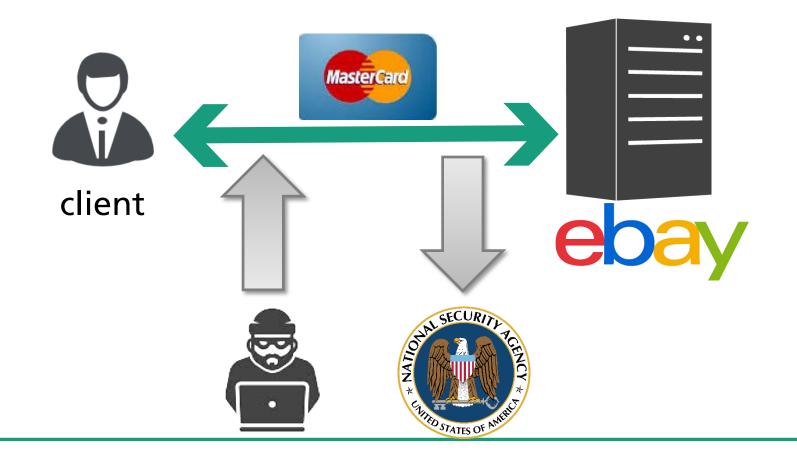
OFF-PATH ATTACKS AGAINST PUBLIC KEY INFRASTRUCTURES

Markus Brandt, Tianxiang Dai, Elias Heftrig, Amit Klein, Haya Shulman, Michael Waidner

AGENDA

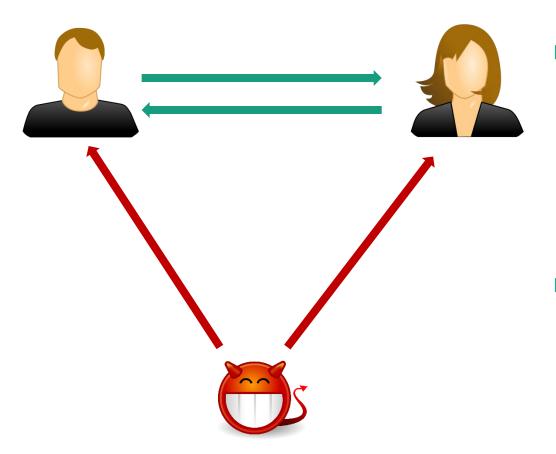
- Objectives
- Attacking
- Impact
- Mitigation
- Summary


AGENDA

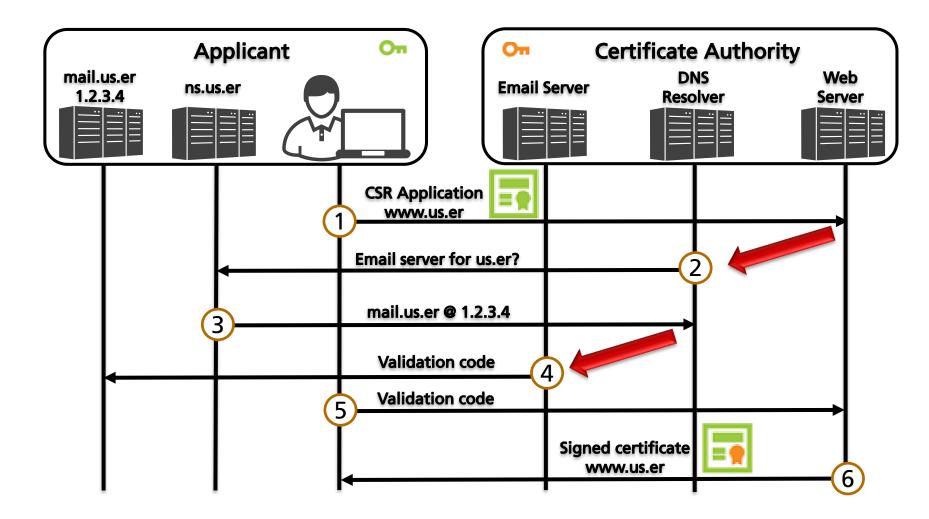
- > Objectives
- Attacking
- Impact
- Mitigation
- Summary

WEB PKI – WHAT IS IT GOOD FOR?

