security settings in the registry associated with the key
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\AppID\{AppID_GUID}. The registry
value LaunchPermission, AccessPermission, AuthenticationLevel etc. can be
used for corresponding security settings.

It is worth noting that COM Server can call CoInitializeSecurity explicitly to override
default permission. Otherwise, the COM runtime will implicitly call CoInitializeSecurity
with the process-wide security settings or the computer-wide security settings in the registry.

Besides, if the AuthenticationLevel is none, the AccessPermission and
DefaultAccessPermission values are ignored for that application. And if the
AuthenticationLevel is not present and the LegacyAuthenticationLevel is none,
the AccessPermission and DefaultAccessPermission values are ignored for that
application.

Security Check

As mentioned earlier, the RPCSS service is responsible for launching/activating the COM server.
RPCSS service will get the client’s identity to check if it has access to launch/activate the server.
This is achieved by calling RPCSS!CClassData::LaunchOrActivationAllowed.

Launch means create a new instance of the COM server. Activation means create a new object on
an existing server. Usually, both launch and activation permission use LaunchPermission.

For the access permission, it is checked by COM runtime at server side. RPCSS will call the interface
security callback function (combase!ORPCInterfaceSecCallback) registered by the
COM server at startup during access check. The callback function in turn will call
combase!CheckAccess to check client’s access permission.

3.3. LCIE IPC

3.3.1. Overview

LCIE stands for Loosely-Coupled IE[8]. It is a collection of internal architecture changes to Internet
Explorer that improve reliability, performance, and scalability of the browser. LCIE isolates tabs
(renderers) from the UI frame (manager).

LCIE IPC is an IPC designed for LCIE based on shared memory, also known as Shared Memory IPC[9].
It is used for sharing data and exchanging inter-process messages.

Window message is an important inter-process communication mechanism. In newer Windows
OS’s, window messaging is restricted across security boundaries.

LCIE IPC is a simulation of window messaging, based on shared memory. LCIE uses sections to
share memory. During the initialization of MicrosoftEdge.exe, it creates a named file
mapping through CreateFileMapping. There are three types of sections: Trusted, LILNAC,
Untrusted:

IsoSpaceV2_Scope_Trusted

IsoSpaceV2_Scope_LILNAC

IsoSpaceV2_Scope_Untrusted

The renderer process and browser broker would open the sections and write to or read from the
shared memory through OpenFileMapping.

Sections’ Permission

LCIE IPC uses event to send message across process boundaries. It uses SetEvent to notify
target process to process new messages. The target process would go over all the sections to
process the messages that transferred to it.

A trivial use case would be renderer adding URLs and favicons to manager’s history through LCIE
IPC.

Trusted

Untrusted

LILNAC

Renderer

Read

R/WManager

R/W

R/W

R/W R/W

Shared Memory

Manager’s history

The renderer will send URL of website to manager when navigation is completed. It will pack
website URL as a LCIE message by calling IsoAllocMessageBuffer and LCIEPackString,
then send the message to manager by calling LCIEPostMessage with message ID 0xC59.

Add URL/Favicon to History

In manager, LCIEAuthorityManagerWinProc will be called when a message is received. It
uses message ID to dispatch and handle messages. Manager will get website URL by calling
IsoGetMessageBufferAddress, IsoGetVariableArtifactSize and
LCIEUnpackString, then download its favicon and add them to history.

Navigate Completed

Update URL or Favicon

Pack LCIE Message

Post LCIE Message

Download & Save to Stores

Unpack LCIE Message

Handle Add to History

Dispatch LCIE Message

Renderer Manager

3.3.2. LCIE IPC Message Security

There are many types of LCIE Message:

ISO_MSG_WM_MSG

ISO_MSG_WM_MSG_UNTRUSTED

ISO_MSG_WM_MSG_AVAILABLE

ISO_MSG_WM_MSG_AVAILABLE_UNTRUSTED

ISO_MSG_WM_MSG_HUNG_CHECK

Message sent by manager process should be trusted. Messages sent by renderer should be
carefully checked.

