
ClusterFuzz
Fuzzing at Google Scale

Abhishek Arya
Oliver Chang

Black Hat Europe 2019

About us

● Chrome Security team (Bugs--)

● Abhishek Arya (@infernosec)

○ Founding Chrome Security member

○ Founder of ClusterFuzz

● Oliver Chang (@halbecaf)

○ Lead developer of ClusterFuzz

○ Tech lead for OSS-Fuzz

2

Fuzzing

● Effective at finding bugs by exploring unexpected states

● Recent developments

○ Coverage guided fuzzing

■ AFL started “smart fuzzing” (Nov’13)

○ Making fuzzing more accessible

■ libFuzzer - in-process fuzzing (Jan’15)

■ OSS-Fuzz - free fuzzing for open source (Dec’16)

3

Fuzzing mythbusting

● Fuzzing is only for security researchers or security teams

● Fuzzing only finds security vulnerabilities

● We don’t need fuzzers if our project is well unit-tested

● Our project is secure if there are no open bugs

4

Scaling fuzzing

● How to fuzz effectively as a Defender?

○ Not just “more cores”

● Security teams can’t write all fuzzers for the entire project

○ Bugs create triage burden

● Should seamlessly fit in software development lifecycle

○ Input: Commit unit-test like fuzzer in source

○ Output: Bugs, Fuzzing Statistics and Code Coverage

5

Fuzzing lifecycle

Fuzzing

Build bucket
Cloud Storage

Upload builds
Find crash

De-duplicate
Minimize
Bisect

File bug

Test if fixed
(daily)

Close bug

Write fuzzers

Fix bugs

Assign bug

AutomatedManual

6

ClusterFuzz

● Open source - https://github.com/google/clusterfuzz

● Automates everything in the fuzzing lifecycle apart from

“fuzzer writing” and “bug fixing”

● Runs 5,000 fuzzers on 25,000 cores, can scale more

● Cross platform (Linux, macOS, Windows, Android)

● Powers OSS-Fuzz and Google’s fuzzing

7

Fuzzing lifecycle

1. Write fuzzers

2. Build fuzzers

3. Fuzz at scale

4. Triage crashes

5. Improving fuzzers

8

Step 1: Write fuzzers

9

Finding targets to fuzz
● Attack surface enumeration

● e.g. Chrome

○ Sandboxed renderer process

■ Direct untrusted input

○ Privileged processes:

■ Fuzz IPC boundaries

● Third party libraries

● Parsers, complicated processing of input data

● VRP reports
10

?

Black box fuzzing

● Generation or mutation based, with rules specific to a

particular format

○ e.g. A script that generates valid but randomized HTML files

● Slow (few execs/sec)

● Significant effort to write (>1k LoC)

Fuzzer Target
applicationCorpus

11

Black box fuzzing

● Chrome employs a number of custom black box fuzzers to do

“integration” style testing

○ HTML/DOM fuzzers

○ JavaScript fuzzers

○ IPC fuzzers

● Gestures

● Not guided by coverage

12

Grey box fuzzing

● Coverage-guided fuzzers

○ AFL

○ libFuzzer

● Better for testing more focused parts of codebase,

akin to unit tests

Fuzzing
engine

Target
function

Corpus
Coverage feedback

13

Grey box fuzzing

● Unit test-like stubs, called “fuzz targets” (as little as 5 LoC)

● Write once, run with multiple fuzzing engines (AFL, libFuzzer, etc)

extern "C" int LLVMFuzzerTestOneInput(const uint8_t *Data,

 size_t Size) {

 DoSomethingInterestingWithMyAPI(Data, Size);

 return 0;

}

14

Grey box fuzzing

● No need for mutation or generation logic

○ Fuzzing engine does mutation based on coverage feedback

○ Dictionaries/seed corpora can help a lot

● Written by developers to complement traditional unit testing

○ "Security is everyone’s job now, not just the security team’s."

— Werner Vogels, Amazon CTO

15

Black box vs grey box

● When to use grey box fuzzing?

○ Smaller, more targeted components

○ Encourage developers to write these

○ Preferred

● Black box fuzzing still necessary

○ Larger components

○ Non-deterministic targets

○ Integration testing

16

Structure aware fuzzing

● Bridges some gaps between grey box and black box fuzzing

● Structure (protos) + rules = libprotobuf-mutator

● Manual, cumbersome, but equally rewarding

● Reference: Jonathan Metzman talk, Black Hat USA 2019

17

Structure aware fuzzing example

message SQLQueries {

 repeated CreateTable queries = 1;

}

message CreateTable {

 optional TempModifier temp_table = 1;

 required Table table = 2;

 required ColumnDef col_def = 3;

 repeated ColumnDef extra_col_defs = 4;

 repeated TableConstraint table_constraints = 5;

 required bool without_rowid = 6;

}

// Further definitions of TempModifier, Table,

ColumnDef, and TableConstraint.

