

Straight outta VMware:

Modern exploitation of the SVGA device for

guest-to-host escape exploits

BlackHatEU 2018

Zisis Sialveras <zisis@census-labs.com>

CENSUS S.A.

https://www.census-labs.com

mailto:zisis@census-labs.com

Straight Outta VMware

2 Black Hat EU 2018

Introduction
This document presents the results of reverse engineering of the virtual graphics device

implementation of VMware Workstation 14 and aims to provide the reader with the proper

knowledge to understand the internals and the basic concepts of the device as well as it introduces

exploitation primitives that can be a helpful asset when trying to develop a guest-to-host exploit.

Table of contents

• Booting the virtual graphics device

o MKS module

o DevicePowerOn module

o SVGALate module

• SVGA thread

o SVGA FIFO

o Command buffers

• SVGA3D protocol

o Objects tables

o Memory objects

o Other objects and operations

▪ Define operation

▪ Bind operation

▪ Destroy operation

▪ Readback operation

o SVGA3D protocol summary

• Exploitation primitives

o Spraying the heap using SVGA_3D_CMD_SET_SHADER

o Information leak and host code execution

▪ Resource containers

▪ Analysis of SVGA_3D_CMD_SURFACE_COPY

▪ Attack scenario

• Real-world scenario

o Vulnerabilities

o Exploit

• Acknowledgements

• References

• About CENSUS

Straight Outta VMware

3 Black Hat EU 2018

Booting the virtual graphics device
When a user spawns a virtual machine, a process named vmware-vmx.exe is spawned which is

responsible, among other things, for the emulation of the virtual devices. One of the first tasks of

vmware-vmx.exe is to initialize the VMware modules required for the emulation. Inside the rdata

section of the binary there is a table with the available modules. Each table entry consists of the

following structure.

Source snippet 1 - VMX module

vmware-vmx.exe iterates the table and calls the PowerOnCallback of each entry. Three modules are

directly linked with the virtual graphics device. These modules are the MKS, DevicePowerOn,

SVGALate.

MKS module

MKS is an acronym for Mouse, Keyboard, Screen. This module is responsible for spawning a new

thread, namely the MKS thread. The new thread, apart from setting up the mouse and keyboard

input, discovers which renderers are available (renderers will be discussed shortly). Version 14 of

VMware introduces the following renderers:

• MKSBasicOps

• DX11Renderer

• DX11RendererBasic

• D3DRenderer

• SWRenderer

• GLRenderer

• GLBasic

• MTLRenderer

• VABasic

Straight Outta VMware

4 Black Hat EU 2018

Figure 1- MKS thread creation

In short, renderers are the backend interface to communicate with the physical graphics device of

the host. That said, which renderer will be enabled is heavily depended on the host platform. On a

Windows host operating system, assuming the default configuration of a virtual machine, only the

first three renderers can be powered on and only one renderer can be enabled at a time.

The MKS thread initially tries to enable the MKSBasicOps renderer, which is the fallback renderer.

If MKSBasicOps could not be initialized, vmware-vmx.exe will abort the execution. DX11Renderer

is the preferred renderer on a Windows host machine and its details are going to be discussed later.

Eventually, the MKS thread will try to enable the DX11Renderer by calling its initialization

callback. The latter will use the standard DXGI Windows API to enumerate the available adapters

and create a device that represents the display adapter [DXGI][ENUM]. This will allow VMware to

communicate with the physical graphic device.

DevicePowerOn module

This module is responsible for booting the virtual devices of VMware. Once again, a table of entries

that represent each virtual device is stored into the rdata section of the binary. Each entry contains a

function pointer to the corresponding power-on routine of a virtual device. Obviously, one of them

is for the virtual graphics device (aka SVGA). The most notable task of the power-on function for

SVGA device is that it spawns the SVGA thread. When the SVGA thread starts, it waits on a

semaphore which will eventually be signaled by the virtual machine monitor (VMM).

https://msdn.microsoft.com/en-us/library/windows/desktop/hh404534(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476877(v=vs.85).aspx

Straight Outta VMware

5 Black Hat EU 2018

SVGALate module

Last but not least is the SVGALate module in which two important memory regions are mapped into

the address space of vmware-vmx.exe. Both are shared between the guest and the host operating

systems. These are the framebuffer and the SVGA FIFO. The latter is used to send commands to the

SVGA device. [CLDB]

SVGA thread
Eventually the SVGA thread will be signaled and will continue its execution. Firstly, it sets up a

dynamic table with the handlers of the SVGA commands. The list of the available commands can

be found in the open-source Linux driver for the guest operating system at [LXSD]. Likewise,

vmware-vmx.exe has a table at the read-data section. Each entry contains one function pointer to the

corresponding command handler along with a QWORD value.

