
Fingerprint-Jacking:
Practical Fingerprint Authorization Hijacking in Android Apps

Xianbo Wang1, Wing Cheong Lau1, Yikang Chen1, Shangcheng Shi1, Ronghai Yang2

1The Chinese University of Hong Kong,
2Sangfor Technologies Co., Ltd

#BHEU @BLACKHATEVENTS

About Me

• 2nd Year PhD Student in The Chinese University of Hong Kong

• Our lab: MobiTeC. We did a number of works on OAuth security.

• Check our talk on Blackhat Asia 2019 and Europe 2016 about OAuth security.

• Personal interest mostly on Web/Android app security.

• Love CTF, Bug Bounty, Pentest.

@sanebow

Demo Time!

Everyone knows
clickjacking …

Image from: https://owasp.org

Nowadays, we use
our fingerprint
everywhere

So, fingerprint-jacking is:
• A UI attack (targeting only Android devices in this talk)
• For hijacking your fingerprint inputs

It can deceive users into:
• Authorizing dangerous actions unknowingly

Interesting findings we want to share:
• Different techniques to construct practical fingerprint-jacking attack.
• Android is supposed to block this kind of attack, but we managed to bypass

the mitigation.

• A state machine model for Android Activities (windows).
• Only one Activity can be in the resumed (running) state at a time.
• When the Activity is not in the foreground, it must have been paused,

but may not be stopped (if still visible)

RQSWaUW/RQReVWaUW RQReVXPe

RQPaXVeRQSWRS

RQCUeaWe

VZiWch WR
backgURXQd

iQYiVibOe

QaYigaWe back,
SURceVV iV UXQQiQg

QaYigaWe back,
SURceVV ZaV kiOOed

Background: Android Activity Life Cycle

Typical Fingerprint Authorization Behaviour

A Normal App
Fingerprint Activity

Block fingerprint inputs?

Another Activity

RQSWaUW/RQReVWaUW RQReVXPe

RQPaXVeRQSWRS

RQCUeaWe

VZiWch WR
backgURXQd

iQYiVibOe

QaYigaWe back,
SURceVV iV UXQQiQg

QaYigaWe back,
SURceVV ZaV kiOOed

Zero
Permission

Malicous App
Disguised Activity

Target App
Fingerprint Activity

Malicious App

Covering
Activity

Keep accepting
fingerprint inputs

Blueprint of Fingerprint-Jacking Attack

What kind of “Attack Setup” makes the attack work? Considering different:
• Apps’ implementation
• Android OS versions

Ta[RQRP\ Rf FiQgeUSUiQW-JackiQg AWWackV

Fingerprint-jacking

Exploit app
implementation

flaws
Exploit Android

lifecycle bug

ReO\ RQ SaXVe-failXUe ÁaZ (QeZ)

translucent-attack

ZakeXS-
b\SaVV

VSliWVcUeeQ-
b\SaVV cUaVh-b\SaVV

Exploit unusual
features

ReO\ RQ
neYeU-cancel ÁaZ

WUiYial-aWWack [5]

ReTXiUe XVeU-gUaQW
aSS SeUPiVViRQV

ÁRaW-aWWack [6]

diPPiQg-aWWack [6]

(QeZ)

Uace-aWWack

Our new attacks

Existing attacks

Work in Android 9+

Only work before Android 9

Overview of Fingerprint-Jacking Techniques

Existing Techniques

• Simply put to the background ([5] BlackHat USA 2015)
• On very old Samsung device

• Floating window [6]
• Requires SYSTEM_ALERT_WINDOW permission (draw-over-other-apps)

• Dimming the screen by controlling brightness [6]
• Requires WRITE_SETTINGS permission
• Less practical, less effective

* Gif from https://github.com/KoderLabs/overlay-service/

What we want for our fingerprint-jacking attack:

• Zero-permission malicious app

• Work on modern Android versions

Can apps listen to fingerprint input in the background?

Android 9 (Pie)Android 8 (Oreo)Android 7 (Nougat) Android 10

Add mitigation in
FingerprintManger API

?