Trusted messages will be written into IsoSpaceV2_Scope_Trusted. As shown before,
renderer process has no permission to write messages into the trusted scope.

In manager and broker, some functions would check the LCIE message type. If the message is
untrusted, the process will not handle it. This will prevent untrusted process from calling sensitive
functions.

4. Vulnerabilities

4.1. Sandbox Escape Chain 1

4.1.1. Browser Broker Bug

Browser Broker

Browser Broker is an important part of Microsoft Edge app. It is a local server COM object which
can be launched through out-of-process COM activation. Here is some information about this
COM object:

CLSID: {0002DF02-0000-0000-C000-000000000046}

AppID: {DD9C53BC-8441-4B94-BD0E-36E6E02A6D61}

When activating Edge, Browser Broker will be launched immediately with process name
browser_broker.exe. Browser Broker is critical for Edge to function, so
MicrosoftEdge.exe will always check if it is still alive and will launch a new instance if it is
dead.

The broker process runs at medium integrity level, with very few security mitigations enabled.
Browser Broker could communicate with Microsoft Edge processes running in AppContainer. It
helps AppContainer processes perform privileged operations, such as LaunchIE, OpenFolder
and more.

1. Manager AC

When MicrosoftEdge.exe starts, the
iertutil!AttachBrowserElevationBroker will launch a Browser Broker server and
get its interface.

Browser Broker could be launched with this method:

CoCreateInstance(

CLSID_BrowserBroker,

nullptr,

CLSCTX_LOCAL_SERVER,

IID_PPV_ARGS(&browser_broker)

)

When Edge manager process creates a child process, the BrowserBroker interface is
transferred to that child process through LCIE inter-process communication. The transfer process
is as follows:

a) Allocate shared memory

CIsoScope::AllocSharedMemoryPerFlags

b) Get the BrowserBroker interface

iertutil!GetBrowserBrokerInterface

c) Marshal interface

edgeIso!LCIEMarshalInterfaceIntoBufferOtherProcess

combase!CoMarshalInterface

Now there will be an OBJREF of BrowserBroker interface stored in a block of shared
memory that can be read by that child process.

2. OBJREF

OBJREF is the name of the structure of marshalled interface in COM. A COM interface could be
marshalled into OBJREF and passed to another context, where it is unmarshalled back to a COM
interface.

This is an example of BrowserBroker OBJREF:

4d 45 4f 57 01 00 00 00-f6 e7 79 71 e0 4f b3 48

8b 6a bb 41 3b f6 ea 0d-00 04 00 00 01 00 00 00

f0 35 ad 74 ad 0a d3 2d-c4 98 33 8d 14 f1 c3 27

02 a4 00 00 e0 24 00 00-98 cf 60 cf 7f a2 21 0a

This can be parsed as:

574f454d Signature ‘MEOW’

00000001 Flag OBJREF_STANDARD

7179e7f6 48b34fe0 41bb6a8b
0deaf63b

IID IBrowserBrokerFactory

00000400 Flags

00000001 cPublicRefs

74ad35f0 2dd30aad OXID 0x2dd30aad`74ad35f0

8d3398c4 27c3f114 OID 0x27c3f114`8d3398c4

0000a402 000024e0 cf60cf98
0a21a27f

IPID

3. Child Process

When child process starts, how can it get BrowserBroker interface?

a) Get shared memory

edgeIso!IsoGetShareMemoryAddress

b) Unmarshal Interface

edgeIso!LCIEUnmarshalInterfaceFromBuffer

combase!CoUnmarshalInterface

After the child process gets a BrowserBroker interface, it can call interface methods. But
things are not that easy. Most of the methods have access check to limit operations a child process
can perform.

Access check

As we have known methods that browser broker provided are useful for privilege escalation. If
we can bypass the access check, we may get higher privileges.

How does browser broker check permissions?

Most of the methods start with a call to function
BrokerAuthendicateAttachedCallerGetPIC.

Because of the check, only a few non-privileged methods can be called in Internet Child AC.

Behind this check function is edgeIso!IsoGetTokenIsoIntegrity. This function returns
an integer representation of child AppContainer’s restricted name.

