

Assessing IAM Exposure in GCP
Colin Estep

cestep@netskope.com
Netskope Threat Labs
November 30, 2020

mailto:cestep@netskope.com

Contents
Contents 2

Introduction 3

Identity and Access Management 3
Least Privilege 4
IAM Exposure Risk 4

IAM in GCP 5
Types of Roles 6
Service Accounts and Impersonation 7

IAM Exposure in GCP 7
Service Account Users 8
Risks Associated with Service Account Impersonation 8

The Solution 10
Direct Permissions 10

Basic roles 10
Set IAM Policy 11
Service Account Impersonation 11

Indirect Permissions 11
Creating the Graph and Generating Results 11

Determining the Scope of Service Account Access 14
Determining Indirect Permissions 14

Report for john@siftsec.com 14
Findings 15
Permission Mining Tool 16

Conclusion 16

Appendix A 17
Least Privilege Monitoring in GCP 17
GCP Access Scopes 17

2

Introduction
We all see the media regularly publish stories about accidental data exposure from storage
buckets hosted by public cloud providers, which usually exposes sensitive files due to some
misconfiguration of the bucket or file access controls. Another concern that has not received the
same level of attention is the misconfiguration of Identity and Access Management (IAM)
controls, which increases the risk of activity (either malicious or accidental) that could damage
the environment. CodeSpaces went completely out of business in 2014 after an attacker took
advantage of an IAM misconfiguration to delete all of their AWS infrastructure. While best
practices have evolved since then to help prevent a total loss, there are still holes in the IAM
auditing capabilities that we must address.

In this paper, we will discuss what the risk is and why it is significant. We will focus on Google
Cloud Platform (GCP) in particular, although the risk applies to other cloud providers as well.
We will illustrate the problem and outline a successful approach to continuously monitor this
risk. The approach discussed in this document centers around the ability to answer this
question: What is the full scope of permissions granted to all of the identities in my cloud
environment?

Answering this question means that we will have a full view of the privilege escalation and
lateral movement potential in our cloud environments. This view of the environment will not only
tell you what permissions your identities have directly applied to them, but also what
permissions they can access indirectly. The indirect permissions are obtained through
impersonation or by using credentials associated with cloud resources. The most egregious
example is that of so-called ‘shadow admins’, users who are indirectly granted who have full
admin privileges. The full view of potential permissions will reveal who is able to obtain an
unintended level of privilege and give you the chance to refine the permissions before there’s an
incident.

Identity and Access Management
In public cloud providers, administrators must configure authorization for the identities that will
interact with cloud services. For example, if you have users that need to launch and configure
virtual machines, you will grant those permissions to those users via Identity and Access
Management (IAM) policies. The IAM service will verify that any action taken by an identity has
been authorized by a policy before it’s allowed to take effect. In a real environment, determining
which permissions are appropriate can become complex. It may require multiple attempts to
arrive at a configuration that will allow the identity to accomplish its tasks without giving the
identity more access than required.

3

Least Privilege
One important concept that is often discussed when it comes to cloud access is the principle of
least privilege. This principle states that identities should only be given the permissions required
to do their jobs, and nothing more. If identities are given more than what they require, this could
pose undue risk to the environment, either through accidental changes, or if their credentials
were ever compromised. The concern here is that someone who doesn’t need administrator
level privileges could maliciously (or accidentally) expose data, revoke other people’s access, or
cause an outage.

While this principle is often mentioned in documentation and discussed by cloud administrators,
it is difficult to determine how to implement it in a real environment. Since the responsibilities are
assigned differently in each organization, this means that each cloud environment is different.
Cloud providers can’t really provide a one-size fits all set of templates for every IAM policy.

Another factor that leads to difficulty in managing IAM permissions is the dynamic nature of
cloud environments. As teams grow and change, permissions may need to change, and the
changes are prone to error. It is often easier to assign broad permissions with the intent to refine
them later to avoid blocking other teams. In addition, as new services are released, and
resources are created or destroyed, the scope of any given identity’s capabilities may change.
These changes mean that administrators must monitor the permissions directly assigned to
identities and modify them as needed.

Cloud providers are releasing services to help assess least privilege, such as IAM
Recommender in GCP, which are meant to continuously provide feedback on what permissions
are not being used. The services look at the last 30+ days to determine if the user is using all
the privileges granted, and will show administrators which permissions are not being used.
While this is useful, it will still allow the permissions to be assigned to the identity for as many as
90 days before even suggesting a change. In addition, these services are not really doing
anything to help the assignment of permissions going forward. If someone has taken advantage
of their overly liberal permissions by using them, then no change will be suggested to the
administrator.