WEB PKI UNSECURED COMMUNICATION

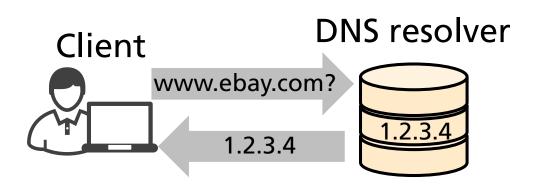

WEB PKI SECURED COMMUNICATION

WEB PKI SECURE AGAINST SPOOFING


ATTACKER MODEL

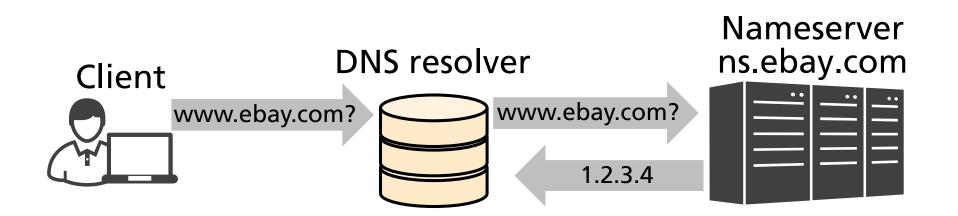
- Off-path attacker
 - cannot eavesdrop, block, delay or modify packets in any way
 - injects packets with spoofed sender address

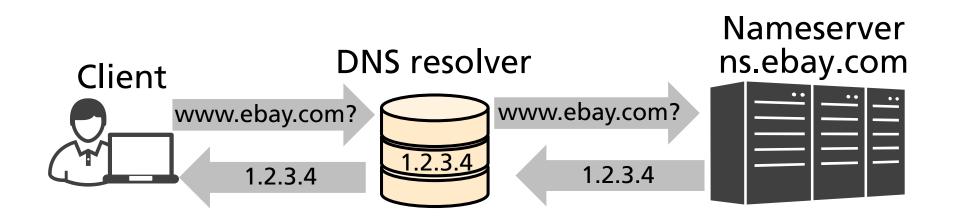
- Means of Attack
 - leverage IP defragmentation cache poisoning
 - to achieve DNS cache poisoning
 - for exploiting Domain Validation

