d=spinstinct

BEFORE YOU KNOW IT

Bypassing NGAV for Fun and Profit

Ishai Rosenberg and Shai Meir
November 30, 2020

Deep Instinct Ltd
{ishair, shaim } @deepinstinct.com

Abstract

In this paper, we demonstrate the first methodological approach to
"reverse engineer" a NGAV model and features without reversing the
product, and generate a PE malware that bypasses next generation anti-
virus (NGAV) products.

Previous such attacks against such machine learning based malware
classifiers only add new features and do not modify existing features to
avoid harming the modified malware executable’s functionality, making
such executables easier to detect.

In contrast, we split the adversarial example generation task into two
parts: First, we find the importance of all features for a specific sam-
ple using explainability algorithms. Then, we conduct a feature-specific
modification (e.g., checksums, timestamp, TAT, etc.), feature-by-feature.

In order to apply our attack to NGAV with unknown classifier archi-
tecture, we leverage the concept of transferability, i.e., different classifiers
using different features subsets and trained on different datasets still have
similar subset of important features. Using this concept, we attack a pub-
licly available classifier and generate malware PE files that evade not only
that classifier, but also commercial NGAV.

We also demonstrate additional techniques, such as the sliding win-
dow approach to understand the most important features in the attacked
classifier.

1 Introduction

In this paper, we demonstrate the ability of an adversary to bypass commer-
cial next-generation anti virus (NGAV) products using explainability of multi-
feature types malware classifiers algorithms to produce the most important fea-
tures for a known, white-box model, instead of reversing the attacked NGAV.
Then, due to the concept of transferable explanations, the same important
features are relevant to the target NGAV, whom used features are unknown.

Therefore, by modifying existing malware’s important features by the white-
box model’s explanation to fool it, not only the white-box model would be
fooled, but also the target NGAV.

In the cyber security domain there is a unique challenge which is not ad-
dressed by previous research: Malware classifiers (which gets an executable file
as input and predict the labels of benign or malicious for each file) often use
more than a single feature type (see Section 1.1.2). Thus, adversaries who want
to subvert those systems should consider modifying more than a single feature
type. Some feature types are easier to modify without harming the executable
functionality than others (see Section 1.1.2). In addition, even the same feature
type might be modified differently depending on the sample format. For in-
stance, modifying a printable string inside a PE file might be more challenging
than modifying a word within the content of an email, although the feature type
is the same. This means that we should not only take into account the impact of
a feature on the prediction, but also the difficulty of modifying this feature type
[1]. In addition, some features are dependent on other features, meaning that
modifying one feature requires modifying other features for the executable to
continue functioning. For instance, modifying the AddressOfEntryPoint requires
modifying the VirtualAddress of the code section, where AddressOfEntryPoint
exists.

The end result is that when adversaries want to modify a PE file without
harming its functionality, the feature modification must be done manually. In
this way, only features that are easy to modify, not dependent on other features
who are challenging to modify (which is feature specific) would be modified.
Thus, we would want to modify the smallest numbers of features, because each
feature’s modification requires a manual effort. Moreover, each modified feature
can create a feature distribution anomaly that could be detected by anomaly
detection algorithms (e.g., [2]). Therefore, the adversary aims to modify as little
features as possible, even if he/she could modify all features automatically. In
order to achieve this goal, the adversary would like to get the list of most
impactful features for a specific sample (the malware which tries to bypass
the malware classifier) and manually select the features that are the easiest to
modify. This is the approach we take in this paper, as opposed to previous
adversarial attacks, that try to do both in the same algorithm and thus try
to modify all features in the same manner, resulting in generating malware
executables that don’t run.

In order to select the most indicative features for a sample, the adversary
can use explainability algorithms. However, the adversary is not familiar with
the architecture of the target malware classifier. In order to resolve this issue,
adversaries can train their own malware classifier and use its features instead.
Those features are likely to have a high impact even in the target classifier, due
to the concept of transferability of explainability.

1.1 The Challenges in End-To-End Adversarial Examples
of Malware Executables

Most published adversarial attacks, including those that were published at aca-
demic cyber security conferences have focused on the computer vision domain,
e.g., generating a cat image that would be classified as a dog by the classifier.
However, the cyber security domain — and particularly the malware detection
task - seems a much more relevant domain for adversarial attacks, because un-
like the computer vision domain, the cyber security domain is an “inherently
adversarial” domain: there are actual adversaries with clear targeted goals.
Examples include ransomware developers who depend on the ability of their
ransomware to evade anti-malware products that would prevent both its execu-
tion and the developers from collecting the ransom money, and other types of
malware that need to steal user information (e.g., keyloggers), spread across the
network (worms) or perform any other malicious functionality while remaining
undetected.

Given the obvious relevance of the cyber security domain to adversarial
attacks, why do most adversarial learning researchers focus on computer vision?
Besides the fact that image recognition is a popular machine learning research
topic, another major reason is that performing an end-to-end adversarial attack
in the cyber security domain is more difficult than performing such an attack
in the computer vision domain. The differences between adversarial attacks
performed in those two domains and the challenges that arise in the cyber
security domain are discussed in the subsections that follow.

1.1.1 Executable (Malicious) Functionality

Any adversarial executable must preserve its malicious functionality after the
sample’s modification. This might be the main difference between the image
classification and malware detection domains, and pose the greatest challenge.
In the image recognition domain, the adversary can change every pixel’s color (to
a different valid color) without creating an “invalid picture” as part of the attack.
However, in the cyber security domain, modifying an API call or arbitrary
executable’s content byte value might cause the modified executable to perform
a different functionality (e.g., modifying a WriteFile() call to ReadFile()) or
even crash (if you change an arbitrary byte in an opcode to an invalid opcode
that would cause an exception).

In order to address this challenge, adversaries in the cyber security domain
must implement their own methods (which are usually feature-specific) to mod-
ify features in a way that will not break the functionality of the executable. For
instance, the adversarial attack used in Rosenberg et al. [3] modifies API call
traces in a functionality preserving manner.