IAM Exposure Risk
As discussed in the previous section, limiting the permissions directly assigned to identities to a
level of least privilege can be challenging. What is even more challenging is to assess the
permissions that are indirectly accessible to identities.

By design, users can escalate their privileges in cloud environments. Much like the ‘sudo’ utility
in Unix-based systems, this is a good practice for being able to conduct sensitive operations
before returning to a less privileged state. However, in cloud environments there are multiple
identities that could be impersonated by a user, which may or may not have privileges intended

4

for that user. In cloud environments, it can be a complex task to determine all of the identities a
user is able to impersonate and even harder to determine the totality of permissions available to
the user as a result.

Cloud providers also give us the ability to assign credentials to resources (such as virtual
machines or applications) to allow them to interact with cloud services. This means that users
may have access to the resources and can make use of the resource’s credentials to escalate
their privileges in a way we, the administrators, did not intend. At the time of writing, the cloud
providers provide no services that allow administrators to easily discover or assess indirect
permissions. The open-source tools generally focus on permissions directly applied to identities,
so we are missing the full view of indirect permissions.

IAM in GCP
Having covered some general IAM concepts, this section will introduce IAM in GCP. It is
necessary to understand the concepts in this section in order to understand the exposure risk in
GCP, as well as our solution.

There are 4 different types of identities in GCP, which are called members:

1. User
2. Group
3. Domain
4. Service Account

They are all assigned permissions in GCP the same way, by assigning roles to them at various
levels of the GCP organization structure. A role is just a collection of permitted API calls. When
roles are assigned to an identity, it’s called an IAM binding. As you can see in the diagram
below , bindings can be applied at every point of the hierarchy, and the permissions are 1

inherited down:

1 Sourced from Google’s documentation: ​https://cloud.google.com/iam/docs/overview#cloud-iam-policy

5

https://cloud.google.com/iam/docs/overview#cloud-iam-policy

Bindings in GCP only grant permissions. There is no ability to explicitly deny access to
something in an IAM policy, so once permission is granted at a high level, it cannot be negated.
This means that administrators must understand this model and be very deliberate about which
levels are used for assigning permissions. There are other types of controls that may mitigate
some of these permissions, such as organization policies, but we will not be covering those
since this document is focused on IAM.

Types of Roles
GCP contains the following types of roles:

● Basic
● Predefined
● Custom

Basic roles are provided by Google, but are not recommended for use , as they are fairly broad. 2

Basic roles can have permissions to conduct thousands of different API calls, some of which
have administrative capabilities. In particular, the “Owner” and “Editor” basic roles should be
used carefully.

2 Sourced from Google’s documentation: ​https://cloud.google.com/iam/docs/understanding-roles

6

https://cloud.google.com/iam/docs/understanding-roles

Predefined roles are provided and managed by Google, and are meant to more specifically
line-up with job roles. They focus on a particular service. For example, there is a role for the
“Compute Instance Admin”.

If an administrator does not find a role that contains the permissions they would like to apply to
their members, then they can create a custom role. These are generated and maintained by the
administrator of the GCP environment.

Service Accounts and Impersonation
A service account in GCP is an identity that is provided to allow applications to authenticate and
make calls to the GCP APIs. It does not use passwords, but uses RSA keys to authenticate. If
you are familiar with IAM roles in AWS, this is the same concept for GCP. When you assign a
service account to a resource, such as a virtual machine, Google generates and rotates the
RSA keys automatically. This increases your security hygiene by making it easy to avoid storing
static credentials in your code. However, GCP does allow you to manually create keys for a
service account and use them to authenticate as the service account.

One important distinction to keep in mind for GCP is that a service account must be created in a
project. However, a service account could be given bindings at a level higher than a project. The
permissions could be granted at the Folder or even Organization levels. These are dangerous,
because the permissions at higher levels could give the service account access to sensitive
security controls that exist at the Organization level, and all the projects under the structure will
inherit the permissions.

Resources, applications, users, and even service accounts can all impersonate a service
account. Impersonating a service account means that you are able to authenticate as the
service account, and now have whatever permissions were granted to it. API audit logs will
show any actions as being performed by the service account.