From symbols we could know the return value is an enum IsoIntegrity, we got some
interesting values from urlmon.dll.

IsoIntegrity_PIC_MRAC = 1

IsoIntegrity_PIC_Dynamic_Low = 7

IsoIntegrity_PIC_Dynamic_High = 119

IsoIntegrity_PIC_Intranet_AC = 121

IsoIntegrity_PIC_Trusted_AC = 122

Dive into the access check function:
BrokerAuthenticateAttachedCallerGetPIC(arg_0, &arg_1);
arg_0 has different values in different methods. For example:

CBrowserBrokerInstance::LaunchIE = 1

CBrowserBrokerInstance::CreateBrokerObject = 2

CBrowserBrokerInstance::AddCredential = 5

The differences between 1 and 2 and 5:

1: Only trusted AC can access

2: Everyone can access

5: All children AC except 002 can access

Therefore, in internet child AC, we cannot call the LaunchIE method. In fact, only trusted AC
can access all privileged methods.

Trusted AC

What is the trusted AC? Which caller process could be in a trusted AC? It is quite easy to guess
that Microsoft Edge Manager Process MicrosoftEdge.exe is in trusted AC. But how did
Microsoft implement it?

After a deep research, we find an AC is trusted when the caller’s Package SID equals a SID passed
in through RequestBroker method when MicrosoftEdge.exe launches the browser
broker. It is always the Package SID of MicrosoftEdge.exe.

RequestBroker

RequestBroker is a browser broker method used to register context information when the
browser broker interface is being created.

RequestBroker is designed to be called only once.

if (!dwProcessId || InterlockedCompareExchange(variable,
dwProcessId, 0))

return 0x80070005;

CVE-2017-0233

We have used this vulnerability to win the Pwn2Own 2017 Edge Category. This is the only logical
vulnerability used to bypass Edge sandbox during the contest.

Let us inspect browser broker Launch Permission and Access Permission on Windows 10 14393.

We could know that ALL APPLICATION PACKAGES have Launch and Local Activate
permissions.

ALL APPLICATION PACKAGES

ALL APPLICATION PACKAGES is just a SID, S-1-15-2-1. It represents all applications running
in an app package context. According to Microsoft, “To allow all AppContainers to access a
resource, add the ALL APPLICATION PACKAGES SID to the ACL for that resource. This acts
like a wildcard.” [10]

It seems that all AppContainers can launch the browser broker.

Now the sandbox bypass:

1. Launch a new browser broker in content process

2. RequestBroker to register context information. It is the first call to RequestBroker, so
we can register Content Process Package SID with browser broker.

3. Now content process AC is trusted

4. Call arbitrary broker methods

There are many dangerous methods that can be called in a trusted AC. For example, we could
launch Internet Explorer with controlled arguments through LaunchIE method.

But we found something more dangerous.

CBrowserBrokerInstance::WriteClassesOfCategory

This method starts with

BrokerAuthenticateAttachedCallerGetPIC(1, &v8);

The access check type is 1, which means it can only be called in a trusted AC.

After the check, this function calls

LoadTheSinglePossibleSPFrameDllForThisProcess

Inside it is:

wcscpy_s(&Dst, 0x104ui64, AppDir);

wcscat_s(&Dst, 0x104ui64, L"\\eModel.dll");

v4 = LoadLibraryExW(&Dst, 0i64, 0x1010u);

It will load an eModel.dll from Edge application directory. Interestingly, initialization of
application directory global variable is also done through RequestBroker during initialization.

We can now load a custom eModel.dll into browser_broker.exe.

4.2. Sandbox Escape Chain 2

4.2.1. Flash Broker Bug

Flash

Adobe Flash used to lead the way on the web for rich content, gaming, animations, and media of
all kinds, and inspired many of the current web standards powering HTML5[11]. Last year, Adobe
announced that Adobe Flash will no longer be supported after 2020. However, there are still many
websites and applications using Flash technology.

Adobe Flash Player is pre-installed starting from Windows 8. As shown below, Adobe Flash Player
is integrated into Microsoft Edge and enabled by default.