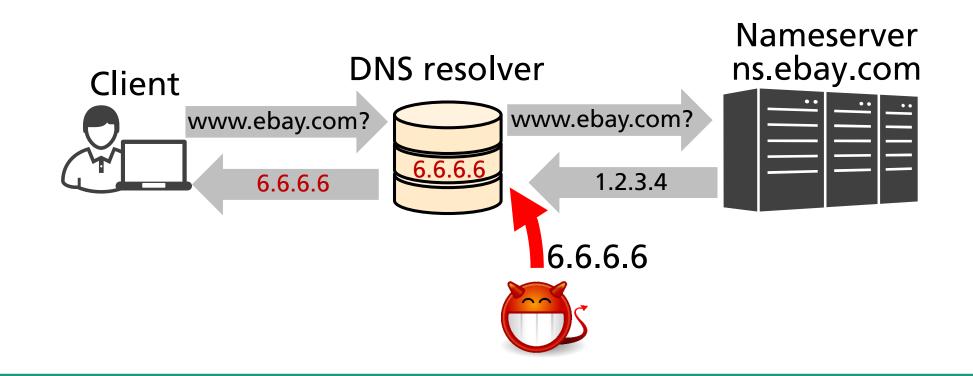

CERTIFICATE ISSUANCE WITH DOMAIN VALIDATION

The yellow pages of the Internet

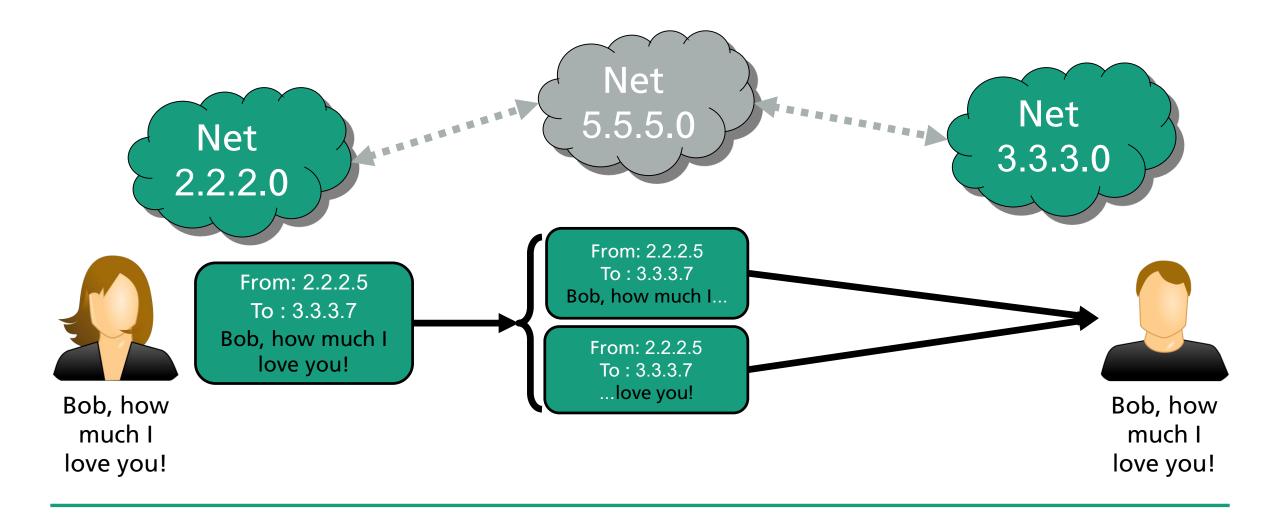
If cached the resolver will reply with the cached answer