While building the dynamic SVGA3D command handler table, vmware-vmx.exe compares the

aforementioned QWORD value with the device capabilities [DEVC] and the provided configuration

(vmx file) in order to decide which commands should be enabled. For instance, for a virtual

machine which is using an old version of the virtual hardware, VMware will probably choose to

disable some of the commands that implement new features (virtual hardware version is defined in

the configuration file of a virtual machine). On latest version of VMware on a default Windows 10

host, almost all handlers after SVGA_3D_CMD_SET_OTABLE_BASE will be enabled. Moreover,

a few of the routines prior to that command will be enabled as well. A complete list of the enabled

commands will not be presented here since it depends on numerous factors. To check which

commands are enabled reliably, it should be checked during the runtime.

Apart from the initialization of the SVGA command handler table, the SVGA thread will constantly

keep an eye if the guest operating system issued a command to call the appropriate command

Figure 2 - SVGA thread creation

http://www.blackhat.com/presentations/bh-usa-09/KORTCHINSKY/BHUSA09-Kortchinsky-Cloudburst-PAPER.pdf
https://elixir.bootlin.com/linux/v4.16-rc7/source/drivers/gpu/drm/vmwgfx/device_include/svga3d_cmd.h
https://elixir.bootlin.com/linux/v4.16-rc7/source/drivers/gpu/drm/vmwgfx/device_include/svga_reg.h#L618

Straight Outta VMware

6 Black Hat EU 2018

handler. That said, it must be noted that there are two ways to send commands to the device. Either

by using the SVGA FIFO or the command buffers.

SVGA FIFO

SVGA FIFO is discussed in detail at [CLDB], hence this document will describe it briefly. SVGA

FIFO is a MMIO (memory mapped input/output) region which is shared between the guest

operating system and vmware-vmx.exe. It is partitioned into two parts. The first consists of the FIFO

registers [FIFR], which hold various information about the device. The second part consists of the

FIFO data which are written by the guest operating system and slurped out by the host process.

Each SVGA command consists of the following header

and the rest of the data are command specific. Id denotes the index of the command that will be

called and size indicates the size of the command data structure that must be placed immediately

after the header. Linux open-source guest driver has the arguments of each command at [LXSD]

and [LXSX]. Once the guest user pushes a new command into the FIFO, VMware will parse the

command and it will call the appropriate command handler.

Command buffers

Command buffers is another way to send commands to the SVGA device. To use them, it is

required to understand how to read and write the SVGA registers. The SVGA device exposes a few

registers which can be read and written by using port I/O operations. The available registers can be

found at [LXSR].

To write a register, perform an out instruction (port I/O) on the port BAR0 +

SVGA_INDEX_PORT with the index of the requested register. Afterwards, perform once again an

out instruction to the BAR0 + SVGA_VALUE_PORT. The latter will write to the requested

register the desired value. In order to read a register, follow the same procedure but replace the last

out instruction with an in instruction. BAR0 is of course the base address register of the PCI device

that represents the graphics device.

Source Snippet 2 - SVGA command header

Source snippet 3- Port offsets

http://www.blackhat.com/presentations/bh-usa-09/KORTCHINSKY/BHUSA09-Kortchinsky-Cloudburst-PAPER.pdf
https://elixir.bootlin.com/linux/v4.16-rc7/source/drivers/gpu/drm/vmwgfx/device_include/svga_reg.h#L719
https://elixir.bootlin.com/linux/v4.16-rc7/source/drivers/gpu/drm/vmwgfx/device_include/svga3d_cmd.h
https://elixir.bootlin.com/linux/v4.16-rc7/source/drivers/gpu/drm/vmwgfx/device_include/svga3d_dx.h
https://elixir.bootlin.com/linux/v4.16-rc7/source/drivers/gpu/drm/vmwgfx/device_include/svga_reg.h#L129

Straight Outta VMware

7 Black Hat EU 2018

Guest user can submit command buffers when writes a physical address into

SVGA_REG_COMMAND_HIGH and SVGA_REG_COMMAND_LOW registers. Details can

be found at [LXCB].

SVGA3D protocol
Since the couple of methods to issue a SVGA command have been described, the SVGA3D

protocol, which is the communication protocol between guest and VMware, should be studied next.

So, this section analyzes the protocol and its implementation on VMware. SVGA3D protocol

reminds a simplified version of DirectX. Nonetheless, a few unique to SVGA3D entities exists.

Object tables

As mentioned earlier, the enabled group of SVGA command handlers are after the

SVGA_3D_CMD_SET_OTABLE_BASE command. This command should be the first must be

issued. Its arguments can be found on the following snippet

As the name of the command denotes, it is used to set the base of an object table (otable). VMware

uses the guest memory to keep track of the objects and their relations created by the guest operating

system. The term object here implies a graphic entity of the SVGA3D protocol. Those are MOBs

Source Snippet 4 - SVGA3dCmdSetOTableBase

https://elixir.bootlin.com/linux/v4.16-rc7/source/drivers/gpu/drm/vmwgfx/device_include/svga_reg.h#L322

Straight Outta VMware

8 Black Hat EU 2018

(memory objects), surfaces, contexts, shaders and screentargets and more. Hence the type element

of the SVGA3dCmdSetOTableBase structure signifies the type of object table.