Adobe Flash Player enabled by default

To phase out Adobe Flash Player from browsers, Microsoft, Google, Mozilla, and Apple all have
begun limiting the auto-run of Flash. They all implemented a Click-to-Run for Flash and planned
to disable Flash by default in the future.

Click-to-Run for Flash

Microsoft Edge runs Adobe Flash Player in a special renderer called BCHost. As we mentioned in
chapter 1.3, BCHost renderer also runs in a child AppContainer sandbox. The Internet renderer
cannot access Adobe Flash Player. This further hardens the Microsoft Edge sandbox, as attackers
cannot exploit Adobe Flash Player vulnerabilities in Internet renderer.

Flash Broker

Same as Microsoft Edge, Adobe Flash Player also needs its own broker to perform privileged
operations. Flash Broker is also the manager of Flash-based add-ins, such as Adobe Connect Add-
in, Microsoft Outlook Add-in and more. As a result, Flash broker becomes another attack surface
of Microsoft Edge sandbox.

Flash Broker Permissions

In fact, Microsoft have considered isolating Flash broker when designing Microsoft Edge. That is
why it runs Adobe Flash Player in a special renderer, and access to Flash broker is also strictly
restricted.

No renderers have launch and activate permission to Flash broker. Instead, launch requests are
relay to the browser broker. The Browser broker is responsible for launching the Flash broker
and passing its interface back to renderer. Only BCHost and local renderers have access
permission to Flash broker interface.

Flash Broker Activation

Following diagram shows activation process of the Flash broker. CoCreateInstance was
shimmed and relayed to Browser broker’s
CBrowserBrokerInstance::CreateCOMInstance. Browser broker launches the Flash
broker and passes the interface back to the renderer.

MicrosoftEdgeCP.exe
(BChost)

FlashUtil_ActiveX.exe
(Flash Broker)

browser_broker.exe
(Browser Broker)

3

Activation Process

Flash Broker Features

Currently, Flash broker exports 6 interfaces with 124 methods. Its interfaces and functions are as
follows.

IFlashBroker1: file, LCD accessor, register profile, add-in operations

IFlashBroker2: register profile operations

IFlashBroker3: popup and GDI device operations

IFlashBroker4: utility functionalities

IFlashBroker5: utility functionalities

IFlashBroker6: file operations, add-in operations

Flash broker supplies a lot of functions such as popup, file operations, add-in operations etc. The
most important thing is that it runs at Medium Integrity Level. In the last few years, there have
been multiple vulnerabilities found in Flash broker.

Flash Broker Bug

We found some interesting behavior when investigating these interfaces and functions of the
Flash broker. As following screenshot shows, Flash Player prompts user to install an Add-in when
user enters a meeting room created by Adobe Connect. Adobe Connect is a software used for
presentations, web conferencing, and user desktop sharing.

Adobe Flash Player prompts user to install an add-in

If user clicks the Yes button, Flash broker will download and then launch the add-in with medium
integrity level.

Functions with name starts with “BrokerLM” in IFlashBroker6 are used for downloading and
launching add-ins. They are called in this order:

IFlashBroker6::BrokerLMOpenDonwload(p_url, p_lmCookie)

IFlashBroker6::BrokerLMUpdateDownload(p_lmCookie, p_pos, p_len)

IFlashBroker6::BrokerLMCloseDonwload(p_lmCookie, p_applicationName, p_resultCode)

IFlashBroker6::BrokerLMLaunch(p_applicationName, p_applicationParams)

For each add-in, two paired files (dot z file & dot s file) should be downloaded and their signatures
must be valid.

Dot Z file

First, the file with the extension Z is downloaded. The compressed data block must start with a
magic string 'Troy'. This catches our strong interest. Looks like the developer is making a reference
to the familiar story about Troy when writing this piece of code.

Before the magic string is a digital signature block. It will be verified with a hardcoded certificate
chain. Following the magic string is the uncompressed file size.

Dot Z file header

Dot S file

Second, the file with the extension S is downloaded. It is also signed by Adobe. It holds a SHA-256
digest for the uncompressed add-in and is used for verifying add-in at a later stage. All digital
signatures of downloaded files are verified with a hardcoded certificate chain.