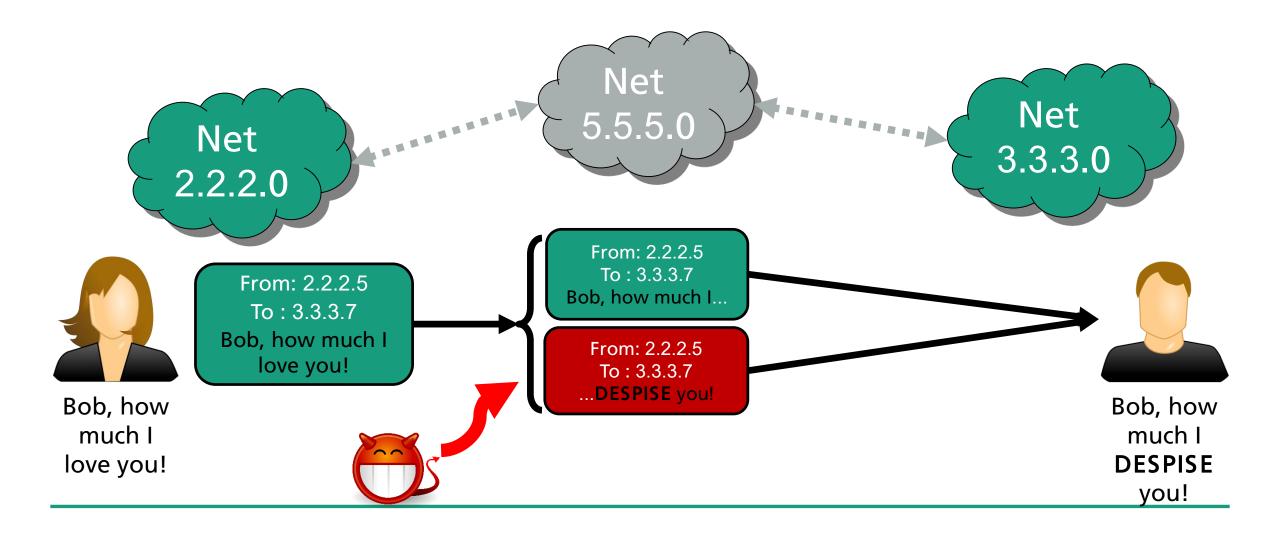

Nameserver ns.ebay.com


If not cached the resolver will recursively lookup the answer

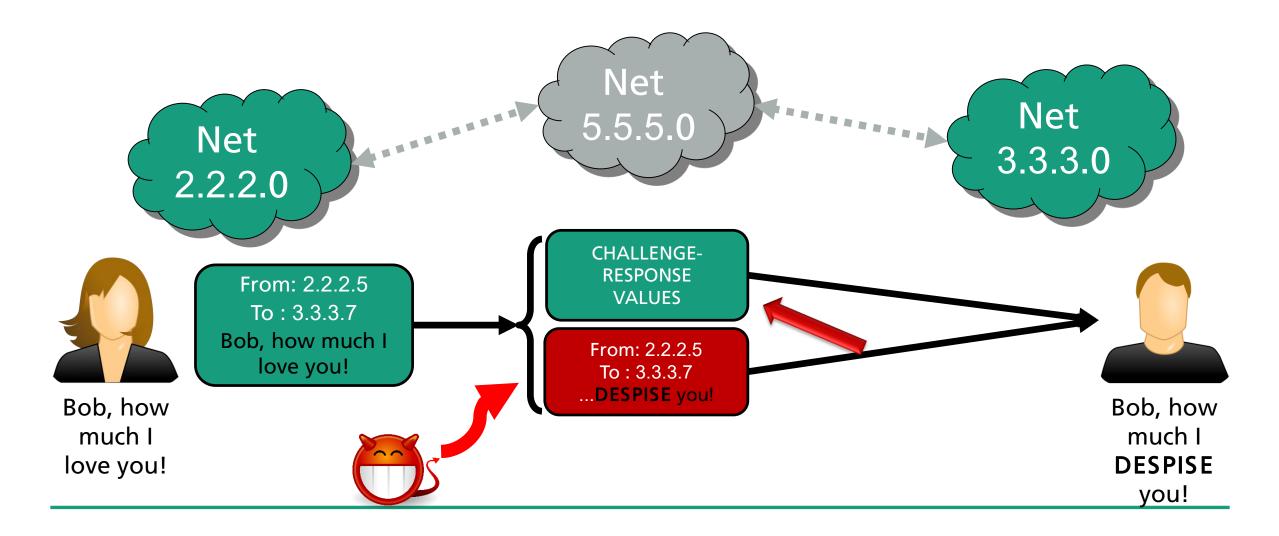
DNS – CACHE POISONING


DNS – CHALLENGE RESPONSE SECURITY

Prevention mechanisms against off-path attacks

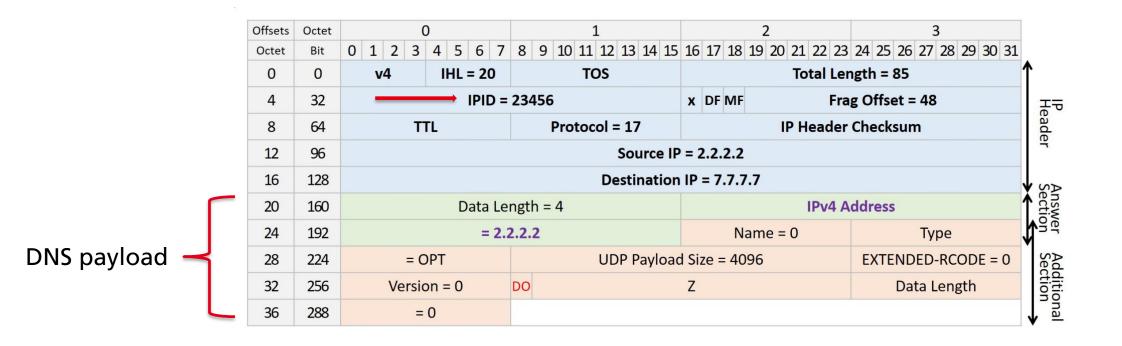

- UDP source port randomization
- TXID randomization
- 32 random bits
- Here: impractical to guess
- Do fragmentation attack instead