The baseAddress element is a DWORD (4 bytes) which should be equal to the guest's physical page

number of the memory region that will be occupied by vmware-vmx.exe to store the object table.

The physical page number is simply the physical address right-shifted by 0xC. Hence, the first

physical page of the system (i.e. PPN equals to zero) should be at physical address 0x0. Likewise,

the second physical page (PPN equals to one) should be at physical address 0x1000 and so on.

sizeInBytes and validSizeInBytes are pretty much self-described.

The last element ptDepth is the trickiest. If the sizeInBytes of the object table is less than 0x1000

(less than a page), ptDepth should be equal to zero. However, if it is greater than a page, ptDepth

should be equal to one and baseAddress should not point to the object table directly. Instead, it must

point into a page table consisted of PPNs. Each PPN of the page table should refer to a page at

which the object table resides. For example, if the size of the object table is 0x3000 it must contain

three PPNs into the page table.

Figure 3 - Guest memory layout (ptdepth=1)

Keep in mind that if the sizeInBytes is greater than 0x400000 or in other words the page table is full

of PPNs, then a level-two page table can be used (ptDepth = 2).

Straight Outta VMware

9 Black Hat EU 2018

Memory objects

Another fundamental entity of the SVGA3D protocol are the memory objects or MOBs. Like the

object tables, they are also chunks of guest memory. Their difference compared to object tables is

that memory objects are not used to store objects. Usually, they contain data that will be used to

supply VMware when initializes the host-side structures of the SVGA objects like contexts, surfaces,

etc. A new memory object can be defined by issuing the SVGA_3D_CMD_DEFINE_GB_MOB

command. Arguments of the command can be found below.

Source Snippet 5 - SVGA3dCmdDefineGBMob

Each object of each type is assigned with a unique identification number mobid. As mentioned

earlier, when a new object is defined (in this case a MOB), VMware will use the corresponding

object table to store its information. The entry of the MOB object table is declared below.

Source Snippet 6 - MOB OTable entry

Hence, inside the MOB object table, which resides into the guest physical memory, vmware-vmx.exe

will write the depth, the size and the base address of the MOB which was just defined. The same

applies for other objects as well. The definitions of their entries can be found at [LXSD].

Other objects and operations

Object tables and memory objects discussed so far are the essential entities of the SVGA3D

protocol. For the rest of the objects, there are four basic operations. These are define, bind, destroy

and readback. For the discussion of these operations below, the context object is used as an

example. Nonetheless, the same pattern applies to every object presented so far.

Define operation
Define operation is used to register a new SVGA3D object (for instance, a context) to its

corresponding object table. Recall that the object table is simply a memory region inside the guest

operating system which is divided into entries. Obviously, the context object table is split into

entries of SVGAOTableContextEntry.

https://elixir.bootlin.com/linux/v4.16-rc7/source/drivers/gpu/drm/vmwgfx/device_include/svga3d_cmd.h

Straight Outta VMware

10 Black Hat EU 2018

Source Snippet 7 - Context OTable entry

The following snippet of code is the pseudocode of MySVGA3DCmd_DefineGBContext.

The above code simply fills the object table with the appropriate values.

Bind operation
SVGA3D protocol provides the functionality to bind an object with a MOB. When defining an

object, vmware-vmx.exe simply creates an entry in the object table. However, to use it, it usually

must be bound with a memory object. Contents stored in the guest memory occupied by the

Straight Outta VMware

11 Black Hat EU 2018

memory object will be used to initialize the host-side structure. Below is once again the example

with the context.

Source Snippet 8- Bind context implementation

Once the context is bound with a MOB, VMware is ready to allocate and initialize the host-side

structures of a context, namely SVGA_Context. However, VMware allocates the host-side

structures of the object, only when the context is going to be used (lazy allocation). For example,

every time the guest tries to use the context, vmware-vmx.exe will call the following function.

Straight Outta VMware

12 Black Hat EU 2018

Source Snippet 9 - Get or create context

MySVGA_CreateNewContext will append to MySVGA_ContextList the newly created context, so it

can be retrieved quicker the next time.

Destroy operation
Destroy simply puts the cid entry of the requested context to SVGA_INVALID_ID (0xffffffff) which

is indicating that the slot is not used.

Source Snippet 10 - Destroy context implementation

Straight Outta VMware

13 Black Hat EU 2018

At [1], MySVGA_FindContext will look through the MySVGA_ContextList to find the requested

context. If it is found (which means that the context is already defined, bound and VMware already

used it), it calls MySVGA_DestroyContext to free its host side structures and then cleans up the

context object table.

Readback operation
Finally, readback is an operation used by the SVGA3D protocol in order to write back to guest

memory objects that may have been modified since the time they were created. To be more specific,

imagine the context which was created in the previous example. During the execution of various

SVGA3D commands, the structure that represent the context, probably will be modified. For the

user (guest OS) to know about the changes, the readback mechanism writes back to the bound

memory object the contents of the current context.