Structure

std::string CreateTableToString(const CreateTable& ct) {

 std::string ret("CREATE TABLE ");

 if (ct.has_temp_table()) {

 ret += TempModifierToString(ct.temp_table());

 ret += " ";

 }

 ret += TableToString(ct.table());

 ret += "(";

 ret += ColumnDefToString(ct.col_def());

....

DEFINE_BINARY_PROTO_FUZZER(const SQLQueries& sql_queries)

{

 std::string queries = SQLQueriesToString(sql_queries);

 sql_fuzzer::RunSQLQueries(queries);

}

Rules

18

Scaling fuzzer writing

● Key to scaling is not through cores, but through

educating developers

● Documentation and examples for writing grey

box fuzzers

● Provide guidance on efficient fuzzing

○ Seed corpora, dictionaries

● Make grey box fuzzing a first class citizen (like

unit tests)

19

Step 2: Build fuzzers

20

Building fuzzers

● Use compile-time instrumentation

○ AddressSanitizer, MemorySanitizer, etc…

○ Coverage instrumentation

○ 2x~ performance penalty

● Link with a fuzzing engine or driver

○ libFuzzer: clang -fsanitize=address,fuzzer …

21

Building fuzzers (cont)

● Make sure that release version is fuzzed

○ Assertions etc are often noisy when fuzzing

○ (Optional) Add debug version for assertion coverage

● Optimization level matters

○ Speed vs more edges

● Builds should be continuous

○ Ideally produced as artifacts of existing CI infrastructure

22

Step 3: Fuzz at scale

23

Fuzzing task management

DB

Preemptible VMs

Write new
crashes

Process crashes:
- Minimize
- Bisect
- etc

Non-preemptible VMs

Task queue

24

Picking targets

● Large projects can have thousands of fuzz targets

● Automatic fuzz target discovery

● Prioritize based on fuzz target quality

○ Productive target > Unproductive target >

Target with startup issues

● Prioritize based on sanitizer importance

○ ASan > MSan > Others (UBSan / CFI / TSAN)

25

Corpus management

Global
corpus

Other
corpora

Quarantine

Other
corpora

Fuzzing

Corpus
pruning

Distillation

Cross-pollination

Sync new files
(new coverage)

Download

26

Fuzzing strategies

● No perfect search heuristic

○ Corpus subset

○ Value profiling

○ Custom mutators

○ Limiting maximum length of inputs

● Corpus enhancement techniques

○ Radamsa mutator

○ Recurrent neural network mutator (ML-based)

27

Fuzzing strategy selection

● Multi-armed bandit (MAB)

○ Waste fewer resources on bad fuzzing strategies

○ Choose strategy combinations that improved coverage

○ Some runs use strategies with a default weight

■ Act as dynamic input to MAB model

○ Rest of runs use strategies based on MAB optimizations

28

Step 4: Triage crashes

29

De-duplication
● Based on stacktraces

○ (Crash type, Crash state, Security flag) tuple

● Pick top 3 “interesting” frames as the crash state

○ Include debug and release assertions

○ Exclude inline frames, common library and debug funcs

● Ignore stacktrace for OOMs and Timeouts

● Used for immediate de-duplication

30

De-duplication
[1:1:1030:FATAL:layout_inline.h(399)] Security DCHECK failed: !object || (object->IsLayoutInline()).

==1==ERROR: AddressSanitizer: ABRT on unknown address 0x053900000001 (pc 0x7f24f8426428 ...)

 #0 0x7f24f8426427 in gsignal /build/glibc-Cl5G7W/glibc-2.23/sysdeps/unix/sysv/linux/raise.c:54

 #1 0xb599eb3 in logging::LogMessage::~LogMessage() base/logging.cc:876:7

 #2 0x14171df5 in ToLayoutInline third_party/blink/renderer/core/layout/layout_inline.h:399:1

 #3 0x14171df5 in blink::LayoutBox::ContainingBlockLogicalWidthForPositioned(...)

 #4 0x1417b923 in blink::LayoutBox::ComputePositionedLogicalWidth(...)

