
Eternal War in XNU Kernel Objects
Min(Spark) Zheng, Xiaolong Bai, Hunter

Alibaba Orion Security Lab

whoami

• SparkZheng @ Twitter，蒸米spark @ Weibo

• Alibaba Security Expert

• CUHK PhD, Blue-lotus and Insight-labs

• Gave talks at RSA, BlackHat, DEFCON, HITB, ISC, etc

• Xiaolong Bai (bxl1989 @ Twitter&Weibo)

• Alibaba Security Engineer

• Ph.D. graduated from Tsinghua University

• Published papers on S&P, Usenix Security, CCS, NDSS

• Jailbreaking in general means
breaking the device out of its “jail”.

• Apple devices (e.g., iPhone, iPad) are
most famous “jail” devices among
the world.

• iOS, macOS, watchOS, and tvOS are
operating systems developed by
Apple Inc and used in Apple devices.

Apple Devices & Jailbreaking

• All systems deploy a same hybrid kernel structure called XNU.

• There are cases that kernel vulnerabilities have been used to escalate the privileges of
attackers and get full control of the system (hence jailbreak the device).

• Accordingly, Apple has deployed multiple security mechanisms that make the
exploitation of the device harder.

XNU

• Apple deployed Data Execution Prevention (DEP)
and Kernel Address Space Layout Randomization
(KASLR) from iOS 6 and macOS 10.8.

• DEP enables the system to mark relevant pages of
memory as non-executable to prevent code
injection attack. To break the DEP protection,
code-reuse attacks (e.g., ROP) were proposed.

• To make these addresses hard to predict, KASLR
memory protection randomizes the locations of
various memory segments. To bypass KASLR,
attackers usually need to leverage information
leakage bugs.

Mitigation - DEP/KASLR

• In previous XNU, the freelist that contains all the freed kernel objects inside a zone
uses the LIFO (last-in-first-out) policy.

• To make the adjacent object hard to predict, Apple deployed a mitigation called
freelist randomization in iOS 9.2. When a kernel object is freed, the XNU will
randomly choose the first or last position of the freelist to store the freed element.

Mitigation - Freelist Randomization

Mitigation - Wrong Zone Free Protection

• An attacker can use a memory corruption vulnerability to change the size value of
a kernel object to a wrong size (e.g., 512) and receive (free) the object. After that,
the attacker can allocate a new kernel object with the changed size (e.g., 512) into
the original kalloc.256 zone.

• To mitigate this attack, Apple added a new zone_metadata_region structure for
each zone in iOS 10.

• A Mach port in XNU is a kernel controlled
communication channel. It provides basic
operations to pass messages between
threads.

• Ports are used to represent resources,
services, and facilities (e.g., hosts, tasks,
threads, memory objects, and clocks) thus
providing object-style access to these
abstractions.

• In user space, Mach ports are integer
numbers like handlers for kernel objects.

New Target - Mach Port in User Space

• In the kernel, a Mach port is represented by a
pointer to an ipc_port structure.

• There are 40 types of ipc_port objects in XNU
and io_bits field defines the type of it.
io_references field counts the reference
number of the object. Locking related data is
stored in the io_lock_data field.

• Receiver field is a pointer that points to
receiver’s IPC space (e.g. ipc_space_kernel).
ip_kobject field points to a kernel data
structure according to the kernel object type.

New Target – Struct ipc_port in Kernel Space

• The main goal is to obtain multiple primitives to read/write kernel memory and
execute arbitrary kernel code, even in the case that multiple mitigations are
deployed in the system.

• Attackers leverage a special kernel object, i.e., ipc_port, to obtain multiple
primitives, including kernel read/write and arbitrary code execution, by issuing
system calls in user mode. Since the proposed method is mainly based on the
ipc_port kernel object, we call it (Mach) Port-oriented Programming (POP).

• Note that POP technology was not created by us. We saw it in many public
exploits and then summarize this code reuse attack technique for systematic study.

(Mach) Port-oriented Programming (POP)

MIG in Source Code

MIG in Kernel Cache

• The Mach subsystem receives incoming Mach messages and processes them by
performing the requested operations to multiple resources such as processors,
tasks and threads. This approach allows attackers to achieve general and useful
primitives through Mach messages without hijacking the control flow.

General Purpose Primitives

• Mach represents the overall computer system as
a host object.