SVGA3D protocol summary

In summary, an object must be defined and then bound with a MOB. When VMware is going to use

the object in question, MOB's data will be used to initialize the host-side structure that represent the

object. During execution, some values of the structures may change because of various SVGA3D

commands. The guest can be notified about the updates of an object by issuing a readback

command to that object. Finally, the object can be freed by issuing the destroy command. Below is

once again the example with the context.

Straight Outta VMware

14 Black Hat EU 2018

Source Snippet 11 - Create and define context example

The SVGA3D protocol and its implementation constitutes the frontend interface of the SVGA

device. Its implementation is generic and independent of the guest operating system. The guest

operating system uses the graphics kernel driver that is installed with the VMTools suite to talk with

the device.

Straight Outta VMware

15 Black Hat EU 2018

Figure 4 - Graphics pipeline

Exploitation primitives
Exploitation primitives are always an asset for the attacker's arsenal. To build a reliable guest-to-

host escape exploit, an attacker requires a reliable way to spray the host's heap. Memory corruption

bugs usually rely on a proper memory layout.

Spraying the heap using SVGA_3D_CMD_SET_SHADER

The snippets below are pseudocode of parts of the SVGA_3D_CMD_SET_SHADER command

handler. Notice that, MySVGA3DCmd_SetShader requires an existing context [1] otherwise it

returns an error. In other words, a context must have been created and bound with a MOB prior the

call to MySVGA3DCmd_SetShader. Afterwards, at [2], ensures that no shader with the same ID

already exists and calls MySVGA_CreateNewShader.

Straight Outta VMware

16 Black Hat EU 2018

Source Snippet 12 - SetShader implementation

Inside MySVGA_CreateNewShader, VMware grabs the corresponding entry from the shader object

table. Hence the requested shader must have been already defined prior to the call to

SVGA_3D_CMD_SET_SHADER command. The checks at [3] set some limitations to the size of

the shader. First, it must not be greater than 0x3ffff and it must be four-byte aligned. Additionally,

the requested shader must be bound with a MOB, so the execution will go at [4], where there is a

malloc which size argument equals to sizeInBytes from the shader entry. Data which will be copied

into the new buffer are the contents of MOB, hence both are guest user controllable. However,

notice that this buffer is temporary since it is freed later.

Straight Outta VMware

17 Black Hat EU 2018

Source Snippet 13 - Create new shader

At MySVGA_BuildNewShader occurs the same pattern as before, but the buffer is stored inside the

shader's list and it is not freed. To free that buffer the guest user must call explicitly the

SVGA_3D_CMD_SHADER_DESTROY command. In conclusion, using the aforementioned

command the attacker is able to perform a couple of allocations with the size and data controlled by

the guest operating system. Notice though that the first allocation is going to be freed. Thankfully,

the SVGA_3D_CMD_SET_SHADER command can be called multiple times!

Source Snippet 14 - Build new shader

Straight Outta VMware

18 Black Hat EU 2018

Information leak from host and code execution

Resource containers
Command handlers belong to the frontend interface of the SVGA module. They usually perform

sanitizations, keep track of the SVGA3D objects like contexts, surfaces, shaders and more.

However, when VMware must communicate with the physical device, they use the backend

interface also known as the renderer.

The frontend and the backend interfaces are two separate systems; hence they use different data

structures to represent the same SVGA3D object. For example, in the previous chapter we

mentioned that surface is a SVGA object that represents a linear area of display memory. The

SVGA_Surface structure is used by the frontend to keep track of the surface details such as its

format, dimensions and more. On the other hand, the backend uses a structure named

ResourceContainer (name given during reversing) to store separately that information.

DX11Renderer keeps all ResourceContainers created so far into a global list.

A surface object can be backed either by a MOB or by a resource container. The host side structure

of the surface has a field named RCIndex. If the value of that field is different than

SVGA_INVALID_ID then that index is used by VMware to correlate the surface with a resource

container.

There are ten different types of ResourceContainers. Which type will be created depends on the

arguments that the surface was defined with. During this paper, the analysis of the

ResourceContainer type #1 will be presented. Here is its structure definition.

Straight Outta VMware

19 Black Hat EU 2018

Source Snippet 15 - ResourceContainer type #1

To force VMware to create a ResourceContainer object of type #1, the guest user should execute

the following code:

Source Snippet 16 - Allocate a ResourceContainer #1

Since the correlation between surfaces and resource containers was presented, it is time to discuss

about the time they are used. Surface objects – and so the resource containers – are used during the

surface-copy command which is presented below in detail.

Straight Outta VMware

20 Black Hat EU 2018

Analysis of SVGA_3D_CMD_SURFACE_COPY
This command is responsible for copying a part (or box) from one surface to another. In this section

there will be in-depth analysis of the command, since its command handler will be abused to leak

data from the host process to the guest and to execute arbitrary code. Keep in mind that our

objective is to read contents after the data buffer and write them back to the guest operating system.