1.1.2 There are Many Feature Types

In the cyber security domain, classifiers usually use more than a single feature
type as input (e.g., malware detection using both PE header metadata and byte

entropy in Saxe et al. [4]). Some feature types are easier to modify without
harming the executable functionality than others. For instance, in the adversar-
ial attack used in Rosenberg et al. [3], appending printable strings to the end of
file is much easier than adding APT calls using a dedicated framework built for
this purpose. In contrast, in an image adversarial attack, modifying each pixel
has the same level of difficulty.

1.1.3 Executables are More Complex than Images

An image used as input to an image classifier (usually a convolutional neural
network, CNN) is represented as a fixed size matrix of pixel colors. If the actual
image has different dimensions than the input matrix, the picture will usually
be resized, clipped, or padded to fit the dimension limits.

An executable, on the other hand, has a variable length: executables can
range in size from several KB to several GB. It’s also unreasonable to expect
a clipped executable to keep its original classification. Let’s assume we have a
100MB benign executable into which we inject a shellcode at a function near
the end-of-file. If the shellcode is clipped in order to fit the malware classifier’s
dimensions, there is no reason that the file would be classified as malicious,
because its benign variant would be clipped to the exact same form.

In addition, the code execution path of an executable may depend on the
input, and thus, the adversarial perturbation should support any possible input
that the malware may encounter when executed in the target machine.

While this is a challenge for malware classifier implementation, it also affects
adversarial attacks against malware classifiers. Attacks in which you have a fixed
input dimension, (e.g., a 28%28 matrix for MNIST images), are much easier to
implement than attacks in which you need to consider the variable file size.

Original (label: "garter snake") Integrated Gradients

€-LRP

Figure 1: Explainability Algorithms in the Image Recognition Domain (Taken
from [5])

1.2 Paper’s Contribution

The main contributions of this paper are as follows:

1. This is the first attack that eliviates the need to reverse the attacked
NGAV (as done in [6]) or to be familiar with its features ([7]). Our attack
only requires a non-empty subset of modifiable features common to the
attacked NGAV and the surrogate model.

2. This is the first paper to discuss the usage of explainability by adversaries,
as well as our novel technique, called sliding window attack, in order to
both choose specific features to perturb and maintain the minimal pertur-
bation (that is, number of perturbed features).

2 High-Level Attack Overview

2.1 Threat Model

The adversary’s goal is to modify a malware executable for it to bypass a multi-
feature types malware classifier without harming the executable’s functionality
(Section 1.1.1), that is, generating an end-to-end malware adversarial example.
In this paper we limit ourselves to static features, that is, features that can be
extracted from the file without running it. Static features can be raw features,
e.g., the malware file’s binary content. They can also be properties (e.g., the
PE file’s section names)parseed from the PE, termed PE structural features.
Raw-byte features require a very long training process and current state-of-the-
art GPU hardware usually limits the file size which can be classified using such
classifier (e.g. [8]), making this a non realistic use case. Using dynamic features
(e.g., executed API calls in Rosenberg et al. [3]) is also less common use case
in real-life scenarios, since it requires a sandbox environment in order to avoid
running a malware on the computer we want to protect, which might harm
it. We therefore decided to focus on PE structural features, which are used by
real-world classifiers. We assume the adversary has no knowledge or access to
the attacked malware classifier, e.g., the classifier type, architecture or training
set - only to the confidence score of the attacked classifier (a gray-box attack).
We do assume the adversary can figure out some of the features used by the
attacked malware classifier, but not all of them. This is a common case in
cyber security, especially with static features, where many classifiers are using
similar PE structural features, (e.g., [4, 7, 9]) but the exact subset of features
is unknown.

2.2 Attack Overview

In order to evade detection by the malware classifier, the adversary is using the
method depicted in Figure 2.

Existing Features _) Dataset Analysis Select Modifiable Modify a Subset
Explainability (Added Features) _> Features xd of these Features

Figure 2: The Proposed Attack Flow

This method is detailed in Algorithm 1.

In this method, we use the following definition: An explainable machine
learning algorithm A(m,v) takes as arguments a machine learning model m and
a sample’s vector v and returns a vector of length(v) values which represent the
weights of impact of the features in v, such that a higher weight indicates a more
impactful feature for classifying the vector v by the model m. An example of the
usage of of explainability can be seen in Figure 1. We see that three different
explainable algorithms (Integrated Gradients [10], DeepLIFT [11] and Layer-

Algorithm 1 End-to-End PE Structural Features-Based Adversarial Example
Generation

1. Use explainable machine learning algorithm (Section 3.2.1) to get a list of
features importance for the classification of the malware on the surrogate
model (see Section 2.3) and fine-tune this list using the sliding window
attack (Section 3.2.2).

2. Perform an analysis on a data set and features proven to accurately rep-
resent the attacked malware classifier (Section 3.3) by the previous step.

3. From those features, choose those easier to modify (Section 3.4).

4. Modify each “easily modifiable” feature using the list of predefined feature
values (Section 3.4), selecting the value that result in the lowest confidence
score. Repeat bullets 2 and 3 until a benign classification is achieved by
the attacked malware classifier.

wise Relevance Propagation (LRP) [12]) highlight similar features as the most
important to classify a gartner snake image (mainly, pixels in the snake’s head
area).

This method is relying on two assumptions, evaluated in the following sub-
sections:

(1) The most important features in the attacked malware classifier would be
similar to those of the surrogate model, and they would also be found by an ex-
plainability algorithm. Thus, modifying these features in the method mentioned
above would affect the attacked malware classifier as well. Detailed in Section
2.3, and (2) The adversary can modify the malware binary without harming its
functionality. Detailed in Section 3.4.