IAM Exposure in GCP
It is important to have a well-architected design for your GCP environment up front with IAM
inheritance in mind, so that you can grant the correct permissions to your members at the lowest
possible level of the organizational structure. For example, Google recommends using Folders
as isolation boundaries within your Organization . In addition, administrators should strive to 3

maintain least privilege by granting roles that contain the least amount of permissions required
to complete the required tasks. However, a problem that still remains is how to effectively
monitor the indirect permissions that each member can attain through service account

3 Sourced from Google documentation:
https://cloud.google.com/resource-manager/docs/cloud-platform-resource-hierarchy#folders

7

https://cloud.google.com/resource-manager/docs/cloud-platform-resource-hierarchy#folders

impersonation. This is a bigger challenge for most enterprises, because it’s not only the least
understood risk, but also the most difficult to discover.

Service Account Users
What are the permissions required to be able to use or impersonate a service account?
According to Google, these are the main roles to be concerned with : 4

● Service Account User - Can assign a service account to a resource, such as a virtual
machine.

● Service Account Token Creator - Can impersonate a service account directly, including
the ability to create Oauth2 tokens, signing blobs, or signing JSON Web Tokens (JWT)
on its behalf.

● Service Account Key Admin - Can create and rotate RSA keys for a service account.
● Workload Identity User - Can impersonate service accounts used by Google Kubernetes

Engine (GKE) workloads.

I would also add these:

● Editor - Includes everything from the Service Account User role
● Owner - Includes everything from the Editor role

The CIS benchmarks recommend assigning the Service Account User role to a user for a
specific service account rather than assigning the role to a user at project level . This means 5

that the user can only impersonate a specific service account. However, if these permissions
are granted at the project level or higher, then the user can enumerate and impersonate all
service accounts under that structure. This would increase the likelihood of a member finding a
way to escalate privileges, and it is a scenario that is missed by the IAM recommender service . 6

For example, if a member is granted service account token creator permissions at the project
level, and that member only uses it for a single service account, the recommendation service
won’t alert you to this over-provisioning of permissions. This happens because the API calls are
being used, and the binding is just applied at a wider scope than what’s necessary.

Risks Associated with Service Account Impersonation
An administrator may assign bindings to a member intending to keep that member’s
permissions contained within a small part of the environment. However, a service account may
have bindings elsewhere, which could allow the member to gain access outside of the intended
area.

For example, I have a group of users that should have full access to the development
resources, but not to our production resources. So, I assign the group a basic role of “Editor” at

4 Sourced from Google’s documentation:
https://cloud.google.com/iam/docs/understanding-roles#service-accounts-roles
5 Reference: ​CIS Benchmark for GCP
6 More information on IAM recommender available in the ​Appendix​.

8

https://cloud.google.com/iam/docs/understanding-roles#service-accounts-roles
https://www.cisecurity.org/benchmark/google_cloud_computing_platform/

the level of “Dev GCP Project” in the diagram below . I expect that this group can only access 7

resources within the project. However, that project contains a service account with bindings in
the “Production GCP Project”. Therefore, any user in the group can effectively gain some level
of access to the production project by impersonating the service account.

Another risk associated with impersonation includes privilege escalation. This means that a
member was given limited permissions, but may be able to gain additional permissions by
impersonating a service account that had more capabilities.

The final risk is actually a combination of the two previous ones, where a service account may
have more privileges, as well as bindings that are in another part of the environment (or may

7 Sourced from Google documentation:
https://cloud.google.com/resource-manager/docs/cloud-platform-resource-hierarchy#inheritance

9

https://cloud.google.com/resource-manager/docs/cloud-platform-resource-hierarchy#inheritance

even be assigned at the Organization level). This means that a member with limited, granular
access may be able to become a full administrator in the environment.

The Solution
While GCP and their recommended open-source tools address some IAM misconfiguration use
cases, they do not provide full visibility into the potential for privilege escalation or lateral
movement. The solution we designed provides the missing visibility to identify indirect
permissions.

The solution uses API calls only and is intended to be repeatable and automated, so it can
easily monitor the risk of the environment over time. Using the responses from the API calls, our
solution maps-out the hierarchy of the overall environment. It also compiles an inventory of the
service accounts and the IAM policies. The result is a compilation of all of the permissions
assigned and where the bindings are located in the hierarchy.

Once all of the data is retrieved, we can perform detection in two main areas:

1. Direct Permissions: Identify members with sensitive permissions applied directly to them,
which are described in the section above. This is a prerequisite for finding the indirect
permissions and is straightforward. GCP and open source tools provide detections at
this level as well.

2. Indirect Permissions: For members that have service account impersonation capabilities,
compile the aggregate of the service accounts’ permissions. This is the more difficult
step that requires the right approach to do at scale. This phase is missing from GCP and
open source tools.

What is deemed to be sensitive permissions should be tuned for each environment. However,
there are some permissions we built into our solution that should be tracked in every
environment.