Here are the arguments of the command.

Source Snippet 17 - SurfaceCopy command

It takes a source surface ID and a destination surface ID. Assume for now that face and mipmap

fields are zero. Additionally, it takes an infinite number of copy boxes. The copy boxes contain the

coordinates of the three-dimensional space for both source and destination surfaces as well as the

width, the height and the depth of the box that will be copied.

Straight Outta VMware

21 Black Hat EU 2018

Source Snippet 18 - SurfaceCopy implementation

The handler routine ensures that the surface IDs passed as source and destination are valid.

Moreover, it iterates all SVGA3dCopyBox structures and ensures that they are inside the boundaries

of both source and destination surfaces, otherwise it fails. After that, at [1], it checks if the surfaces

have been assigned with a ResourceContainer ID. This check is done to decide which is the

appropriate function for the copy. There are four cases depending if the surfaces have a resource

container or they are backed by a MOB. For example, if both surfaces are backed by a MOB, in

other words they have not been assigned with a resource container index, then the backend will not

be used, since MOBs belong to the frontend. However, if at least one surface has a resource

container then the backend interface must be used.

Imagine a scenario at which the source surface has been correlated with a ResourceContainer, and

the destination surface is backed by a MOB. This gives the following opportunity. Data will always

be written into the guest's memory which can be very helpful to leak data back to the guest. To

avoid assignment of a resource container the destination surface must be bound with a MOB and

must be defined as presented below:

Straight Outta VMware

22 Black Hat EU 2018

Source Snippet 19 - Avoid resource container index assignment

As explained previously, the snippet above will result to a call at

MySVGA_CopySurfaceResourceToMOB. This routine firstly will collect information from the

SVGA_Surface structure of the destination surface such as its dimensions, the address of the

memory object and more. Next, it will call the MyDX11Renderer_CopyResource of the

DX11Renderer (on Windows hosts).

Source Snippet 20 - DX11Renderer CopyResource

Straight Outta VMware

23 Black Hat EU 2018

MyDX11Renderer_CopyResource calls MyDX11Resource_MapSubresourceBox to map the

requested subresource from the VRAM of the host into the process memory.

Source Snippet 21 - Map sub-resource box

Straight Outta VMware

24 Black Hat EU 2018

For resource container of type #1, MyDX11Resource_Map uses DirectX’s Map function [IMAP] to

map the data buffer from the VRAM into the process memory. Afterwards, GetDataBuffer (a

function pointer from the resource container) will be called. This callback takes as input the mapped

resource along with row and depth pitch. Below is the implementation of the function (called at [3])

for resource container of type #1.

Source Snippet 22 - GetDataBuffer for ResourceContainer type #1

The first time that GetDataBuffer is called, DataBuffer will be NULL, hence a function will be

called to calculate the total number of bytes needed for the buffer according to its dimensions and

format and then it will allocate a memory region. The address will be stored to DataBuffer.

Afterwards, the memory from the mapped VRAM resource will be copied to the DataBuffer.

Responsible for this, is the function MySVGA_CopyResourceImpl. This routine firstly checks if the

source resource fits into the destination. If that is not the case, it returns an error although this is not

checked in GetDataBuffer.

The output argument of the GetDataBuffer function will be filled with row and depth pitch of the

new data buffer as well as with a pointer to the memory that contains the data.

Refer to [4] in function MyDX11Resource_MapSubresourceBox. Since the

SVGA_3D_CMD_SURFACE_COPY command takes as input a source box, the function may

increase the data pointer of the mapped resource. If the coordinates of the source box are not zero, it

is completely reasonable to increase the pointer value in order to point to the right position into data

buffer. This pointer will be used later as a source parameter to copy the contents of the surface to

guest operating system.

Finally, the execution will go to MyDX11Renderer_CopyResourceImpl which uses the

DX11MappedResource->DataBuffer as source buffer and the address of the MOB as the destination.

Straight Outta VMware

25 Black Hat EU 2018

Attack scenario
This section discusses what should an attacker do if he/she has a memory corruption bug. Assume

that the attacker can corrupt a ResourceContainer type #1 structure. Particularly, he/she can modify

the width and height values of the ResourceContainer. Keep in mind, although the attacker can

increase the size of the dimensions inside the ResourceContainer, he cannot pass invalid copy-

boxes to the SVGA_3D_CMD_SURFACE_COPY command, since the first step of sanitization is

performed at the frontend and compared against the dimensions stored in the SVGA_Surface.

However, if the width is modified to an arbitrary value at the ResourceContainer, the code at [4] of

MyDX11Resource_MapSubresourceBox produces an interesting result. Since the row pitch stored in

DX11MappedResource is affected by the dimension, offset can be modified as well. Specifically,

offset will be calculated by multiplying RowPitch with the srcy argument of the copy-box. A careful

modification will result to alter the DataPtr at [4] to point after the end of the DataBuffer stored in

the ResourceContainer. This will lead to copy the data of the next heap chunks to the guest

operating system!