2.3 Transferability of Explainability

The concept of transferability of explainability is defined as follows: Given
two different models, m, and mo with different classifier type and architecture
trained on a similar dataset and input features list, the output of an explainable
machine learning algorithm (see Definition 2.2) would be similar for m; and mso.
Transferability of explainability means that the feature group indicated to have
a high impact on a specific sample classification on one model would be similar
to the list of the same explainability algorithm on another model. We argue
that this holds true regardless of the classifier type, architecture, training set or
even explainable algorithm. The only requirement is that the features used by
both classifiers need to be similar enough (otherwise impactful features in one
model are meaningless in the other model) - but not identical. An example of
the usage of transferability of explainability can be found in Rosenberg et al.
[13], where the authors used one classifier (a deep neural network) as a surrogate
model to attack another classifier (a gradient boosted decision tree).

This concept is especially important for multi-feature types malware clas-
sifiers: On the one hand, the adversary is unaware of the attacked classifier
architecture, so using transferability is essential. On the other hand, modifying
too many features might cause the adversarial example to be caught by anomaly
detectors (e.g., [2]). Therefore, a small perturbation (that is, modifying a small
amount of features) is desired.

3 Low-Level Attack Implementation

3.1 Dataset and Classifiers

We used the Ember dataset. It is thoroughly described in [9], and is the state-of-
the-art dataset of 1M malware and benign-ware, equally distributed. We split
the dataset into a training-set of 300K malware and 300K benignware and a
test set of 200K malware and 200K benignware.

As a surrogate model, trained by the adversary, we used the gradient boosted
decision tree (GBDT) classifier used in [9], which outperformed state-of-the-art
raw features model [8]. This classifier input is a vector of 2381 Ember’s PE
structural features and its output is a binary classification: malicious or benign
file. It is trained using Light GBM with 100 trees and 31 leaves per tree.

As the target classifier, we will use a commercial NGAV, which, in this paper,
we will call NGAV;.

3.2 Feature Explainability
3.2.1 Feature Explainability Using SHAP

We wish to find the features with the highest impact on our target classifier

and change them. Since the target classifier is not exposed to us and we can
only arbitrarily query for the confidence score, e.g., a gray-box attack. In our
approach we are using a surrogate model Ember [9] trained on independently
chosen dataset of malicious and benign PE samples.

In our attack we decided to leverage SHAP [14] in order to extract the features
that are the most significant in the model for the specific sample classification.
Note that by leveraging SHAP we can query the surrogate model for feature
importance on a specific sample which may differ from feature importance of
another sample. This helps us in prioritizing and therefor optimizing the
attack we conduct on the features.

In Figure 3 we can see the first 15 most important features (of the surrogate
model) according to SHAP for the specific sample we want to evade detection.
A main challenge is what features can we perturbate/modify without harming
the PE functionality? We split the feature types by the difficulty of controlling
each feature. We highlighted in green features that we can entirely control
with little effort and have no implication on the PE functionality. Orange

describes features we can partially control; at times adding can be achieved
with little effort, but removing or modifying may require greater effort. In
purple we highlighted features that we have indirect control of. The best
example are character distribution features, where inserting new characters to
the PE eventually changes the entire character distribution of the PE file. It is
worth noticing that usually it is possible for an attacker to control character
distribution features of the entire PE by appending a corrective distribution
buffer to the overlay of the file or even insert corrective distribution buffer to
one or more new sections. However, the latter may be more difficult to achieve
due to additional corrections that are required for the PE file to function
afterwards. Finally, the red highlight describes either features that are
impossible to modify or that they require significant effort beyond the scope of
this work.

————]]
EHBR 2359 DATA-OIR R T CT oL 52 |
EMBA_ 0704 SHAETHO |
EMBR_2364_ DAL DIR DGV | R
EMBR_2199_IMP_NAME_HA_1000 _

EMBR_0691_SCT_RE_CNT .
EMBR_0637_HB_CFF_CRCTRST_00 _ . _45:;‘) We have some candidates
0775 R S . — " tostartwith
EMBR_0725_SCI_NAM_S2_H5_32 e
EMBR 0677 OPT M| IMG V || s
EMER 0655 MBIOPT SUBSSTM 08 | P
ever 0032 SiaaMeR? I g
EMBR_0128 BHGRM.80 [> [Complete Control
FMAR_0930_SCT.ENTR_PRPRTY.HA 37 | P [Some Control
i . oy L e B Indirect Control
FMAR_0626_HORCFETS I - B Almest No Contral

00 02 04 06 08 10 12
mean(|SHAP value|) (average impact on model output magnitude)

Figure 3: SHAP’s feature importance of the attacked PE sample and the sur-
rogate model

3.2.2 Sliding Window Attack

In the sliding window attack, we are attacking the target classifier by
deliberately modifying parts (windows) of the PE file. In this way we can see
how the score changes when we hide specific parts of the original PE file. We
have developed two major methods of modifying the window:

e Completely zero out the window

e Only change the strings found in the window

We can also control the type of string obfuscation, e.g., a simple scramble, xor
with a known key, replace with specific characters etc. For string detection we
used the following regular expression: “([\w\.]{5,})” and similar ones for
wide-character strings and Unicode strings. The size of the window could be

controlled and adapted to the size of the file that we are attacking, therefore
we could limit the maximal number of attacks (queries) per file.

Once a significant change in the score is detected we investigate in which part
of the file it occurred. For instance: code section, overlay, import table etc.
We also apply a divide-and-conquer approach for the specific window, to
reduce and pinpoint the exact location. For example, if the original window
size was 64KBytes, we would divide it into two separate windows of 32KBytes
and apply the technique on both windows, continuing this process until we are
either satisfied with the discovery or reached a minimal window size, in our
case: 512 bytes.

Since the divide-and-conquer approach was applied only to parts of the file
with a high impact on the attacked classifier’s score, the entire process is quite
fast. Furthermore, this technique can be done in parallel and improved further
if required. There are however, two major drawbacks for this technique:

e It is difficult to apply to the PE header (for a classifier that parses the
PE header)

e The findings are not always straight forward

Attacking the PE header requires a specific implementation, in order to create
a “fuzzer”-like attack method. This will no longer be a sliding window type of
attack, due to the need of alternating each field specifically. The PE header
itself contains hundreds of fields, where usually each one becomes a feature,
either directly or through a hashing technique. We focus only on modifying
specific features in the PE header and avoid implementing a generic fuzzer,
due to the total number of feature value combinations required and their
mutual effect on each other.