Offsets	Octet			(C								1								2									3	3					
Octet	Bit	0	1 2	3	4	5	6	7	8	9	10	11	1 1	2 13	3 1	L4 15	16	1	7 18	1	19 2	20	21	22	23	24	1 2	5	26	27	28	29	30	31		
0	0		v4		I	HL	= 20	D				Т	0	5									Tot	al	.er	ngt	h :	= 5	6						Î	
4	32							IP	ID								x	D	F MF	-					F	ra	g (Dff	set							Ŧ
8	64			Т	TL						Pro	oto	со	= 1	.7							IF	P H€	ead	er	Cł	ec	ks	um	1						Header
12	96													Sc	bur	rce IF	• = 7	7.7	.7.7																1	
16	128												[Dest	in	atior	IP	=	2.2.2	2.:	2														¥	
20	160	Source Port = 12345 Destination Port = 53														1	Header																			
24	192						Lei	ngt	h =	56	5											l	JD	P C	neo	cks	ur	n =	= 0						↓ ²	der
28	224	_		_	-	•	TXI	D =	76	54	3						QR		Орс	0	de		AA	тс	RD	R/	•		z			RC	ODE	•	1	
32	256					C	Ques	tio	n C	ou	Int											A	ารพ	er	Re	со	rd	Сс	bun	t						Header
36	288				Aı	uth	orit	y R	eco	ord	Со	unt	t								A	d	litio	ona	I R	ec	or	d (Cou	nt					¥	,
40	320													q	lue	estio	n Se	ect	ion																1	
														ł	٩n	swer	Se	cti	on																L Y	Pavload
														Α	utl	horit	y S	ec	tion																000	hr
														A	ddi	ition	al S	ec	tion																Ŷ	


IP FRAGMENTATION

IP DEFRAGMENTATION CACHE POISONING

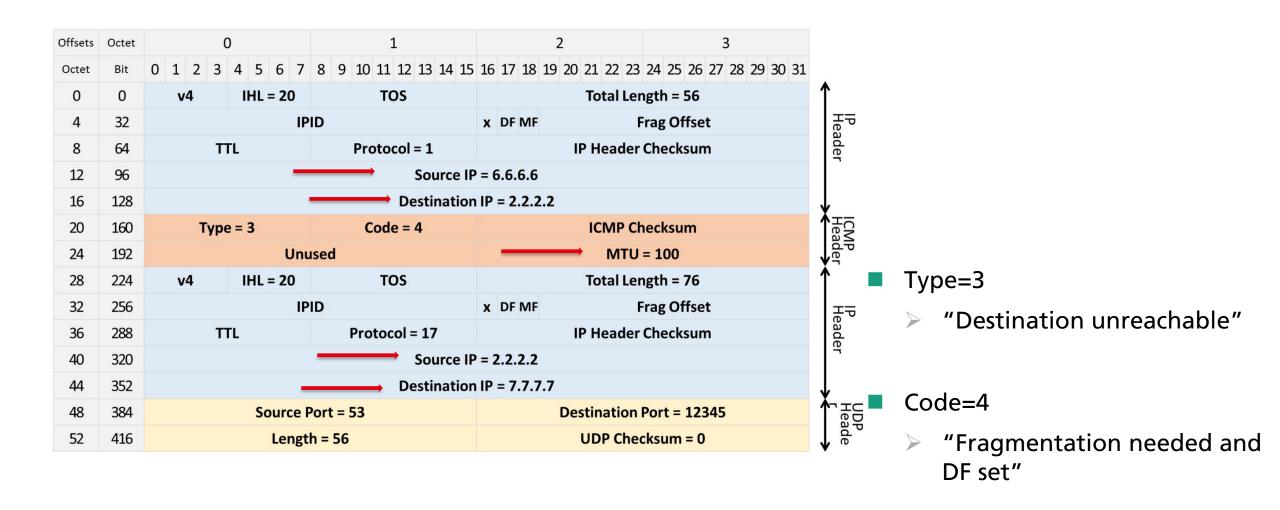
BYPASSING DNS OFF-PATH SECURITY MECHANISMS