• Through host_*() system calls, a userspace app
can retrieve information (e.g., host_info()) or set
properties (e.g.,host_set_multiuser_config_flags())
for a host.

• Moreover, with a send right to host_priv port
(like root user) and related system calls like
host_processor_set_priv(), an attacker can gain
send rights to other powerful ports
(e.g.,processor_set port).

General Purpose Primitives for Host

Virtual memory management:

• XNU provides a powerful set of routines,
mach_vm_*() system calls, to userspace apps
for manipulating task memory spaces.

• With an information leak vulnerability or an
arbitrary kernel memory read primitive, the
attacker could retrieve other tasks’ map
pointers and craft fake tasks to manage other
processes’ memory space (especially for
kernel’s memory space).

kernel_task_port

mach_vm_*()

kernel

General Purpose Primitives for VM

• Querying primitives have a characteristic that
the return value of the system call could be
used to leak kernel information, e.g.,
speculating executed code paths.

• For example, mach_port_kobject() is a system
call retrieve the type and address of the
kernel object.

• Both Pangu and TaiG's jailbreaks used it to
break KASLR in iOS 7.1 - 8.4, until Apple
removed the address querying code in the
release version (*addrp = 0;).

kern_return_t
mach_port_kobject(

ipc_space_t space,
mach_port_name_t name,
natural_t *typep,
mach_vm_address_t *addrp)

{
...

*typep = (unsigned int) ip_kotype(port);
*addrp = VM_KERNEL_ADDRPERM\

(VM_KERNEL_UNSLIDE(kaddr));
ip_unlock(port);
return KERN_SUCCESS;

}

Querying Primitives

• clock_sleep_trap() is a system call
expecting its first argument (if not NULL)
to be a send right to the global system
clock, and it will return KERN_SUCCESS
if the port name is correct.

• If the attacker can manipulate an
ipc_port kernel object and change its
ip_kobject field, a side channel attack
could be launched to break KASLR.

kern_return_t clock_sleep_trap(
struct clock_sleep_trap_args *args)
{
mach_port_name_t clock_name = args->clock_name;
...
if (clock_name == MACH_PORT_NULL)

clock = &clock_list[SYSTEM_CLOCK];
else

clock = port_name_to_clock(clock_name);
...
if (clock != &clock_list[SYSTEM_CLOCK])

return (KERN_FAILURE);
...
return KERN_SUCCESS;
}

Querying Primitives

• By using type confusion attack, we can
leverage some system calls to copy
sensitive data between kernel space
and user space. Specifically, some
memory interoperation primitives are
not used for the original intention of
the design.

• pid_for_task() is such a system call
which returns the PID number
corresponding to a particular Mach
task.

kern_return_t pid_for_task(
struct pid_for_task_args *args)
{
mach_port_name_t t = args->t;
user_addr_t pid_addr = args->pid;
...
t1 = port_name_to_task_inspect(t);
...
p = get_bsdtask_info(t1);
if (p) {

pid = proc_pid(p);
err = KERN_SUCCESS;

}
copyout(&pid, pid_addr, sizeof(int));
...
}

Memory Interoperation Primitives

• The function calls port_name_to_task() to
get a Mach task object, then invokes
get_bsdtask_info() to get the bsd_info of
the Mach task. After getting bsd_info, the
function calls proc_pid() to get PID
number of the Mach task and uses
copyout() to transmit the PID number to
userspace.

• However, the function does not check the
validity of the task, and directly returns
the value of task -> bsd_info -> p_pid to
user space after calling get_bsdtask_info()
and proc_pid().

Memory Interoperation Primitives

• A port referring to a freed ipc_port object is
called a dangling port.

• System calls like mach_port_set/get_*(),
mach_port_guard/unguard() are used to
write and read the member fields of the
ipc_port object.

• ip_context field in the ipc_port object is
used to associate a userspace pointer with a
port. By using mach_port_set/get_context()
to a dangling port, the attacker can retrieve
and set 64-bits value in the kernel space.

Memory Interoperation Primitives

• This type of primitives can be used to
execute kernel code (e.g., a ROP chain or
a kernel function) in arbitrary addresses.

• clock_get_attributes() is a system call to
get attributes of target clock object. An
attack can change the global function
pointers or fake an object to hijack the
control flow.

• This technique was used in the Pegasus
APT attack in iOS 9.3.3.