As we will show, it is possible to considerably limit the number of possible
values per feature, for example, for the COFF File Header TimeDateStamp it
is sufficient to test 180 values (out of a possible 232 values) if we allow only
values up to 15 years ago and splitting the interval for 12 months per year,
thus 12 % 15 = 180 different values. This has proved to be sufficient and at
times could change the score by 0.7 and even higher values in the [—1,1] score
interval of the target classifier.

Another challenge in fuzzing a PE header is that some attacks may result in a
non-functioning PE file. Other parts of the file are not trivially modifiable.
For example, detecting some part of the code section, overlay, resource section
etc. Although one can devise a solution for each such challenge, it might be
very difficult to achieve without resorting into packing the entire PE. For these
reasons we leave the PE header fuzzer for future work.

All that said, by using such a technique, we do get a significant understanding
of what the classifier deems as important in the specific sample. In Figure 4
we show an illustration of the Sliding Window Attack.

10

Malicious PE Malicious PE Malicious PE Malicious Pl Malicious Pl
PE Header PC Header PEC Header PLC lHeader PLC Header
CE—
h'\.\
Start Point > B

¥

I I I N |

seore -1 Leare -1 Leore -0 gH Score: 0.76 Leore -0 gg

W

We want to examine why these occurred

Figure 4: An illustration of the sliding window attack. The black square repre-
sents the progress of the window across the file.

In figure5 we can see the small effect the sliding window had when “passing
over” the imports section and how it also agrees with SHAP’s feature
importance.

Activities T DE.

E-bear woa0 [Mome,

Motice that both SHAP
and Lhe sliding window
methods agree here!

Figure 5: A screenshot of the sliding window attack, using 32KBytes window
size and string obfuscation only.

3.3 Dataset Imports Analysis

One of the feature types we're going to modify is the imports, which are both
easy to add and have big effect on the classifier’s prediction (see Figure 3).
We rely on the fact that many static analysis engines are eventually forced to

11

extract information from such features and we will utilize this list when we
attack the import table. Interesting insights regarding imports are related to
the PE structure and the underlying OS.

In order to maximize the efficiency of the imports attack we extracted the
imports list of 21K PE files with malicious and benign labels split 50/50. Al-
though one can obtain a large amount of samples, from many online sources,
s.a., VirusShare, we consider Ember dataset [9], released in 2018, to be the
preferred choice, since this dataset is highly reliable with respect to the labels.

The next step is to create two (lib_name::import name, frequency) tuple
lists, one for the malicious samples and one for the benign samples. The idea
behind such a list is to offer a very simplified statistical representation of the
impact a specific import existance might have on the model. From both lists we
produce a single percentage difference list with a score for each import library-
function pair ranging from 1 to -1, where 1 means it is exclusively found in the
benign samples and -1 means it is exclusively found in the malicious samples,
as shown in Figure 6.

One should note that the appearance of a library-function pair in the import
table is only a “circumstantial evidence”, as the use of the function cannot be
enforced or predicted in any way. An example is a false condition wrapping
a function call. On the other hand, all used and necessary library-function
pairs do not have to appear in the import table since they can also be loaded
dynamically, using the string representation of the library-function call pair to
request the address. This property is also reflected in Figure 6, where the API
used to load library-function addresses dynamically, namely LoadLibrayA, is
more common in malicious files than in benign files.

-Function Pair il Percentag
msvcert.dll:free 0.239202558
msvcrt.dll:malloc 0.238521566
msvert.dll:_initterm 0.217461439
kernel32.dll:LoadLibraryA -0.264094599
kernel32.dll:GetModuleHandleA -0.269134553
kernel32.dll:ExitProcess -0.368820338,

Figure 6: In this example we listed the top three import library-function asso-
ciated with benign population and the top three import library-function pairs
associated with malicious population (negative values). It is important to under-
stand that the library-function pairs are not malicious and the numbers simply
represent how many observations we had of that pair in each population. These
are widely used APIs of the Win32APT library.

3.4 Selecting Modifiable Features

In this section we will list the features that we chose to manipulate in the PE
file with a short description of each feature.

12

Table 1: Adversarial Examples Success Rate and Average Number of Modified
Features

Property \ Description ‘

Checksum Has no impact on the
functionality unless it is a driver
or a critical dll (PE spec)

TimeDateStamp Has no impact on the
functionality
New Sections Inserting new section with

different characteristics and
predetermined entropies or
sections extracted from benign
files. Should be done carefully —
usually possible

Entry Point Existing code section if enough
Trampoline slack space found otherwise in a
new section
New Imports Choose wisely from the list we
established before
Rename Sections Hold a list of section names
mostly found in benign files
And more Linker version, Min/Maj OS
version - TinyPE is a good source
for ideas

We chose to modify features listed in table 1. It is important to note that as
we mentioned in Section 3.3, “circumstantial evidence” with respect to
imported functions, the same also holds for other feature types of the PE file
such as the ones listed here. In other words, these features have little to no
contribution to the actual purpose of the underlying PE file activity but their
distribution is learned by classifiers therefor enabling attacker to have some
degree of control on the score of the classifier. It is extremely difficult, and
arguably impossible, to accurately and correctly describe the functionality of a
PE file by means of static analysis, let alone withe runtime constraints, and we
rely on the this fact to aid us in changing the initial classifier’s prediction for
the target PE file from malicious to benign. Below we will discuss the type of
modification each feature has undergone.

3.4.1 Checksum

The modification of this feature is straight forward: Once all changes were
complete and a new PE file was built (with LIEF) its checksum was
recalculated and both versions of the PE were tested. The one with the lower
score was discarded (our score range is [—1,1]). Since the feature was at times

13

very dominant it was necessary to recalculate it before moving on to the next
attack phase (feature modification). Interestingly enough, while this feature is
only checked for drivers and critical dlls, it has significant impact on non
critical PE files in the target classifier.