BYPASSING DNS OFF-PATH SECURITY MECHANISMS FIRST FRAGMENT OF RESPONSE

Offsets	Octet			0									1								2								3									
Octet	Bit	0 1	2 3	3 4	4	5	6	7	8	9	10	11	12	2 1	3 1	.4 1	5	16	17	18	19	20	21	22	23	24	25 2	6 2	7 28	29	3	30 3	31					
0	0	V 4	v4 IHL = 20 TOS Total Length = 85																																			
4	32	_	→ IPID = 23456 x DF MF												Frag Offset = 0																							
8	64		TTLProtocol = 17IP Header Checksum																																			
12	96													S	our	ce	IP	= 2	2.2.2	2.2																		
1 6	128												D	es	tina	atic	n	IP :	= 7.	7.7	.7																	
20	160		Source Port = 53 Destination Port = 12345																																			
24	192		Length = 65 UDP Checksum = 0x14de																																			
28	224	_	TXID = 76543 QR Opcode = 0 AA TC RD RA Z RCODE = 0)																								
32	256		Question Count = 1 Answer Record Count = 1																																			
36	288		Authority Reco								ord Count = 0										Ac	ldit	tion	al F	lec	ord	Co	unt	= 1									
40	320			4									m								а								i		DE = 0							
44	352			I									4								v								i									
48	384			С									t								2								i									
52	416			m									0											Ту	pe	= A	1											
56	448		m 0 Type = A Class = IN Name (Pointer)																																			
60	480						Ту	pe	= A															Cla	ISS	= 11	N											
64	512																тт	L																				

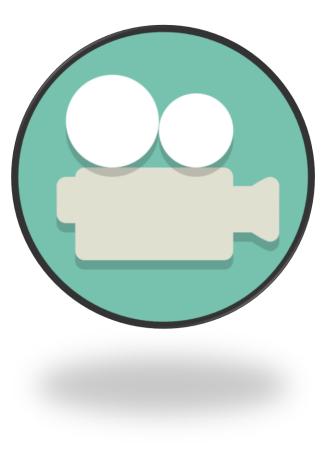
- Contains response to the challenge
 - and parts of the DNS response

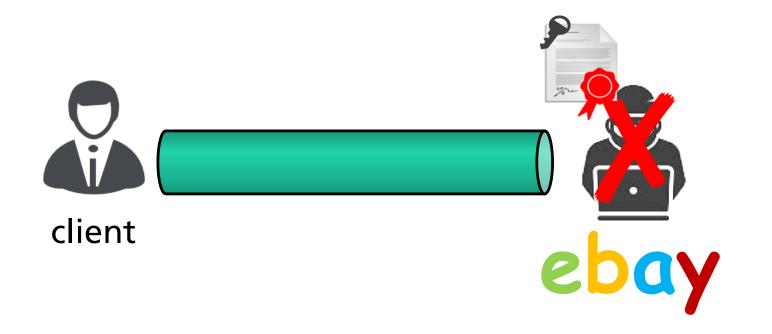
- Challenges
 - Guessing IPID
 - Matching UDP checksum