Arbitrary Code Execution Primitives

• IOKit is an object-oriented device driver
framework in XNU that uses a subset of
C++ as its language.

• If the attacker has the kernel write
primitives, then he can change the
vtable entry of an I/OKit userclient to
hijack the control flow to the address of
a ROP gadget to achieve a kernel code
execution primitive.

Arbitrary Code Execution Primitives

• CVE-2017-2370 is a heap buffer overflow
in mach_voucher_extract_attr_recipe_trap().

• The function first copies 4 bytes from the
user space pointer args->recipe_size to the
sz variable. After that, it calls kalloc(sz).

• The function then calls copyin() to copy
args->recipe_size sized data from the user
space to the krecipe (should be sz) sized
kernel heap buffer. Consequently, it will
cause a buffer overflow.

kern_return_t
mach_voucher_extract_attr_recipe_trap(
struct mach_voucher_..._args *args)
{
...
mach_msg_type_number_t sz = 0;

copyin(args->recipe_size, (void *)&sz, \
sizeof(sz));

...
uint8_t *krecipe = kalloc((vm_size_t)sz);

...
//args->recipe_size should be sz
copyin(args->recipe, (void *)krecipe, \

args->recipe_size)
...
}

Practical Case Study: Yalu Exp

Practical Case Study: Yalu Exp

• Before heap overflow • After heap overflow

• The exploit overflow those pointers and modify one ipc_object pointer to point to a
fake ipc_object in user mode. The exploit creates a fake task in user mode for the
fake port as well.

• After that, the exploit chain calls clock_sleep_trap() system call to brute force the
address of the global system clock.

Practical Case Study: Yalu Exp

• The exploit sets io_bits of the fake ipc_object to IKOT_TASK and craft a fake task for
the fake port. By setting the value at the faketask + bsdtask offset, an attacker could
read arbitrary 32 bits kernel memory through pid_for_task() without break KASLR.

Practical Case Study: Yalu Exp

• As we mentioned before, the function doesn’t check the validity of
the task, and just return the value of *(*(faketask + 0x380) + 0x10).

Practical Case Study: Yalu Exp

• The attacker dumps kernel ipc_object and kernel task to a fake ipc_object and a
fake task. By using task_get_special_port() to the fake ipc_object and task, the
attacker could get the kernel task port.

• Kernel task port can be used to do arbitrary kernel memory read and write.

fake ipc_object faketask

kernel ipc_object kernel task

pid=0

DUMP

kernel task port

task_get_special_port()

mach_vm_
read()

mach_vm_
write()

Practical Case Study: Yalu Exp

fake ipc_object faketask

kernel task port

task_get_special_port()

mach_vm_
read()

mach_vm_
write()

• iOS 11 added a new mitigation that only the kernel can resolve the kernel’s
task port.

• We cannot use the task_get_special_port() trick on iOS 11.

iOS 11 Kernel Task Mitigation

fake ipc_object fake vm_map_t of fake task

Fake task port

mach_vm_
read()

mach_vm_
write()

• The attacker cannot use a real kernel task port. But the attacker can copy
reference pointer of kernel’s vm to the fake task.

• Now the fake port has a same address space as the kernel task port. It’s
enough for the attacker to do arbitrary kernel read/write.

vm_map_t of kernel task

Mitigation bypass in Async_wake Exp

Enterprise Computer Security

• Lots of companies (e.g., Alibaba Inc and
Tencent) offer Macbooks as work computers
to their employees.

• Problems:

1. macOS is not forced to upgrade like iOS.

2. Less hardware based protections (e.g.,
AMCC and PAC) on Macbooks.

3. Less secure sandbox rules than iOS.

• Hard to defend against advanced persistent
threat (APT). Enterprise computers need a
more secure system.

Pic from time.com

Kernel: XNU

Mach

BSD
KEXTs: IOKit

(Drivers), new file
system, network

User Mode

System calls

XKOP

• To mitigate the APT and POP attack,
we propose a framework called XNU
Kernel Object Protector (XKOP).

• Basic idea: a kernel extension to
implement inline hooking for specific
system calls and deploy integrity
check for ipc_port kernel objects.

• In addition, XKOP could bring new
mitigations to old macOS versions.

XNU Kernel Object Protector

Inline Hooking

• Our system needs to find reliable code points that
the examiners could be executed.

