
RustZone: Writing Trusted 
Applications in Rust

Eric Evenchick
Black Hat Europe 2018



About Me

• Principal Research Consultant 
@ Atredis Partners

• Founder, Developer of Open 
Source Hardware Things @ 
Linklayer Labs



Outline

• Trusted Execution Environments
• TrustZone
• TEE Problems
• Rust
• Rust + TrustZone
• Demo
• Questions



Trusted Execution Environments



What?

• An isolated environment within a processor for performing secure 
operations
• Segmentation of code, data, and hardware access
• Combination of hardware features and software



Today’s TEEs

• Hardware:
• AMD: Platform Security Processor
• Intel: Trusted Execution Technology, Software Guard Extensions (SGX)
• ARM: TrustZone

• Software:
• Trustonic Kinibi
• Qualcomm QSEE
• OP-TEE



Use Cases

• Authentication
• Android GateKeeper

• Financial Applications
• Secure Boot
• DRM
• WideVine

• An additional layer of protection from 
the host OS
• Protect the system from the user L



TrustZone



The TrustZone TEE

• The ARM TEE
• Normal and Secure Worlds
• Normal World: Rich OS and applications 

(Linux, Android, QNX, etc…)
• Secure World: Limited operating system 

and Trusted Applications
• Processor can switch between two worlds
• Configure processor to restrict access to 

resources



TrustZone in Practice

http://genode.org/documentation/articles/trustzone

http://genode.org/documentation/articles/trustzone


TEE Problems



TEE OS Protections

• ASLR is Rare
• No Stack Canaries or Guard Pages
• Secure World has fewer protections than 

Normal World?
• No High Level Language Support, we must 

write C!



Writing (good) C is Hard

• Common Memory Problems
• Buffer overflows
• Use after free

• Type Issues
• Void means nothing, and everything!

• Limited Help from Compiler
• Programmers can do Silly Things
• memcpy, strcpy, sprintf, etc…



Example: WideVine Trusted Application

• DRM Implementation for Android
• Undocumented Command with Buffer 

Overflow
• End Result: Arbitrary Code Execution in 

Secure World

• More info: http://bits-
please.blogspot.ca/2016/05/qsee-
privilege-escalation-vulnerability.html

http://bits-please.blogspot.ca/2016/05/qsee-privilege-escalation-vulnerability.html


Example: Samsung OTP Buffer Overflow

• Service in Normal World to 
generate a One-Time Password 
(OTP)
• Any user can access this service!
• Trusted Application parses request 

leading to stack buffer overflow



Rust



What’s Rust?

• New systems programming language
• In development since 2010, sponsored by Mozilla
• Works for embedded:
• Works without libc
• Compiles to bytecode
• No garbage collection or runtime
• Raw memory access



Why Rust?

• Compile time memory safety checks
• Memory ownership and borrow checking
• Find bugs at compile time, not runtime
• eg, match

• Good tools, getting better
• Great C Foreign Function Interface!



Rust / C FFI

• Call C from Rust and Call Rust from C
• Need unsafe blocks for:

1. Dereferencing a raw pointer
2. Calling an unsafe function or method
3. Accessing or modifying a mutable static variable
4. Implementing an unsafe trait

• Goal: limit unsafe code



Learning Rust

• The Rust Book: https://doc.rust-lang.org/book/
• Paper version soon: https://nostarch.com/Rust

• Rust by Example: https://rustbyexample.com/
• Julia Evans’ Blog: https://jvns.ca/categories/rust/

https://doc.rust-lang.org/book/
https://nostarch.com/Rust
https://rustbyexample.com/
https://jvns.ca/categories/rust/


Rust + TrustZone



Step 1: Get an OS

• Need an OS to run in the Secure World
• OP-TEE
• Free and Open Source
• Implementations for many platforms, including QEMU
• Well Documented
• https://www.op-tee.org/

https://www.op-tee.org/


Step 2: Generate Rust Bindings

• We need Rust bindings for OP-TEE’s API
• bindgen to the rescue!

extern "C" {
pub fn TEE_MACInit(operation: TEE_OperationHandle,
IV: *const c_types::c_void, IVLen: u32);

}

void TEE_MACInit(
TEE_OperationHandle operation, const void *IV,
uint32_t IVLen);

bindgen



Step 3: Write a Rust Library

• Yes, a library.
• Need to implement 5 functions:
• TA_CreateEntryPoint
• TA_DestroyEntryPoint
• TA_OpenSessionEntryPoint
• TA_CloseSessionEntryPoint
• TA_InvokeCommandEntryPoint



Step 3: Write a Rust Library
pub fn InvokeCommandEntryPoint(_sessionContext: *mut c_types::c_void,

commandID: u32, _paramTypes: u32,
params: &mut [optee::TEE_Param; 4]) ->

optee::TEE_Result
{

ta_print!("Rust TA InvokeCommandEntryPoint");
match commandID {

0 => {
unsafe {params[0].value.a += 1};
ta_print!("Incremented Value");

},
1 => {

unsafe {params[0].value.a -= 1};
ta_print!("Decremented Value");

},
_ => {

return optee::TEE_ERROR_BAD_PARAMETERS;
}

}
return optee::TEE_SUCCESS;

}



Step 4: Compile, Link, Sign

Compiled Rust 
Library

Compiled TA 
Header

libutee, libmpa, 
libutil

Linker

OP-TEE Linker 
Script

TA ELF

Signed TA

sign.py



Demo



Conclusions



Conclusions

• TEEs are useful, but have the usual issues
• Rust is an potential replacement for C with some added benefits
• Should you write your Trusted Applications in Rust?



Thanks! Questions?

eric@evenchick.com
@ericevenchick
https://github.com/ericevenchick/rustzone

mailto:eric@evenchick.com
https://github.com/ericevenchick/rustzone