Direct Permissions
Below are the types of permissions we deem sensitive to any environment, which our solution
will look for in the permissions directly assigned to the GCP members.

Basic roles
Owner and Editor roles are able to change resources, manipulate service accounts, and more.
Having either of these roles assigned above the project level is especially concerning, because
they both have such broad capabilities.

An Editor can create and modify resources, enumerate all of the service accounts, and assign
any of the service accounts to resources. An Owner can do everything that the Editor can do, as

10

well as set IAM policies (change permissions). This means that a member could change the
permissions of a service account before assigning it to a resource, or grant another member
access to the environment.

Set IAM Policy
A role that allows a member to set IAM policy is concerning, as this means that the member can
add, change, or delete permissions for members in the environment. If this is assigned above
the resource level, then the member can apply broader changes across your environment,
which increases risk.

Service Account Impersonation
Service Account users can assign service accounts to resources, and then use the resources to
take advantage of the service account’s permissions. However, there are also roles that allow a
member to directly impersonate a service account without using a resource. Both of these use
cases should be carefully tracked to ensure that the full scope of risk is monitored. The identities
that match this use case will be further evaluated, which is described in the Extended
Permissions section.

Indirect Permissions
Once we have a full inventory of bindings and service accounts that exist, the extended
permissions detection can evaluate the overall permissions the members have through
impersonation. The solution examines the service account user / admin binding to determine at
what level of the organization the binding exists. Once this is found, it needs to enumerate
which service accounts exist at or below that level to determine what service accounts the
member can access. Once the solution has a complete list of service accounts that are in
scope, it uses the bindings for those service accounts to determine the effective permissions of
each member.

To do this efficiently, the solution constructs a graph that contains only the members that have
the ability to impersonate service accounts, as well as the service accounts, projects, and
project ancestors. The member bindings are represented as edges between the members and
the organization / folder / project / resource.
The solution uses the graph to traverse organizational relationships and discover which service
accounts the members can access. Once we have a list of service accounts for the member, we
can compute the total permissions available to the member.

Creating the Graph and Generating Results
The graph creation happens in two main phases:

1. Add nodes and edges for organizational structure elements, which reflects the
environment’s hierarchy:

a. Organization

11

b. Folder
c. Project
d. Service Accounts

2. Add nodes and edges to reflect the members and their IAM bindings at the pertinent
levels of the environment’s hierarchy.

The following image, taken from the GCP console, shows the structure in our GCP environment
for the “test-audit” project:

A graph constructed by our solution for the same environment is shown in the image below.

12

Node Legend:

● Blue node - The GCP Organization
● Yellow nodes - GCP Folders (contains other folders or projects)
● Pink nodes - GCP Projects
● Green nodes - GCP members that have permission to impersonate a service account
● Red nodes - Service Accounts (as resources)

Edge Legend:
● “child_of” - Hierarchical relationship that results in IAM inheritance
● “sa_child_of” - Connects service accounts to the projects they are within
● “iam_binding” - Connects members with the hierarchical location of their bindings (only

for bindings related to service account impersonation).

13

Determining the Scope of Service Account Access
Once the graph has been populated as shown above, we can easily traverse the graph to find
all of the service accounts that each member can impersonate. After it has gathered all of the
service accounts in scope, it will aggregate the full permissions set by examining all permissions
assigned to those service accounts.

In this example, you can see the green node with the name “colin” has a binding at the
organization level. This means that the “colin” member will have access to all the service
accounts in this organization. The service accounts in this example are “cloudhunter” and
“limited-access”. The “colin” member will also have access to any new service accounts created,
regardless of the project they are created within. The “rahul” member in this example has a
binding at the “gcp-dev” project level. Therefore, “rahul” only has access to impersonate the
“cloudhunter” service account, he cannot impersonate “limited-access”. However, if other
service accounts are created in the “gcp-dev” project, then he will have access to those.

Since “colin” can act as any service account, he may be able to escalate his privileges this way,
and becomes a risk to the environment. We can quickly see that the binding at the organization
level may be an unacceptable risk for our environment. The administrator may be able to
substitute this for a binding further down the hierarchy, which will give “colin” more granular
permissions.

Determining Indirect Permissions
After the graph is generated, the solution also computes the direct and indirect permissions for
all members. The report produced shows the overall permissions for each member. The
example below is completely separate from the example used in the previous section.