The certificate chain of Adobe Connect Add-in is as follows:

Flash Add-in Download and Launch

The entire process of downloading and launching an add-in is as follows.

1. Download and verify the dot z file

1) Verify the URL is in “macromedia.com” domain

2) Download file

30 83 79 D2 AE 06 09 2A 86 48 86 F7 0D 01 07 02
A0 83 79 D2 9E 30 83 79 D2 99 02 01 01 31 0B 30
09 06 05 2B 0E 03 02 1A 05 00 30 83 79 C7 F9 06
09 2A 86 48 86 F7 0D 01 07 01 A0 83 79 C7 E9 04
83 79 C7 E4 54 72 6F 79 D8 B7 F1 00 78 9C EC 7D

73 23 DE 2F 3F 22 18 9C 7A 82 8F 89 51 05 F2 E9

...

Adobe Signature
"Troy"

zlib Magic
Original File Size

Macromedia Flash Certificate Authority

Flash Player Express Install Certificate

Adobe Connect Addin 11.9.985.57

3) Verify the digital signature of the dot z file

4) Decompress the dot z file

2. Download the dot s file

1) Verify the URL is in “macromedia.com” domain

2) Download file

3. Launch add-in

1) Verify the digital signature of dot s file

2) Verify add-in with the SHA-256 digest contained in dot s file

3) Run add-in with controllable arguments

The add-in can only be run when the signatures of downloaded files are verified to be valid and
the SHA-256 of add-in matches the digest. It is worth pointing out that Flash broker can only
download files from "macromedia.com".

Good news is we can run add-in with controllable arguments.

CVE-2018-12828

The attack surface of Microsoft Edge sandbox is extended because of the controllable arguments
even though we can only download files from "macromedia.com".

These add-ins may contain vulnerabilities or become unmaintained. So, what we need is to find
as many add-ins as possible. If we can find bugs in these add-ins, we may break the sandbox.

After investigation, we found several add-ins and digest files on the Macromedia web server.
Many of them still have valid signatures. Most important thing is that some of them are vulnerable.

All these vulnerable add-ins built with an ancient Adobe Flash Player and can open an SWF file via
command line arguments. It turns out that we can use some known vulnerabilities of Flash to
escape Edge sandbox.

Macromedia Breeze is a case. Breeze is a web communications application created by
Macromedia. It has a built-in Adobe Flash Player released in the year 2003.

Macromedia Breeze Add-in

4.2.2. SOP Bypass

For now, we assume that we already have code execution by exploiting an RCE bug. And we can
escape sandbox from BCHost renderer or local zone renderer with the Flash broker bug.

To build a complete exploit chain, we have two options. Either find a way to run JavaScript in
BCHost renderer or cross origin from internet to local.

However, as we mentioned earlier, getting the BCHost renderer still needs user confirmation.
We cannot control the confirmation button within renderer. That is controlled by the manager.
Finding a UXSS bug in the local zone is also not easy. Let us think about what we can do with code
execution in the internet zone.

Navigation

As the following screenshot shows, access is denied when navigating from the internet to local.
Same origin policy forbids this kind of behavior to prevents cross site information leakage.

Navigate from Internet to Local Zone Renderer

Let us dig into navigation internals. A navigation will happen when we visit a website through
address bar or click a hyperlink on a web page.

During navigation, edgehtml!CDoc::FollowHyperlink2 will be called. Renderer and
manager will do a series of checks for the target URL to determine whether to navigate in current
renderer or a new renderer.

Behind a navigation

FollowHyperlink2 will first call CanNavigateToUriWithZoneCheck to check if the
target URL satisfies the zone policy. If not, it will deny access. Otherwise, it will call
RedirectViaBrokerIfNeededWrapper to determine if the target URL needs to be
opened in a new renderer or the current renderer.

RedirectViaBrokerIfNeededWrapper will check the target URL with redirection policy
by calling GetRedirectionPolicyForURL. If the check passes, the navigation request will
be sent to the manager via RPC.