BYPASSING DNS OFF-PATH SECURITY MECHANISMS SECOND FRAGMENT OF RESPONSE

> UDP checksum can be matched using true fragment

> IPID usually is guessable counter


CAUSING FRAGMENTATION WITH ICMP


AGENDA

- Objectives
- Attacking
- Impact
- Mitigation
- Summary

ATTACKER ISSUES FRAUDULENT CERTIFICATE Email Attacker: attacker.info Certificate Web Victim: victim-org.info Resolver Server Authority Server @199.244.49.220 @198.22.162.189 ICMP fragmentation needed Estimate IPID speed Preprocessing 1|An: A 198.22.162.189 A?exchanger0.victim-org.info 2|Au: NS ns0.victim-org.info 2|Au: NS ns000.attacker.info 5 CSR, 1st DV email address 6.7 Poisoning MX? An: MX exchanger0.victim... A? 1|An: A 198.22.162.189 2|Au: NS ns0.victim-org.info 2nd DV email address DV email An: MX exchanger0.attacker... MX? victim. An: A 199.244.49.220 A? exchanger0.attacker. DV email **Exploitation** 9 DV validation code 12 SSL certificate

USING IT

Our certificate is signed by a trusted CA.

AGENDA

- Objectives
- Attacking
- > Impact
- Mitigation
- Summary

EFFECTS ON VICTIMS

- For victim users
 - Injected malware
 - Theft of credentials, sensitive data, identity, ...

- Loss of reputation and trust
 - For victim CA
 - and target domain

VULNERABILITIES IN THE WILD

- We tested 17 CAs that perform Domain Validation
 - Covering > 95% of the certificate market
- Found 5 vulnerable
- Only one vulnerable CA is sufficient to obtain the target certificate
 - Usually it does not matter, which CA signed it

> Web PKI security is undermined

AGENDA

- Objectives
- Attacking
- Impact
- Mitigation
- Summary

PRECONDITIONS FOR THE ATTACK

- Domain Validation
 - Is offered in the first place

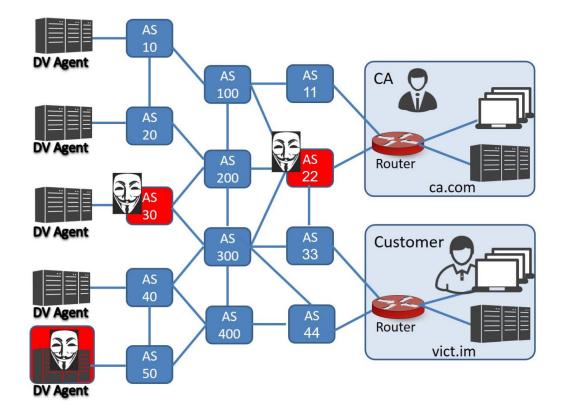
- IP fragmentation allowed
 - for victim name server of target domain
 - in CA network

DNS via UDP

MITIGATION TECHNIQUES

- Disable Domain Validation?
 - Would leave us only with much more expensive alternatives

- Suppress IP Fragmentation?
 - Would disconnect some networks


- Force DNS over TCP?
 - Off-path TCP injection attacks do exist
 - Also: Short-lived BGP prefix hijacks for MITM DNS cache poisoning are on the rise

MITIGATION TECHNIQUES

> We need MITM resilient Domain Validation

- DoH / DoT?
 - Securing a PKI with the very same PKI?
- DNSSEC?
 - The way to go
 - But still not properly deployed since mid-90s!

DROP-IN REPLACEMENT DOMAIN VALIDATION++

For more details, visit <u>pki.cad.sit.fraunhofer.de</u>

- Uses orchestrator that evaluates voting from hardened DV agents
 - each performing the DNS part
- Communicates via HTTPS
 - Using out-of-pki certificates
- Over (mostly) non-overlapping paths through the internet

AGENDA

- Objectives
- Attacking
- Impact
- Mitigation
- Summary

SUMMARY

- Off-path attack against Domain Validation
- Using DNS cache poisoning and IP defragmentation cache poisoning
- To acquire fraudulent certificates for domains under foreign operation

Web PKI, which is meant to provide security against strong MITM attackers, relies on a weak building block that can be circumvented even by a weak off-path attacker.

FURTHER INFORMATION

pki.cad.sit.fraunhofer.de