3.4.2 TimeDateStamp

Attacking this field seems as a major challenge since, being 4 bytes long, it has
many possible values. Thus, we decided to limit the modified values to not go
further than 15 years ago. We calculated how many seconds are in 15 years
and divided that by 180, resulting in approximately a TimeDateStamp for
every month in the past 15 years (12 % 15). This proved to be very a effective
approach as we expected the classifier to produce a lower score for files older
than 15 years. The exact threshold (instead of 15 years) can be determined
automatically and we leave that for future work.

3.4.3 New Sections

New sections were added to the file with different attributes such as:

e IMAGE SCN CNT CODE - The section contains executable code
e IMAGE SCN MEM WRITE - The section can be written to.
e IMAGE SCN MEM READ - The section can be read.

e IMAGE SCN MEM EXECUTE - The section can be executed as
code.

e IMAGE SCN CNT UNINITIALIZED DATA - The section contains
uninitialized data.

For each section we added we can control the entropy that will be calculated
for it by choosing the character buffer stream that will be incorporated in the
actual section. Sections were 64KB long. For high entropy section we would
simply choose a random character until we reached the section size. For
sections with low entropy, we would first choose one character at random out
of the set [0200,02CC,0xFF] and use it to adjust the entropy as we build the
buffer. If the entropy was higher than the requested entropy we would insert
the pre-chosen character otherwise a random character. In addition we also
added the feature of inserting binary blobs extracted from other files as the
content of the new section. More on that in Section 3.4.4. In our experiments,
this type of modification had little “positive” impact on the classifier’s score.

3.4.4 Entry Point Trampoline

The trampoline we chose to insert was “pasted” right before a rip of a code
section containing the entry point of a very well known benign file from the

14

OS vendor. The rip was of size 64KBytes and the trampoline length was
deducted from the tail of it. The code for the trampoline was standard “GoTo
OEP” (Original Entry Point) but we chose to use a dynamic always false
condition that will branch to both the ripped code section and the OEP.
Below is an example of the template.

Algorithm 2 Trampoline to OEP

mov edi, edi ; 0x8BFF
push ebp ; 0x55

mov ebp, esp ; 0x8BEC
push ecx ; 0x51

mov ecx, 0 ; 0xB900000000
xor eax, ecx ; 0x33C9

pop ecx ; 0x59

pop ebp ; 0x5D

push OEP ; 0x68|OEP]
pop eax, ; 0x58

jnz $+2 ; 0x7502

jmp eax ; OxFFEO

[Paste of ripped benign entry point]

We are aware that this was a blunt use of a ripped binary code but we are also
aware that our goal was to evade a classifier and not a reverse engineer or
analyst. It will be very apparent for a reverse engineer for example that the
RVAs used in the blob are incorrect but less so for a classifier as it usually
relies on extracting statistical features. Even more so, many feature extraction
techniques from the code section actually normalize the assembly code,
register names, RVAs, VAs, immediates and so on, sometime leaving only the
normalized opcodes or a statistical representation of the opcodes (average,
standard deviation, etc...). There are two major obstacles for extracting
robust features from the code section:

1. Operand noise - Noise that is created wen the same compiler setup (ver-
sion, flags) produces new code and certain decision, s.a. register allocation,
may change due to small changes in the code that will result in different
register allocations. In a sense it is a subset of the next item.

2. Compiler noise - Major changes that occur to the generated code due to
use of different compiler flags, optimizations and compiler vendors.

Therefore, it is sometimes necessary to ignore the “noise” in the data in order
to make the malware classifier more robust to compiled variants, etc. However,
this leaves a way for adversaries to affect the more statistical features with a
suitable weapon, for example, in the form of code blobs extracted from highly
benign files usually from the OS vendor.

15

3.4.5 New Imports

Inserting new imports (and therefor sometime also new library dependency) to
a PE file can easily result in a non-functioning PE file. The imports we chose
to insert were selected from the previously prepared list of imports (see Section
3.3). The total size of the list was more than 100K (imports) library function
pairs and we had three methods of selecting the next import to insert:

1. Go over the list and insert an import one by one, if the score did not
improve the import was discarded.

2. Insert imports in batches of size n.

3. Insert imports in batches of size n out of a total of m where n < m. If a
specific batch was not improving the score it was discarded. In this way
we could control granularity better and avoid imports that have negative
affect on each other.

As for inserting the imports list into the PE, we had four main strategies:

1. Insert all selected imports to a new section. This method often resulted
in a non-functioning PE due to missing dependencies.

2. Insert all imported function from libraries already imported by the PE
and the rest to be dumped as strings into a new section or the overlay.
This also had a small chance to generate a non-functioning PE file,
mostly because of new functions that are present in newer versions of the
dlls that may not be present in the target operating system environment.

3. Insert all import as null terminated strings to the overlay of the file. The
overlay is the byte offset beyond the last byte of highest section in the
PE.

4. Insert all imports as null terminated strings to a new (data) section
which is not used.

This type of attack was very successful and eventually resolved into appending
the strings only without modifying the import table of the PE. The success of
this stage is attributed to the inability to determine by means of static
analysis if there is any part of the code that tries to resolve those strings into
an actual function address and use it.

3.4.6 Rename Sections

In this method we kept a list of section names commonly used in benign files.
The list can be obtained in a similar approach from the bank of malicious and
benign files used for the imports (see Section 3.3). However, in the specific
case we present there was no gain in altering the section names, as the existing
section names were all present in our preferred benign section names list.

16

3.4.7 Additional Perturbations

There is an abundance of ideas and additional features that can be altered. To
name some examples: Linker version, Min/Maj OS version, certain flags in PE
header characteristics, alter SizeOfHeaders, and more.TinyPE contains many
additional ideas that can be evaluated in future work.

