black hat EUROPE 2018

DECEMBER 3-6, 2018

EXCEL LONDON / UNITED KINGDOM

Perception Deception: Physical Adversarial Attack Challenges and Tactics for DNN-based Object Detection

Zhenyu (Edward) Zhong, Yunhan Jia, Weilin Xu, Tao Wei

#BHEU / @BLACK HAT EVENTS

Our Team X-Lab

Chief Security Scientist Dr. Tao Wei

SYSTEM SECURITY RESEARCH

MesaTEE

AI SECURITY RESEARCH

Dr. Yunhan lia

Dr. Zhenyu(Edward) Zhong edwardzhong [at] baidu DOT com

Weilin Xu

NE'RE IRINGI https://github.com/baidu/rust-sgx-sdk

https://github.com/mesalock-linux

https://github.com/baidu/AdvBox

https://github.com/mesalock-linux/mesalink

https://github.com/mesalock-linux/mesapy

- This talk doesn't target any commercial autonomous driving systems.
- We don't provide any comments to the vulnerabilities of the perceptions of existing autonomous driving systems.
- We focus on state-of-the-art object detection methods, all the results/techniques are proof-of-concept.

Disclaime

Car Safety – Unintended Acceleration

AP / May 25, 2010, 7:08 PM

https://www.cbsnews.com/news/toyota-unintended-acceleration-has-killed-89/

Toyota "Unintended Acceleration" Has Killed 89

Unintended acceleration in Tovota vehicles may have been involved in the deaths of 89 people ov to the massive **21. A Your Marin Riman**

The New York Times

NASA Engineering an Technical Assess

Title:

National Highway Traffic Safet Toyota Unintended Accelerati

Proof for the hypothesis that the ETCS-i caused the submitted with a single failure mode found that combined with d degrees in Submitted VOQS could a releasing the accelerator pedal or overridden by the openings, the NESC team found single failure mo openings less than 5 degrees. These failures may as described in submitted VOQs and may not gen releasing the accelerator pedal or overridden by the Toyota Will Pay \$1.6 Billion Over Faulty Accelerator Suit

By Jaclyn Trop

July 19, 2013

releasing the accelerator pedal or overridden by the braking system. Because proof that the ETCS-1 caused the reported UAS was not found does not mean it could not occur. However, the testing and analysis described in this report did not find that TMC ETCS-i electronics are a likely cause of large throttle openings as described in the VOQs.

13 108 "unprotected critical variables."...

b-CPU," and they "uncovered gaps and defects in the throttle fail

ingle Bit Flip That Killed

Green Hills Simulator. "This confirmed tasks can die without the roup also independently checked worst-case stack depth. "We found s that NASA relied on."

The e ... the defects we found were linked to unintended testin Acceleration through vehicle testing, ...

https://www.eetimes.com/document.asp?doc_id=1319903&page_number=2

Car Safety – Autonomous Driving

Subscribe Now Sign In	THE WALL STREET JOURNAL.												
Search Q	WSJ. Magazine	Real Estate	Life & Arts	Opinion	Markets	Tech	Business	Economy	Politics	U.S.	World	Home	

TECH

Uber Self-Driving Car That Struck, Killed Pedestrian Wasn't Set to Stop in an Emergency

Pedestrian tested positive for methamphetamine and marijuana

National Transportation Safety Board investigators inspected the self-driving Uber vehicle after the fatal crash in Tempe, Ariz. PHOTO: NATIONAL TRANSPORTATION SAFETY BOARD/REUTERS

¥#BHEU / @BLACK HAT EVENTS

Car Safety – Rear Ended Into Fire Truck

CBS/AP / May 15, 2018, 3:25 AM

Tesla driver says she slammed into fire truck on Autopilot

A photo released by the South Jordan Police Department shows a traffic collision involving a Tesla Model S sedan with a Fire Department mechanic truck stopped at a red light in South Jordan, Utah, May 11, 2018. // SALT LAKE CITY -- The driver of a Tesla electric car had the vehicle's semiautonomous Autopilot mode engaged when she slammed into the back of a Utah fire truck over the weekend, in the latest crash involving a car with self-driving features. The 28-year-old driver of the car told police in suburban Salt Lake City that the system was switched on and that she had been looking at her phone before the Friday evening crash.

Tesla's Autopilot system uses radar, cameras with 360-degree visibility and sensors to detect nearby cars and objects. It's built so cars can automatically change lanes, steer, park and brake to help avoid collisions.