CanNavigateTo
UriWithZoneCh

eck

RedirectViaBr
okerIfNeededW

rapper

IsRedirectToB
rokerNeeded

GetRedirectio
nPolicyForURL

DoNavigate

RedirectViaBr
okerIfNeeded

RPC

Renderer

NavigateInNewC
ontentView

Manager

Behind a navigation

In Manager, eModel!BrowsingContextBroker::NavigateInNewContentView will
also check the target URL with redirection policy by calling GetRedirectionPolicyForURL.
If the check passes, it will create a new renderer or an HVSI container for target URL.

LCIEGetPersistentPolicyForUrl

In GetRedirectionPolicyForURL, LCIEGetPersistentPolicyForUrl detects if
the target URL satisfies the persistent policy and gets the corresponding PIC.

GetRedirectio
nPolicyForURL

ValidateCalle
rUrlRedirecti

on

NavigateInNew
ContentView

GetPICFromZon
eForUrl

LCIEGetPersis
tentPolicyFor

Url

Create New
Renderer with PIC

…
Manager

RPC

For example, it will call GetPICForPrivilegedInternalPage to check if the target URL
points to a legally privileged zone renderer (about:config, res://edgehtml.dll/flags.htm,
res://edgehtml.dll/compat.htm etc.). The PIC corresponding to a privileged zone renderer is 4.

GetPICFromZoneForUrl checks and retrieves the PIC of the local zone renderer.

To reduce number of RPC calls, the renderer calls the same function
(GetRedirectionPolicyForURL) in process.

SOP Bypass

CVE-2018-8358

There are two security issues in the above navigation procedure.

First, the zone check for navigation is completely inside the renderer process. We can navigate
to a local page when host URL’s protocol is file. It can be bypassed with crafted data or request
manager directly.

Second, manager retrieves PIC from zone ID, which in turn is calculated from target URL
(urlmon!IEGetZoneIUri). However, there is no additional check on file URL, and the
retrieved PIC is 121 when target URL is a local HTML file.

By exploiting these issues, we can render a local HTML file dropped by internet renderer in a local
zone renderer.

Exploit the SOP Bypass

To exploit the SOP bypass, we first write a local HTML file into a temporary folder that can be
accessed by local zone renderer.

Then we create an AnchorElement with that file as source. We can locate the HostUrl via
the AnchorElement and modify it to begin with “file:///” protocol in internet renderer.

Finally, we trigger a navigation via an onclick event. It bypasses the zone check and navigate
to the local HTML file in a local zone renderer.

4.2.3. Exploit Chain

Let us put it all together to build a complete exploit chain. The following diagram shows the entire
sandbox escape process.

Exploit chain

First, we get code execution through RCE bugs in internet zone renderer. Then we exploit the SOP
bypass to navigate to a local zone renderer. Next, we exploit the RCE bugs again. Finally, we use
the Flash broker bug to escape the Microsoft Edge sandbox.

4.2.4. Patches

For the Flash broker bug, Adobe removed those vulnerable add-ins from macromedia.com.

For the SOP bypass bug, Microsoft added a file integrity level check in IEGetZoneIUri.
Microsoft Edge can only navigate to an internet zone renderer if target file has a low integrity level
label.

SOP Bypass Bug

Flash Broker Bug

Code Execution

Escape Sandbox

Code Execution

Edge (Internet
Renderer)

Edge (Local
Renderer) Flash Broker Medium IL

Code Execution

5. Conclusion

In this paper, we have presented

1. Two logical sandbox escape bug chain consists of three bugs for Microsoft Edge.

2. The internals of Microsoft Edge security architecture and inter-process communication.

3. How to abuse legitimate features to form logical bug chains, and logical sandbox escape on
Windows.

Acknowledgments

We would like to thank Alex Ionescu (@aionescu) and James Forshaw (@tiraniddo) for their
excellent talks, papers, and projects on Windows security.

We also thank Yang Yu (@tombkeeper) for supporting our research.