4 Bypassing a Commercial NGAV: A Concrete
Example

4.1 The Perturbed Malware

We used a very known malware, with the SHA-256 value:
0x000069bc0721cd01a36b93bb29280fb0eef263e2461313a41774c3b2f1fca7d9.
It is being detected by about 60 security products in VirusTotal, and is
identified by Microsoft as: 'TrojanDownloader:Win32/Silcon!rfn’. Additional
details of this malware can be found in VirusTotal at:
https://www.virustotal.com/gui/file /000069bc0721cd01a36b93bb29280fb0eef263¢2461313a41774c3b2f1fcaTd!

4.2 Attack Analysis for

We will describe the steps and results of our attack on the target classifier in
Table 2. Notice that we avoided using steps that harm the functionality of
the original PE, e.g., adding a new import section. The same holds for adding
the actual functions to the import table: we may be able to finish the process
quicker or with fewer steps, but the end result may not be functional anymore.

17

Table 2: Attack stages for the perturbed malware sample

’ Step \ Change in Score \ Classifier Score \ Classiﬁcatiorﬁ File Size

|

| _ [- | -0.999999999997758 | Malicious |

598KB

|

Insert 10k import 0.001013504302047 -0.998986495695711 Malicious
names to a new
section +
Checksum

correction

TimeDateStamp 0.003757372367677 -0.995229123328034 Malicious
attack + Checksum
correction

Trampoline in new | 0.519168000280035 -0.476061123047999 Malicious
section + 10k
imports into

overlay (same as
before in this case)

20k imports into 1.280170733720289 0.80410961067229 Benign
overlay, this time
in 1k batches,
dropping batches
that do not
improve score

Timestamp + 0.012015640716198 0.816125251388488 Benign
Checksum

1.41MB

We started with a score near to a perfect -1 and a precision of 107!

First we discuss the checksum and TimeDateStamp attacks. Whenever we
modify and build a new PE we test it against the target classifier and in
addition we again attack the TimeDateStamp feature and perform a checksum
correction. These are two attacks that are relatively easy to perform and if
they do not improve the score we ignore them and continue with the previous
PE build.

The next step we took was to insert 10K import strings composed of the
library name followed by its function names, as null terminated strings, to a
new data section in the file. The idea behind this was to have a significant
impact in terms of order of magnitude precision. After fixing the checksum of
the resulting PE file the score changed to —0.99898... This is 10~2 precision as
opposed to the previous 10~!!. In plain terms, this tells us that once before,
our target classifier NG AV, showed high confidence regarding the samples
class, and now it is orders of magnitude less confident.

Next we perform an attack on the TimeDateStamp feature and correct the
checksum. Since this is done in every stage as described before we will not

18

elaborate on each occasion it was performed. This attack resulted in a 0.0037
improvement over the previous score.

The next step of the attack is to introduce a trampoline (in a new code sections
in this case) to the OEP, and append the same 10K imports from before but
this time to the overlay. The added trampoline contributed only 0.1 to the
score but the import strings appended to the overlay added an additional 0.42
improvement to the score, together totaling more than a 0.5 change.

For the next attack we continued our imports approach, but this time we used
a batch size of 1K from a subset of 20K out of the total 120K import pairs
extracted from the files. In each iteration, the batch was discarded if there was
no improvement to the score. We required 5 additional 1K batches to be
introduced into the overlay, where the final batch of 1K import function pairs
produced a whopping 0.8 jump in the score. The total change in score for this
step was > 1.28. Essentially, we can conclude the attack at this point since the
class of the sample was changed while we preserve the functionality.
Nevertheless we conducted an additional TimeDateStamp attack with
checksum fixing to gain an additional 0.012 to the score.

4.3 Practical Tips for Adversarial Learning Practitioners

Although there are probably more than one way to achieve a successful attack
on the NGAV; we've found that at times the order of operation (or
modification) mattered.

For instance, applying the trampoline before inserting a new section with
import strings, resulted in a very different flow and scores. This might be due
to the order of the sections, their addresses or any other feature value the
classifier created to describe the “meta-difference” between the two orders of
operations. This added “value” is irrelevant to the underlying and final
functionality of the built PE.

At other times, achieving an order-of-magnitude difference is very hard, but in
most times, once it is achieved it becomes easier to achieve greater and greater
impacts on the classifier’s score (after you got the snowball rolling...).

Note that such an attack is significantly simpler for an adversary that holds
the source code of the perturbed malware. This will remove a significant
overhead in such an attack and may also allow perturbation of features more
difficult to accomplish without the source code. However, this assumption
would obviously makes our attack less usable in real-life scenario, so we
avoided using it.

4.4 Our Attack Results

Finally, here we present the results as captured from VirusTotal website.
Before the attack, our malware is detected by 57 of the anti malware products

19

in VirusTotal (Figure 7). After the attack we uploaded the modified PE to
VirusTotal again and it was detected only by 30 anti malware products
(Figure 8). Thus, besides NGAV;,which was clearly bypassed, our attack also
bypassed a significant amount of other AV products. Among those, there are
additional NGAV vendors that were not directly targeted here. This
demonstrate the transferability of explainability property, mentioned in
Section 2.3. We start by results on the original sample followed by the results
of the perturbed sample.