The auto company markets the system as the "future of driving" but warns drivers to remain alert while using Autopilot and not to rely on it to entirely avoid accidents. Police reiterated that warning Monday.

Car Perception While Driving

Imgsrc: http://www.crosslinksolutions.co.uk/service-listing/adas-calibration-equipment/

ATEVENTS

Behind Perception: End2End Object Detection

Object Detection:

a technology related to computer vision and image processing that deals with instances of semantic objects of certain class in digital images and videos.

https://software.intel.com/en-us/articles/a-closer-look-at-object-detection-recognition-and-tracking

State-of-the-Art Vision-based Object Detection

(5 + numClasses)

Pick Our Target – YOLOv3

$\Delta couracy on MS COCO$							
	backbone	AP	AP_{50}	AP ₇₅	AP_S	AP_M	AP_L
Two-stage methods							
Faster R-CNN+++ [3]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [6]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [4]	Inception-ResNet-v2 [19]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [18]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
One-stage methods							
YOLOv2 [13]	DarkNet-19 [13]	21.6	44.0	19.2	5.0	22.4	35.5
SSD513 [9, 2]	ResNet-101-SSD	31.2	50.4	33.3	10.2	34.5	49.8
DSSD513 [2]	ResNet-101-DSSD	33.2	53.3	35.2	13.0	35.4	51.1
RetinaNet [7]	ResNet-101-FPN	39.1	59.1	42.3	21.8	42.7	50.2
RetinaNet [7]	ResNeXt-101-FPN	40.8	61.1	44.1	24.1	44.2	51.2
YOLOv3 608 × 608	Darknet-53	33.0	57.9	34.4	18.3	35.4	41.9

YOLOv3: An Incremental Improvement. Joseph Redmon, Ali Farhadi https://arxiv.org/pdf/1804.02767.pdf

Pick Our Target – YOLOv3

Performance

YOLOv3: An Incremental Improvement. Joseph Redmon, Ali Farhadi https://arxiv.org/pdf/1804.02767.pdf

¥#BHEU / @BLACK HAT EVENTS

Current Status of Adversarial Example

Definition:

For an input image x, minimize $\mathcal{D}(x, x + \delta)$, s.t. $C(x + \delta) = t, x + \delta \in [0, 1]^n$

The most well-studied distance metric: *L_p Norm* Perturbations

- L_{∞} -- each pixel is allowed to be changed by up to a limit
- L₀ -- number of pixels altered that matter most
- L₂ -- many small changes to many pixels

Adversarial Examples & L_{∞} Norm Perturbations Impact to DNN

Source Image

Perturbations

Perturbed Images

FGSM L_{∞} based Perturbation Method

Intuition: each pixel is allowed to change by up to a limit

 $x' = x - \epsilon \cdot sign(\nabla Loss_{F,t}(x))$

Still in Digital Context

¥#BHEU / @BLACK HAT EVENTS

Adversarial Examples & L_{∞} Norm Perturbations Impact to DNN

Source Image

YOLOv3 Detection

FGSM L_{∞} based Perturbation Method

Intuition: each pixel is allowed to change by up to a limit

 $x' = x - \epsilon \cdot sign(\nabla Loss_{F,t}(x))$

Still in Digital Context

Adversarial Examples & L₀ Norm Perturbations Impact to DNN

Source Image

Perturbations

Perturbed Image

JSMA L_0 based Perturbation Method

Intuition: # of pixels altered that matter the most

Still in Digital Context

♥ #BHEU / @BLACK HAT EVENTS

Adversarial Examples & L₀ Norm Perturbations Impact to DNN

Source Image

Perturbations

YOLOv3 Detection

JSMA L_0 based Perturbation Method

Intuition: # of pixels altered that matter the most

Still in Digital Context

¥#BHEU / @BLACK HAT EVENTS

Adversarial Examples & L₂ Norm Perturbations Impact to DNN

Source Image

Perturbations

Perturbed Image

CW2 L₂ based Perturbation Method Intuition: many small changes to many pixels minimize $||x - x'||_2^2 + c \cdot f(x')$

Still in Digital Context

♥ #BHEU / @BLACK HAT EVENTS

Adversarial Examples & L₂ Norm Perturbations Impact to DNN

Source Image

Perturbations

Perturbed Image

CW2 L₂ based Perturbation Method Intuition: many small changes to many pixels minimize $||x - x'||_2^2 + c \cdot f(x')$

Still in Digital Context

♥ #BHEU / @BLACK HAT EVENTS

Digital Perturbations Realistic Enough?