However, there is a pitfall! Recall that the GetDataBuffer callback will copy the contents of the

VRAM to the cache-like buffer (DataBuffer). But, since the attacker messed with the values of the

dimension fields, this will result to trash the contents after the end of the DataBuffer. Those values

are going to be copied back to the guest operating system. Luckily, there is a simple way to avoid

this. When the attacker increases the width (hence the RowPitch) of the resource container, he/she

should decrease the height field of it. This will force the MyCopyResourceImpl inside

GetDataBuffer routine to fail silently, but the execution of the surface-copy command will continue

without an error.

Additionally, the attacker can once again modify the function pointers contained in the

ResourceContainer. For example, he/she can corrupt the function pointer of the GetDataBuffer and

then issue again the surface copy command. Execution will eventually lead to the dynamic call, but

this time the function pointer value will be controlled by the attacker ;)

Real-word scenario
VMware 12.5.4 contained multiple vulnerabilities in the SM4 bytecode parser. The next version,

12.5.5 addressed and fixed those vulnerabilities. To demonstrate a proof-of-concept for the latest

version of VMware at the time of this writing (14.1.3), I patched vmware-vmx.exe to reintroduce

the vulnerabilities. This section will briefly present to you how to use the acquired knowledge to

write an escape exploit for VMware.

Vulnerabilities

To trigger the vulnerabilities the attacker firstly must define a DXContext and a DXShader. The

shader must be bound with a MOB which must contain the malicious bytecode. After that, the

attacker must set the DXShader to the DXContext using the SVGA3D_CMD_DX_SET_SHADER

command. After that, a call to SVGA3D_CMD_DX_DRAW will trigger the parsing of the

malicious bytecode.

Straight Outta VMware

26 Black Hat EU 2018

During the draw command, prior to the parsing of the bytecode, VMware will allocate a buffer

which size will be 0x26D80. The vulnerable version of VMware will take values from the bytecode

and will use them as indices to access and write fields that big buffer. Additionally, the values that

will be stored to the buffer will be taken from the bytecode as well.

The following picture presents one of the vulnerabilities. Specifically, this routine will handle the

DCL_CONSTANTBUFFER opcode of the bytecode. Notice that rcx points to the big buffer and rax

which is used as index is taken directly from the bytecode. R8d is fully controlled from the guest

user as well. Furthermore, notice that the next DWORD after the corruption will be written with the

value one (1). This means that the attacker is unable to corrupt effectively a function pointer since

the high 32bit value will always be equal to one. Below is the patched version.

Straight Outta VMware

27 Black Hat EU 2018

Another one vulnerability is required for the escape exploit. This time the vulnerable opcode is

DCL_INDEXEDRANGE.

Once again rcx points to the big buffer. However, this time r10 (used as index) is taken from the big

buffer itself. On the other hand, this time the attacker control r8d, r9d, and eax. This give the

opportunity to the attacker to corrupt a function pointer.

Moreover, notice that the attacker can chain those two vulnerabilities. He/she can use the

DCL_CONSTANTBUFFER vulnerability to corrupt the offset 0x26C70 with a desirable value.

After that, the DCL_INDEXEDRANGE vulnerability should be used because the index is now

controllable. The chain of the vulnerabilities will give the attacker the opportunity to modify a

QWORD after the end of the buffer with a desired value.

Exploit

The target of the exploit is a Windows 10 host operating system which runs VMware 14.1.3. The

binary vmware-vmx.exe is patched to reintroduce the vulnerabilities. Guest operating is Windows

10 as well.

First thing of the attacker is to use the heap spraying technique that was presented before to perform

a few allocations to make the heap more predictable, such as filling the holes etc. Once this is done

a shader must be allocated which size will be equal to the vulnerable buffer (0x26D80). Later, the

attacker must spray the heap with a bunch of shaders of size 0x150. This is also the size of the

resource containers. This size will force the low fragmentation heap allocator (LFH) to kick in. The

Eventually the heap should like the following picture.

Straight Outta VMware

28 Black Hat EU 2018

After that, the attacker must free one of the small shaders and define a surface and using it

immediately. Hopefully, this will result to free one slot of the LFH block and a resource container

will reclaim that memory. Thus, all the heap chunks on the LFH block will be replaced by resource

containers.

Afterwards, the attacker must execute the following code.

Resource containers will be used during the first surface-copy call above. This means that the

GetDataBuffer callback will be called and the DataBuffer will be allocated. After that the attacker

will define a few surfaces and will use them in order to allocate more resource container. Note that

the resource containers that will be created inside the embedded for loop will be resource containers

of type #0. The size of a resource container type #0 is 0x140. This means that another LFH block

will be created for size 0x140. If the attacker provide to the surfaces that are backed by resource

Straight Outta VMware

29 Black Hat EU 2018

containers of type #1 the proper dimensions such as width = 0x45, height = 0x2, depth = 0x1 and

the surface format is SVGA3D_A4R4G4B4, then the data buffer that will be allocated during the

surface copy call will fall into the same LFH block as the resource container of type #0. Finally, the

heap should be like this.