20

8

SYROOKE 2020-10-1208:35:34 UTC [} &
Size 12 days ag0 EXE

DETECTION DETALS RELATIONS BEHAVIOR COMMUNITY
—_—
Acronis @ Suspicious Ad-fwsare: @) Genvariant Barys 83394
Avgislob (@ TrojanWin32 Delide. 4t AbnLab-v3 (@ Mahwore/Win32. Generic.C1452407
Albaba (D TrojarnWind2Kryptke835a3b ALYec (D GenVorient Barys 54394
Antiy-AVL (D Trojanwind2 sGeneric Securahge APEX (D maicieus
Arcabit (1) TrojanBarys.DD47A Avast (1) Wina2Eve-gan [Susp)
AVG @ FlekepMalware Avira (no cloud) (@) HEURAGEN.111445%
Baicu (@) Win32Trojan Kryptik aep BaDefender (D) Genvariant Barys 54394
BaDetenderThota (D) GevNN ZexaF 34298 LUOBa4OWGER: CAT-Quicitioal @ TeopnSiconAs
Clarmav () WinMabware Nymaim- 3403 Comodo () Trojware Wins2 Regsup DRGS0
CrowdStrike Falcon (@ Winmakcious_confidence_100% (W) Cybervason (@) Malcious v4720d
Crionce (@ Unsafe Cymet (@ Malicious {score: 100)
Cyren @ WS- WddsetBidorodo Oriwet @ Trojeninject2. 31002
aGambit (D) Unsate Al_Score_70% Emsisoft (D) Gen:variant Barys.54394 (2)
eSean () GenVariantBarys.543%4 ESET-NOD32 (D) AVariant Of Wind2/Kryptik EWVD
F-Secure (@ Heuristic HEURIAGEN. 1114457 Firefye (@ Generic.mg.bi54061e4740d5¢0
Fortinet (@ WaKeyptik EYDHI Ghata (@ Genvarant Barys 53304
Bars @ TrojonCeypt Jiangerin @ Trojon Generic.askkn
F-Socure (1) Houristic HEURIAGEN, M2459 FireEye (1) Goneric.mg BISE06ME720850
Fortinet (@) WazKryptik EYOHIr Ghata (@) Genvariant Barys 53398
[(@ TrojanCrypt Jiangmin (@) TrojanGeneric.sakin
K7AntiVirus (D Trojan (004e10321) KIGW (D Trojan { 004¢10321)
Kasparsiy (D) HEURTrojan Wini2 Generic MAX (D) Maware (ai Score=100)
MeAfee (D) Trejan-GoenymIBFSA06IESTA0 Meitee GW-Edition (1) BehavesLikeWin32 Drapgerhe
NANO-Antivirus (1) TrojanWindzKryptik fednpg Palo Alto Netwarks (1) Genedcml
Panda @ TriGenetic.gen Ohoo-360 @ 0 VMO
Riging (D) Matware UndefinedIB C (TFE:ZIPIIXma? Sangfor Engine Zero @D Maware
SentinesOne (Static ML) (D) OF1 - Makcious PE Sophos AV (@) MaGoneric-§
Sophos ML @ MarGeneric-$ Symantec @ TrojanGen
TrendMicro () TROJNYMAIM.GOA TrendMicro- HouseCall () TROJNYMAIM.GOA
VBAL2 (D BscopeTrofeninject VIPRE (D TrojenWind2 Generic!T
Webroat () wizTrejanGen Yandex (D) TrejanDelikie!
ZoneAlarm by Chack Point (1) HEURTrojanWini2Generic Bl (Z) Undetected
cme () Undetected Elastic (&) Undetected
Kingsoft () Undetected Mahwarebytes (&) Undetected
MasSecure () Undetectad SUPERANESpyware () Undetected
TACHYON (&) Undetected ViRobot () undetected
Zivyn) undetected Zoner (&) undetected
Avast-Mobile Symantec Mobike Insight L

21
Figure 7: Our perturbed malware, before our modifications

(1) 30 engines detected this fle

2 test2_2bin

B e @ < overley peem ruetme-modes

DETECTION DETAILS RELATIONS BEHAVIOR COMMUNITY
Ad-fovvare (D) GenVariant Barys 54394 ALYoe:
SecureAge APEX (@ Mebicious Arcabit
Baidu (D) Win32Trejan Kryntik sep BitDefender
BitDefencerTheta (1) GenHiN.ZexaF.34570.AD G adho0si Comoda
CrowdStrike Falon (D Winmalicious_confidence_80% (C) Cybereason
Cyrat (@) Malcious (scone: 100) Dt
Exatic (D) Makicious (high Confidence) Emsisaft
eScan () Genvariant Barys 54394 Firo€ye
GOota () GenVoriant Borys. 54394 Ikarus
KIGwW (D) Treden (70000211) Kaspersky
MAX (D) Matwace (ai Score=0a) Mehfee
MeAfee-GW-Edition (1) BehavesLive Win32 Ramnitth Ohoo-360
Rising (1) Malware Undefinedd.C (TFE:SIbJPWSED.. SertinelOne (Seatic ML)
Symantec (@ SMGHeurgen Tencent
VBAT2 (@) BscopeTrojan inject ZonaAlarm by Chack Pont
Acroris (&) Undetscted Asgislab
AhnLab-v3 () Undetected Alibabia
Acronis (@) Undetectea AegisLab
Annkab-V3 () Undetected Alibaba
Antiy-AVL (%) Undetected Avast
NG (&) Undetected Ao (s Coud])
Bk (&) Undetscted CAT-GuickHoal
ClamAv (&) Undetectea cme
Cytance () Undetected Cyren
eGombit) Undetected ESET-NOD32
F-Secure @) Undetected Fortinet
Jiangmin (@) Undetectea KTANtVirus
Kingsoft) Undetected Mabwarebrytes.
MaxSecure &) Undetected Microsoft
NANG-Antivirus &) Undetected Pals Alto Natworks
Panda (&) Undetected Sangfor Engine 2evo
Sophos AV () Undetected Sophos ML
SUPERANSpyware) Undetected TACHYON
TotalDefense () Undetected TrendMicro
TrendMicro-HouseCol @) Undetected VIPRE
ViRnbat (@) Undetectea ‘Webroot
Yandex (¥ Undetected Zityn
Zoner (&) Undetected Awast-Mobile

22

1AIME 2030-10-18 02923 UTC.
Slze 7 daws ag0 EXE

(D) GenVariont Barys 54394

@ Trojan Borys DO4TA

() Genvariant Barys 54394

(1) TroWareWind2Regsup DOG4dd0G]
(@D Makcious.128eta

(D) Treganinject2 31002

(1) Gonvariant Barys 54394 (B)
(D) Generic.amg 23001c128010264
(@ TrejanCrypt

@ HEUR: TrojanWin 2. Ceneric
() Trejan-Geerymi9171180FDI7C
() HEURIQVMZ0.LATF7 Malware Gen
(1) OFl - Suspicious PE