FGSM

JSMA

Feasible

CW2

Explore Chances of Physical White Box Attack against YOLOv3

Identify Opportunities by Completely Understanding YOLOv3 Inference Mechanism

Deep Dive into YOLOv3

Output [10,647 Bounding Boxes]

Input [416x416x3] YOLO v3 Object Detection Model [147 Layers, 62M Parameters]

Image: http://media.nj.com/traffic_impact/photo/all-way-stop-sign-that-flashes-in-montclairjpg-30576ab330660eff.jpg

Training Dataset – MS COCO Dataset

- Common Objects in Context
- 80 Classes: person, [car, truck, bus], [bicycle, motorcycle], [stop sign, traffic light], etc.

YOLOv3 Prediction

13 x 13 Grid

¥#BHEU / @BLACK HAT EVENTS

Threat Model : Physical Image Patch Attack

Image Patches

Our Physical Attack Approach & Objectives

- Input Patch Construction
 - Differentiable to craft adversarial examples
- Attack Objectives
 - Make YOLOv3 detect fake object
 - Make object disappear in front of YOLOv3

Differentiable Input Patch Construction

Our Physical Attack Approach & Objectives

- Input Patch Construction
 - Differentiable to craft adversarial examples
- Attack Objectives
 - Object Fabrication: make YOLOv3 detect fake object
 - Object Vanishing: make object disappear in front of YOLOv3

Attack Objective 1 – Object Fabrication

A. Naive Fabrication

• Push more detections towards a certain object

- 1 tgt_cls_id = self.model.class_names.index("car")
- 2 loss_box_class_conf = -tf.reduce_mean(y_box_class_probs[:, tgt_cls_id])
- 3 loss_box_conf = -tf.reduce_mean(y_box_confidence)
- 4 loss_final = loss_box_class_conf + loss_box_conf

B. Precise Fabrication

Produce fake object at specific location

```
1 loss_boxes = 0
2 idx_pred_dict = self.yolo3_calc.calculate_box_preds(x1_y1_x2_y2)
3 for idx, pred in idx_pred_dict.items():
4 loss_boxes += tf.losses.mean_squared_error(pred, y_box_preds[idx])
```


Attack Objective 2 – Object Vanishing

Make a certain object class disappear in the whole image.

- 1 tgt_cls_id = self.model.class_names.index("car")
- 2 loss_box_class_conf = tf.reduce_mean(y_box_class_probs[:, tgt_cls_id])
- 3 loss_box_conf = tf.reduce_mean(y_box_confidence)
- 4 loss_final = loss_box_class_conf + loss_box_conf

Challenges to the Success of Physical Attack

Object appearance changes at various distances, angles

on various devices **Digital color palette** 32 x 21 Kyocera Taskalfa 3551 ci **Captured by iPhoneX** from a distance 5

Various Light conditions: e.g. glaring, dimming

3

Inaccurate Patch Location

Color Distortion

Tactics to the Challenges:

- [Controlled Perturbation Area] Image-patch based Attack
- [Color Distortion] Color Management with the Non-Printability Loss (NPS)
- [Inaccurate Patch] Random Transformation (RT) during optimization iterations
- [Various Distances & Angles] RT + Total Variation regularization instead of Expectation-Over-Transformation
- [Various Light Condition] Get a stable environment
- More ...

Color Management with Non-Printability Loss

Given $P \subset [0,1]^3$, a set of printable RGB triplets. $NPS(\hat{p}) = \prod_{p \in P} |\hat{p} - p|$ For the perturbated δ , $NPS(\delta) = \sum_{\hat{p} \in \delta} NPS(\hat{p})$. $NPS(\delta) \downarrow$, color reproducibility \uparrow

No NPS

Printed&Captured by iPhone

With NPS

Accessorize to a Crime: Real and Stealthy Attacks on State-Of-The-Art Face Recognition. Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael ReiterIn. In Proceedings of CCS 2016

¥#BHEU / @BLACK HAT EVENTS

Random Transformation During Optimization Iterations

ဂ black hat

Generated Perturbation Patch

Example: roduce Random Perspective Transformation

*Iteration*_i

• Random Transformation + Total Variance Regulation :

a different approach from EOT

Simulate the transformations using RT + TV for various distances & angles instead of drawing from a distribution

Put Everything Together: An Iterative Optimization

Conclusion & Takeaway

- With careful setup, physical attacks are achievable against DNN-based object detection methods in a white box setting
- Defense is hard, a good safety and security metric has to be explored
- We call out efforts for a robust, adversarial example resistant model that is required in safety critical system like autonomous driving system

Scan Me