!object || (object->IsLayoutInline()) in layout_inline.h

blink::LayoutBox::ContainingBlockLogicalWidthForPositioned

blink::LayoutBox::ComputePositionedLogicalWidth

31

Grouping
● Second stage of de-duplication (slower)

● Same crash can manifest with a slightly

different signature

● Use Levenshtein distance to group all

similar crashes

● Works well with real world crashes

32

Testcase minimization
● Makes testcases less flaky and easier to root cause

● Grey box fuzzers

○ Often provide facilities for fast minimization

● Black box fuzzers

○ Delta debugging based testcase minimization

○ Slower out-of-process minimization, but parallelized

33

Bisection
● A large percent of bug finds are “regressions” (OSS-Fuzz: ~40%)

● Early reverts are far easier than CVEs

● Bisection based on simple binary search

● Re-use same builds used for fuzzing

34

Good Bad?

Variant analysis
● A crash input can manifest with different signatures across

sanitizers, fuzzing engines, platforms, architectures

● Automate analysis across all possible configs

● Help with severity analysis

for (operand = 0, numBitsFound = 0, currentBit = 1 << ((opcodePTR->size * 8) - 1);

35

Automatic bug filing
● Automatic assignment of owner based on bisect results

○ If failed, assign to sub-product area bug queue

● Provide minimized reproducer, detailed crash report

● “Fuzz-blocker” label if hurting fuzzer performance

● File ONLY reproducible crashes

○ Exception: frequent unreproducible crashes

36

Automatic bug filing

37

38

Prioritization
● Don’t attempt to do deep analysis on bugs to figure out impact

○ Not scalable

● Assume all memory corruption are exploitable

● Rough automated prioritization based on

○ Type of crash (e.g. UaF vs null deref)

○ Where the crash occurs

■ E.g. if the crash occurs in a sandboxed process

39

Fix verification
● Verify that fix actually causes a crash to stop reproducing

● Perform a bisect to verify the commit which fixed the bug

○ Useful for comparing different bugs with same root cause

○ Sometimes, an unrelated patch can fix the issue

● Auto-close bugs once verified

● Human errors can be common

40

Vulnerability reward program
● External PoCs can be uploaded to the fuzzing infrastructure

● Get same benefits of automated triage

○ Deduplication, fix verification, etc

● Fuzzer reward program

○ Continuous bug reporting pipeline

○ High-quality reports

41

$$$

Step 5: Improving fuzzers

42

Fuzzer statistics

>1000 =100% =0%>0

43

Crash statistics

44

Code coverage

● Separate coverage instrumented build (Clang Source Code Cov)

● Run fuzz target with distilled corpus ->

Per-fuzz target / Aggregate project report

45

Other applications

46

Non-security bugs

● Correctness bugs via differential fuzzing, e.g. CryptoFuzz

■ Across different product implementations

■ Across different languages, compilers, optimizations

● E.g. optimized ASM vs pure C

● Stability bugs

○ Denial-of-service attacks can be serious in many scenarios

○ Fixing stability bugs leads to a more productive fuzzer

■ Esp. leaks, ooms, timeouts, null-ptr dereferences

47

Design and development decisions

● Should we add this third party library to our project?

○ Require fuzzing or integration in OSS-Fuzz as prerequisite

○ How well are those endpoints fuzz tested? Coverage?

● Feedback to prioritize security mitigations

○ Sandboxing

○ Allocator hardening

○ etc

48

Results

49

Chrome, OSS and Google

● Overall 40,000 bugs found

● Vulnerabilities found: 5000+ in Chrome, 3500+ in OSS-Fuzz

● Vulnerabilities fixed: Chrome (98.6%), OSS (91.4%)

● Methodology works for both large projects (Chrome, Google)

and smaller projects in OSS-Fuzz (250+)

● Developer evangelism - tech talks, contests, etc

50

Results outside of Google

51

Future plans

52

Future plans

● Fuzzing as part of Continuous Integration (CI) to catch

regressions before check-in

● Alternate solution to artificial fuzzer benchmarks (e.g. LAVA-M)

● Continue to improve fuzzing efficiency - e.g. more focused

mutations using DataFlowSanitizer

● Support for more languages (Java, Python, etc)

53

Conclusion

● Fuzzing should be an integral part of developer workflows

○ Not just for security researchers

● Different fuzzing engines and strategies can be combined

effectively at scale

● Large projects with thousands of developers can be fuzzed

effectively with a small team

○ Smaller projects can use the same methodology

54