• KAuth kernel subsystem exports a KPI that allows
third-party developers to authorize actions within
the kernel. However, the operation set is very
limited.

• MAC framework is private and can only be used
by Apple. In addition, the rules are hardcoded in
the code of the XNU kernel.

• Finally, we choose inline hooking.

• Based on the examiners, XKOP replaces the original code entry of the target system
call into a trampoline. The trampoline jumps to the examiner stored in the XKOP
kernel extension. Then, the examiner verifies the integrity of the target kernel object.

Inline Hooking

Kernel object address checker:
t1 should not be in the user
space address. Must break KASLR
first and put the payload into
kernel. Just like a soft SMAP for
old devices.

Kernel object type examiner:
a1 should be a real badtask_info
structure with a valid pid number.

Examiners

Kernel object querying examiner:
if the function returns too many
errors, warning the user or panic
according to the configuration.

Through brute force attacks,
clock_sleep_trap() can be used to
guess the address of global clock
object and break the KASLR.

Examiners

• Kernel task port examiner: firstly, bring task_conversion_eval(task_t caller, task_t victim)
mitigation to old macOS system versions. Only the kernel can resolve the kernel's task
port.

Kernel task port

mach_vm_
read()

mach_vm_
write()

Kernel task port examiner

Examiners

• Kernel vm examiner for mach_vm_*(): if the caller process does not belong to
kernel (pid == 0) and the target ipc_port object has the same map structure
with the one of a kernel task, the examiner will trigger configured operations,
e.g., error return or panic.

fake ipc_object fake vm_map_t of fake task

Fake task port

mach_vm_
read()

mach_vm_
write()

vm_map_t of kernel task

Kernel vm examiner

Examiners

Evaluation

• We selected 4 kernel vulnerabilities (two for each version of macOS) and available exploits
to evaluate the effectiveness of our system.

• We first ensure that the exploits work on the corresponding systems, and then we deploy
the XKOP framework and run the exploits again to check whether our system detects and
blocks the attack.

• The experiment result shows that XKOP provides deterministic protection for every
vulnerability and blocks each attempt to exploit the system.

macOS version Vulnerability (CVE) XKOP Protection

10.12
CVE-2016-4669 YES

CVE-2017-2370 YES

10.13
CVE-2017-13861 YES

CVE-2018-4241 YES

Discussion

• Unfortunately, XKOP cannot mitigate all kinds of POP primitives:

(1). Querying primitives use error return values to gain an extra source of
information which is very similar to the side-channel attack.

(2). No protection for arbitrary code execution primitives. Without hardware
support, software-based CFI implementation can be very expensive. In
addition, modern kernel could be patched by pure data which means kernel
memory read and write primitives are enough for attackers to accomplish the
aim.

• We may miss some potential vulnerabilities that can bypass XKOP protection.
As an imperfect solution, XKOP supports extensible examiners to prevent new
threats in the first place.

• We discuss the mitigation techniques in the XNU kernel, i.e., the kernel of iOS
and macOS, and how these mitigations make the traditional exploitation
technique ineffective.

• We summarize a new attack called POP that leverages multiple ipc_port kernel
objects to bypass these mitigations.

• A defense mechanism called XNU Kernel Object Protector (XKOP) is proposed
to protect the integrity of the kernel objects in the XNU kernel.

Contact information:

• weibo@蒸米spark

• twitter@SparkZheng

Conclusion

• *OS Internals & Jtool: http://newosxbook.com/

• A Brief History of Mitigation: The Path to EL1 in iOS 11, Ian Beer

• Yalu: https://github.com/kpwn/yalu102, qwertyoruiopz and marcograssi

• iOS 10 Kernel Heap Revisited, Stefan Esser

• Port(al) to the iOS Core, Stefan Esser

• iOS/MacOS kernel double free due to IOSurfaceRootUserClient not respecting MIG ownership
rules, Google. https://bugs.chromium.org/p/project-zero/issues/detail?id=1417

• mach voucher buffer overflow. https://bugs.chromium.org/p/projectzero/issues/detail?id=1004

• Mach portal: https://bugs.chromium.org/p/project-zero/issues/detail?id=965

• PassiveFuzzFrameworkOSX: https://github.com/SilverMoonSecurity/PassiveFuzzFrameworkOSX

Reference

Thank you!