Heap chunks with orange color are the DataBuffers and with purple color are the resource container

of type #0.

Once the heap is ready, the attacker should trigger the vulnerability to corrupt one or more resource

containers and then it should iterate all of them and issue a surface-copy command to each one of

them. The destination of the surface copy command should be a MOB-backed surface. If everything

goes as intended the contents of a resource container type #0 should be leaked back to the guest.

Since the resource container contains function pointers it is straightforward to calculate the base

address of the vmware-vmx.exe. Once the attacker knows the base address, he/she can trigger the

vulnerability once again, but this time he/she will corrupt one of the function pointers of the

resource containers (preferably the GetDataBuffer callback) and it will modify its value to point to

the first ROP gadget. On the next surface copy call, the ROP gadget will be executed instead of

GetDataBuffer.

Acknowledgements
I would like to thank my CENSUS colleagues and specifically Nikos Sampanis, Aris Thallas and

Sotiris Papadopoulos for their insights, comments and help with reversing parts of the SVGA

implementation and testing.

References
[DXGI] https://msdn.microsoft.com/en-us/library/windows/desktop/hh404534(v=vs.85).aspx

[ENUM] https://msdn.microsoft.com/en-us/library/windows/desktop/ff476877(v=vs.85).aspx

[DMAP] https://msdn.microsoft.com/en-us/library/windows/desktop/ff476457(v=vs.85).aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/hh404534(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476877(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476457(v=vs.85).aspx

Straight Outta VMware

30 Black Hat EU 2018

[CLDB] http://www.blackhat.com/presentations/bh-usa-09/KORTCHINSKY/BHUSA09-

Kortchinsky-Cloudburst-PAPER.pdf

[LXSD] https://elixir.bootlin.com/linux/v4.16-

rc7/source/drivers/gpu/drm/vmwgfx/device_include/svga3d_cmd.h

[LXSX] https://elixir.bootlin.com/linux/v4.16-

rc7/source/drivers/gpu/drm/vmwgfx/device_include/svga3d_dx.h

[LXSR] https://elixir.bootlin.com/linux/v4.16-

rc7/source/drivers/gpu/drm/vmwgfx/device_include/svga_reg.h#L129

[LXCB] https://elixir.bootlin.com/linux/v4.16-

rc7/source/drivers/gpu/drm/vmwgfx/device_include/svga_reg.h#L322

[FIFR] https://elixir.bootlin.com/linux/v4.16-

rc7/source/drivers/gpu/drm/vmwgfx/device_include/svga_reg.h#L719

[IMAP] https://msdn.microsoft.com/en-us/library/windows/desktop/ff476457(v=vs.85).aspx

[DEVC] https://elixir.bootlin.com/linux/v4.16-

rc7/source/drivers/gpu/drm/vmwgfx/device_include/svga_reg.h#L618

About CENSUS
CENSUS offers high grade IT Security consultancy services, based on years of research and

experience in the fields of Application Development and Software Security. The company has thus

far identified vulnerabilities in banking systems, mobile phone apps, operating system components,

Internet services, web applications, web servers, multimedia applications, application & system

libraries, but also to the firmware of networking, file serving, medical and crypto-storage devices.

The Software Security Assessment Services offered by CENSUS cover applications that have been

developed in the following programming languages:

• C

• C++

• Objective C

• Java

• Go

• Rust

• JavaScript

• C#

• PHP

• Python

• Swift

• Perl

• Ruby

• x86 / x86_64 / ARM Assembly

• ASP

• Visual Basic

• Unix Shell Scripting

http://www.blackhat.com/presentations/bh-usa-09/KORTCHINSKY/BHUSA09-Kortchinsky-Cloudburst-PAPER.pdf
http://www.blackhat.com/presentations/bh-usa-09/KORTCHINSKY/BHUSA09-Kortchinsky-Cloudburst-PAPER.pdf
https://elixir.bootlin.com/linux/v4.16-rc7/source/drivers/gpu/drm/vmwgfx/device_include/svga3d_cmd.h
https://elixir.bootlin.com/linux/v4.16-rc7/source/drivers/gpu/drm/vmwgfx/device_include/svga3d_cmd.h
https://elixir.bootlin.com/linux/v4.16-rc7/source/drivers/gpu/drm/vmwgfx/device_include/svga3d_dx.h
https://elixir.bootlin.com/linux/v4.16-rc7/source/drivers/gpu/drm/vmwgfx/device_include/svga3d_dx.h
https://elixir.bootlin.com/linux/v4.16-rc7/source/drivers/gpu/drm/vmwgfx/device_include/svga_reg.h%23L129
https://elixir.bootlin.com/linux/v4.16-rc7/source/drivers/gpu/drm/vmwgfx/device_include/svga_reg.h%23L129
https://elixir.bootlin.com/linux/v4.16-rc7/source/drivers/gpu/drm/vmwgfx/device_include/svga_reg.h%23L322
https://elixir.bootlin.com/linux/v4.16-rc7/source/drivers/gpu/drm/vmwgfx/device_include/svga_reg.h%23L322
https://elixir.bootlin.com/linux/v4.16-rc7/source/drivers/gpu/drm/vmwgfx/device_include/svga_reg.h%23L719
https://elixir.bootlin.com/linux/v4.16-rc7/source/drivers/gpu/drm/vmwgfx/device_include/svga_reg.h%23L719
https://msdn.microsoft.com/en-us/library/windows/desktop/ff476457(v=vs.85).aspx
https://elixir.bootlin.com/linux/v4.16-rc7/source/drivers/gpu/drm/vmwgfx/device_include/svga_reg.h%23L618
https://elixir.bootlin.com/linux/v4.16-rc7/source/drivers/gpu/drm/vmwgfx/device_include/svga_reg.h%23L618

Straight Outta VMware

31 Black Hat EU 2018

Our experts are also capable of applying reverse engineering techniques to identify vulnerabilities

in software for which the source code is not available to the client.

For vulnerabilities that have been identified in commonly used and open source software, CENSUS

releases public advisories and works with vendors, so that end-users are protected as early as

possible from the security risks involved. Some of these vulnerabilities are presented below:

• “Static SSP canary in libc6”, 2009

• “Rasterbar libtorrent arbitrary file overwrite vulnerability”, 2009

• “gif2png command line buffer overflow”, 2009

• “Linux kernel SUNRPC off-by-two buffer overflow”, 2009

• “CoreHTTP web server off-by-one buffer overflow vulnerability”, 2009

• “Monkey httpd improper input validation vulnerability”, 2009

• “FreeBSD kernel NFS client local vulnerabilites”, 2010

• “Netvolution referer header SQL injection vulnerability”, 2011

• “libpurple OTR information leakage”, 2012

• “Oracle WebCenter Information exposure vulnerability”, 2014

• “GDCM buffer overflow in ImageRegionReader::ReadIntoBuffer”, 2016

• “GDCM out-of-bounds read in JPEGLSCodec::DecodeExtent”, 2016

• “Android stagefright libmpeg2 impeg2d_dec_user_data heap overflow”, 2016

• “Android stagefright libavc ih264d_decode heap overflow”, 2016

• “Kamailio SEAS module encode_msg heap buffer overflow”, 2016

• “Android stagefright ih264d_read_mmco_commands libavc heap overflow”, 2016

• “Android stagefright impeg2d_dec_pic_data_thread integer overflow”, 2016

• “Android stagefright impeg2d_vld_decode stack buffer overflows”, 2016

• “e2openplugin OpenWebif saveConfig remote code execution”, 2017

Finally, the services offered by CENSUS are heavily influenced by the company's research &

development efforts. This work is regularly presented to international IT Security conferences.

Some of these presentations are listed below:

▪ “Binding the Daemon”, Blackhat Europe 2010

▪ “Context-keyed payload encoding”, AthCon 2010

▪ “Protecting the Core”, Blackhat Europe 2011

▪ “Introducing the Parasite”, AthCon 2011

▪ “Exploiting the jemalloc allocator”, Blackhat USA 2012

▪ “Heap Exploitation Abstraction by Example”, OWASP AppSec Research 2012

▪ “Packing Heat!”, AthCon 2012

▪ “Firefox Exploitation”, AthCon 2013

▪ “POS Attacking the Traveling Salesman”, DEFCON 2014

▪ “Project Heapbleed”, ZeroNights 2014

▪ “Fuzzing Objects d'ART”, Hack in the Box Amsterdam 2015

▪ “OR'LEY? The Shadow over Firefox”, INFILTRATE 2015

▪ “Dtrace + OSX = Fun”, CONFidence 2015

▪ “Introducing Choronzon: an approach at knowledge-based evolutionary fuzzing”,

ZeroNights 2015

Straight Outta VMware

32 Black Hat EU 2018

▪ “Another Brick off the Wall: Deconsutrcting Web Application Firewalls using Automata

Learning”, Black Hat Europe 2016

▪ “The shadow over Android: Heap Exploitation Assistance for Android’s libc Allocator”,

INFILTRATE 2017

▪ “Lure10: Exploiting Windows Automatic Wireless Association Algorithm”, Hack in the Box

Amsterdam 2017

▪ “Windows 10 RS2/RS3 GDI data-only exploitation tales”, OffensiveCon 2018

▪ “Straight outta VMware: Modern exploitation of the SVGA device for guest-to-host

escapes”, Microsoft BlueHat 2018

For more information on the services provided by CENSUS, please visit:

https://census-labs.com

https://census-labs.com/