Report for john@siftsec.com

Direct Bindings

14

Binding Level Name of Entity Roles Granted

organization 'siftsec.com'

'roles/resourcemanager.organizationVie
wer', 'roles/viewer'

folder - -

project - -

service_account

'projects/siftsec-gcp-dev/se
rviceAccounts/colin-permis
sions-testing@siftsec-gcp-d
ev.iam.gserviceaccount.co
m'

'roles/iam.serviceAccountTokenCreator'
, 'roles/iam.serviceAccountUser'

Indirect Bindings

In the example above, the direct bindings only give john@siftsec.com the ability to do the
following:

● Browse all resources in the organization
● Administer the ‘colin-instance-1’ virtual machine
● Impersonate the ‘colin-permissions-testing@siftsec-gcp-dev.iam.gserviceaccount.com'

service account
Based on the service account’s bindings, john@siftsec.com has the potential to do a lot more,
including:

● View all data stored in our storage buckets for the entire organization.
● Edit pub/sub topics in the entire organization
● Owner permissions in the 'siftsec-gcp-dev' project, which are basically administrator

permissions, so he could modify permissions for other users, and create, modify, or
delete any resources in that project

Findings
The solution described above has been applied to multiple environments, and enabled us to
answer the following questions:

● What are the overall permissions of every member in the environment?
● Which members can impersonate service accounts?
● Which members can escape from a particular project, and make changes in another

project?
● Which members are able to obtain administrator privileges in an unexpected way?

Our findings allowed us to more thoroughly apply the principle of least privilege by reducing the
aggregate permissions that each member could obtain.

15

compute_instance 'colin-instance-1' 'roles/compute.admin'

Binding Level Name of Entity Roles Granted

organization 'siftsec.com'

'roles/pubsub.editor',
'roles/iam.securityReviewer',
'roles/storage.objectViewer',
'roles/datastore.viewer', 'roles/browser'

folder 'siftsec-dev-folder' 'roles/pubsub.admin'

project 'colin-child-project' 'roles/compute.admin'

project 'siftsec-gcp-dev' 'roles/owner'

service_account - -

compute_instance - -

Permission Mining Tool
Netskope’s IaaS Permission Mining Tool for GCP is freely available on ​Github and has been
released to the open source community. Anyone with a GCP environment can download and
use the tool, which makes API calls to retrieve information about members, IAM bindings, and
the hierarchy of the environment. It uses the information obtained from GCP to construct a
graph and discover which members have the ability to escalate their privileges via service
account impersonation. The tool generates a report in JSON that contains direct and indirect
bindings for members in the environment. GCP Administrators can use the JSON to easily
discover sensitive permissions that should be removed.

Conclusion
In this document, we briefly reviewed Identity and Access Management in GCP. There is no
straightforward way to see the full permissions (both direct and indirect) of every identity that
exists in GCP. However, every enterprise using GCP should be aware of the potential for
privilege escalation or lateral movement in their own environment. Understanding the
permissions available to each identity allows the administrator to eliminate unwanted risk and
maintain least privilege for their users.

The IaaS Permission Mining Tool for GCP was implemented by the author and used on various
GCP environments to audit the permissions of all members in GCP. Our tool allows
administrators to continually scan the environment for sensitive permissions and provides the
information necessary to consistently manage the level of risk around their IAM configuration.

16

https://github.com/netskopeoss/iaas_permission_mining

Appendix A

Least Privilege Monitoring in GCP
GCP released a service called Policy Intelligence, which includes IAM recommendations. The
IAM recommendation engine is enabled in each project. It examines the previous 90 days of
API calls and highlights which policies should be changed, based on the fact that permissions
were not used in that period. Users can view the recommendations in the console, and can
quickly apply the recommendations to reduce the permissions assigned to each member.

GCP Access Scopes
Access scopes are a legacy control for resources, such as virtual machines, that have been
assigned a service account. This is a control that dictates which APIs the service account is
able to access. So, if the service account is granted access to the Storage API in the IAM policy,
the account still cannot access the Storage API if the access scopes do not include it. Here is
an example the access scope options available in the GCP console:

If a virtual machine has “Allow full access to all Cloud APIs” selected, then the service account
can use all of its permitted API calls. This is configured per virtual machine, so your environment
could have varied levels of access for its virtual machines.

Since Google recommends restricting access through IAM policies and opening access scopes
to full access , the solution presented in this document does not consider scopes as a mitigating 8

control.

8 Sourced from Google documentation:
https://cloud.google.com/compute/docs/access/service-accounts#associating_a_service_account_to_an_i
nstance

17

https://cloud.google.com/compute/docs/access/service-accounts#associating_a_service_account_to_an_instance
https://cloud.google.com/compute/docs/access/service-accounts#associating_a_service_account_to_an_instance