(@) MaiwareWin32 Gencirc. \0b3alls
(D) HEUR:Trojan WiniZ.Ganeric
() Uncerscted

() Undetectiea

(¥) Undetectea

() Undetected

(&) Undetected

(&) Undetacted

() Uncerscted

() Undetected

) Undetected

@ undetected

(%) Undetected

(@) Undetectea

() Undetected

(&) Undetected

(&) Undetacted

() Undetectea

() Undetectiea

() Undetected

() Undetected

(@) Undetected

(@) Undetectea

) Undetected

Figure 8: The perturbed malware, after the modifications (notice the different

hash value)

5 Conclusions and Future Work

In this paper, we present a method to generate end-to-end multi-feature types
adversarial examples for PE malware classifiers, using explainability algorithms
and our own methods to decide which features to modify, eliminating the need to
reverse the bypassed NGAV. Our method is the first to tackle the challenging
task of generating end-to-end adversarial examples of PE structural features,
allowing not only feature addition but also feature modification.

Our evaluation demonstrates that explainability is a dual edged sword, which
can also be leveraged by adversaries. When considering the call to generate
more explainable models, which decisions can be interpreted by humans [15]
, one should take into account its negative effects, such as making adversarial
examples less challenging in certain situations, as presented in this paper.

Our future work will include improving the query-efficiency of our attack (in
sense of queries to the attacked malware classifier), in order to make it useful to
attack cloud-based classifiers, by using gradient-based approaches (e.g., JSMA
[16]) over the surrogate model in order to find the optimal feature modification

defense methods against such attacks, for instance, anomaly detection classifiers
that recognize anomalous PE structure.

23

References

[1] Z. Katzir and Y. Elovici, “Quantifying the resilience of machine
learning classifiers used for cyber security,” FEzpert Systems with
Applications, vol. 92, pp. 419 429, 2018. [Online]. Available:
http://www.sciencedirect.com /science/article /pii/S0957417417306590

[2] M. Zakeri, F. F. Daneshgar, and M. Abbaspour, “A static heuristic
approach to detecting malware targets,” Security and Communication
Networks, vol. 8, no. 17, pp. 3015-3027, 2015. [Online]. Available:
https://doi.org/10.1002/sec.1228

[3] I. Rosenberg, A. Shabtai, L. Rokach, and Y. Elovici, “Generic
black-box end-to-end attack against state of the art API call based
malware classifiers,” in Research in Attacks, Intrusions, and Defenses
- 21st International Symposium, RAID 2018, Heraklion, Crete, Greece,
September 10-12, 2018, Proceedings, ser. Lecture Notes in Computer
Science, M. Bailey, T. Holz, M. Stamatogiannakis, and S. Ioannidis,
Eds., vol. 11050. Springer, 2018, pp. 490-510. [Online]. Available:
https://doi.org/10.1007/978-3-030-00470-5 23

[4] J. Saxe and K. Berlin, “Deep neural network based malware detection us-
ing two dimensional binary program features,” in 2015 10th International
Conference on Malicious and Unwanted Software (MALWARE). IEEE,
oct 2015.

[5] M. Ancona, E. Ceolini, C. Oztireli, and M. Gross, “Towards better
understanding of gradient-based attribution methods for deep neural
networks,” in International Conference on Learning Representations, 2018.
[Online]. Available: https://openreview.net/forum?id—Sy21R9JAW

[6] “Cylance, I Kill You!” https://skylightcyber.com/2019/07/18/
cylance-i-kill-you, accessed: 2019-08-24.

[7] H. S. Anderson, A. Kharkar, B. Filar, D. Evans, and P. Roth,
“Learning to evade static PE machine learning malware models via
reinforcement learning,” CoRR, vol. abs/1801.08917, 2018. [Online].
Available: http://arxiv.org/abs/1801.08917

[8] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and C. K.
Nicholas, “Malware detection by eating a whole EXE.,” in The Workshops
of the The Thirty-Second AAAI Conference on Artificial Intelligence, New
Orleans, Louisiana, USA, February 2-7, 2018., ser. AAAI Workshops,
vol. WS-18. AAAI Press, 2018, pp. 268-276. [Online]. Available:
https://aaai.org/ocs/index.php/WS/AAAIW18 /paper/view /16422

[9] H. S. Anderson and P. Roth, “EMBER: an open dataset for training static
PE malware machine learning models,” CoRR, vol. abs/1804.04637, 2018.
[Online]. Available: http://arxiv.org/abs/1804.04637

24

[10]

[11]

[12]

[13]

[14]

[15]

[16]

M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep
networks,” in Proceedings of the 84th International Conference on Machine
Learning - Volume 70, ser. ICML 17. JMLR.org, 2017, p. 33193328.

A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important features
through propagating activation differences,” in Proceedings of the 34th In-
ternational Conference on Machine Learning - Volume 70, ser. ICML 17.
JMLR.org, 2017, p. 31453153.

S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Miiller, and
W. Samek, “On pixel-wise explanations for non-linear classifier decisions by
layer-wise relevance propagation,” PLoS ONE, vol. 10, no. 7, p. e0130140,
07 2015. [Online]. Available: http://dx.doi.org/10.1371%2Fjournal.pone.
0130140

I. Rosenberg, S. Meir, J. Berrebi, I. Gordon, G. Sicard, and E. Omid David,
“Generating end-to-end adversarial examples for malware classifiers using
explainability,” in 2020 International Joint Conference on Neural Networks
(IJCNN), 2020, pp. 1-10.

S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” in Advances in Neural Information Processing Systems
30, 1. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc.,
2017, pp. 4765-4774. [Online]. Available: http://papers.nips.cc/paper,
7062-a-unified-approach-to-interpreting-model-predictions.pdf

C. Rudin, “Please stop explaining black box models for high stakes
decisions,” CoRR, wvol. abs/1811.10154, 2018. [Online]. Available:
http://arxiv.org/abs/1811.10154

N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,” in 2016
IEEFE European Symposium on Security and Privacy (EuroS&P). IEEE,
mar 2016.

25