References

[1]. https://blogs.windows.com/msedgedev/2015/05/11/microsoft-edge-building-a-safer-
browser/

[2]. Windows Internals Part 1. 7th Edition

[3]. https://arstechnica.com/features/2012/10/windows-8-and-winrt-everything-old-is-new-
again/5/

[4]. https://github.com/tyranid/WindowsRuntimeSecurityDemos/blob/master/The%20Inner%2
0Workings%20of%20the%20Windows%20Runtime.pdf

[5]. https://docs.microsoft.com/en-us/windows/desktop/com/com-technical-overview

https://blogs.windows.com/msedgedev/2015/05/11/microsoft-edge-building-a-safer-browser/#63tqQmuxLk8xssOD.97
https://blogs.windows.com/msedgedev/2015/05/11/microsoft-edge-building-a-safer-browser/#63tqQmuxLk8xssOD.97
https://arstechnica.com/features/2012/10/windows-8-and-winrt-everything-old-is-new-again/5/
https://arstechnica.com/features/2012/10/windows-8-and-winrt-everything-old-is-new-again/5/
https://github.com/tyranid/WindowsRuntimeSecurityDemos/blob/master/The%20Inner%20Workings%20of%20the%20Windows%20Runtime.pdf
https://github.com/tyranid/WindowsRuntimeSecurityDemos/blob/master/The%20Inner%20Workings%20of%20the%20Windows%20Runtime.pdf
https://docs.microsoft.com/en-us/windows/desktop/com/com-technical-overview

[6]. https://www.troopers.de/downloads/troopers17/TR17_Demystifying_%20COM.pdf

[7]. https://docs.microsoft.com/en-us/windows/desktop/com/security-in-com

[8]. https://blogs.msdn.microsoft.com/ie/2008/03/11/ie8-and-loosely-coupled-ie-lcie/

[9]. WP-Asia-14-Yason-Diving-Into-IE10s-Enhanced-Protected-Mode-Sandbox

[10]. https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/implementing-an-
appcontainer

[11]. https://blogs.windows.com/msedgedev/2017/07/25/flash-on-windows-timeline/

https://www.troopers.de/downloads/troopers17/TR17_Demystifying_%20COM.pdf
https://docs.microsoft.com/en-us/windows/desktop/com/security-in-com
https://blogs.msdn.microsoft.com/ie/2008/03/11/ie8-and-loosely-coupled-ie-lcie/
https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/implementing-an-appcontainer
https://docs.microsoft.com/en-us/windows/desktop/SecAuthZ/implementing-an-appcontainer
https://blogs.windows.com/msedgedev/2017/07/25/flash-on-windows-timeline/#pJi1huXaYlhsJ3Oe.97

	Abstract
	1. Introduction
	1.1. Microsoft Edge
	1.2. Universal Windows Platform
	1.2.1. AppContainer
	1.2.2. Child AppContainer
	1.2.3. The Brokers

	1.3. Microsoft Edge Architecture

	2. Process Startup and Privilege Separation
	2.1. Manager Process Startup
	2.2. Content Process Startup

	3. Inter-Process Communication
	3.1. RPC
	3.2. COM
	3.2.1. Overview
	The Client / Server Model
	In-Process COM Server and Out-of-Process COM Server
	Out-of-Process COM Activation

	3.2.2. COM Security
	Security Settings
	System-wide
	Process-wide

	Security Check

	3.3. LCIE IPC
	3.3.1. Overview
	3.3.2. LCIE IPC Message Security

	4. Vulnerabilities
	4.1. Sandbox Escape Chain 1
	4.1.1. Browser Broker Bug
	Browser Broker
	Access check
	CVE-2017-0233

	4.2. Sandbox Escape Chain 2
	4.2.1. Flash Broker Bug
	Flash
	Flash Broker
	Flash Broker Permissions
	Flash Broker Activation
	Flash Broker Features

	Flash Broker Bug
	Dot Z file
	Dot S file
	Flash Add-in Download and Launch
	CVE-2018-12828

	4.2.2. SOP Bypass
	Navigation
	SOP Bypass
	CVE-2018-8358
	Exploit the SOP Bypass

	4.2.3. Exploit Chain
	4.2.4. Patches

	5. Conclusion
	Acknowledgments
	References