Android Fingerprint API
Provide FingerprintManagerAPI since Android 6.0 (API 23): developers need to build their own UI.
NewBiometricPromptAPI introduced in Android 9.0 (API 28): unified UI, more secure, but backward incompatible

Can apps do it correctly?
Before Android 9, apps need to block background fingerprint inputs by themselves

onResume()

Activity
running

onPause()

onStop()

startListening()

cancelListening()

onResume()

Activity
running

onPause()

onStop()

startListening()

cancelListening()

What’s wrong with cancelling fingerprint in onStop?

Translucent Covering

• Background Activity covered by translucent
Foreground Activity is considered visible.

• Background Activity goes into paused state,
but not stopped state.

Non-translucent�
activities

New translucent activity:�start and
press back

Translucent Activity
has slightly different
lifecycle model

* Based on the diagram from https://github.com/JoseAlcerreca/android-lifecycles

Malicious App
Disguised Activity

Target App
Fingerprint Activity

Malicious App
Translucent Activity

onPause
fingerprint continues

Cancel logic in onStop()
won’t be triggered

Victim is tricked to touch
the fingerprint sensor

Exploit implementation flaw: translucent-attack
Targeting apps that don’t cancel fingerprint in onPause

How many apps in the market do it incorrectly?

Large Scale
Evaluation with
Static Analysis
(Based on FlowDroid)

• Mitigation logic:
• Check current foreground Activity whenever the Activity stack changes.
• Interrupt fingerprint listener if foreground package is different from fingerprint listening package.

App A
Fingerprint Activity

App B
Covering Layer

Activity stack change
Foreground check triggered

App A ≠ App B
Cancel fingerprint listener

What happened in Android 9+?
New mitigation code in FingerprintManager API to block background fingerprint inputs

Can we bypass it?
Want bugs? Look in corners.

Think about corner cases:
• The mitigating check is only triggered when Activity stack changes.
• What about fingerprint starts after the Activity is already in the background?

à No stack change!
• Remember when do many apps start fingerprint listening? In onResume event!

Put the fingerprint Activity in the background and let it resume

onResume()

Activity
running

startListening()

Stack changed!
Fingerprint killed by OS

Fingerprint
cancelled

Sleep/Lock

Awake/Unlock

No stack change!

Fingerprint
resumed

Resume Activities when Wakeup: wakeup-bypass

When device wakes up:
• All visible Activities’

onResume are triggered

More practical way:
• Listen to the ACTION_SCREEN_OFF

broadcast. Set up attack right
before screen lock.

• Android 7+ supports split-screen. Multiple windows, but still only one resumed Activity.
• Resizing split-screen results in Activity lifecycle updates.
• Apps can put Activities into another screen with Intent.FLAG_ACTIVITY_LAUNCH_ADJACENT.

Use new features to bypass: splitscreen-bypass

No stack change!

Non-Standard Behaviour on OEM ROM: crash-bypass

Fingerprint
Activity

Fingerprint won’t
be interrupted

Crash-on-launch

Top Activity crashed

Discovered when I tested on MIUI 11
(an OEM based on Android 9)
• Crash the covering Activity once will

invalidate Android 9’s mitigation.
• Only work on this OEM.
• Reason unclear.

Exploit Race-Condition: race-attack

• Bizarre lifecycle behavior when start two
Activities within very short period of time.
• startActivities({victimIntent, maliciousIntent})

• Background Activity never being paused
àCancellation in onPause() becomes useless.
àEven correct app implementation cannot

rescue.

• Invalidate Android 9+ mitigation.

Patch will be available in Jan 2o21, currently 0day!

• We reported this issue to Google in June 2020
• We provided PoC video and source code
• They requested us to test on the latest Android, so we tested with Android 11 and it worked.

• Recently confirmed:
• Will be assigned CVE-2020-27059
• Will release a patch in the January 2021 Android Security Bulletin

• We may release more technical details of this bug then:
• Different ways to trigger the race-condition bug
• It breaks Activity lifecycle, it may break other things apart from fingerprint

What? You dispise attacks with malicious apps?

It is possible to launch fingerprint-jacking attack from web browsers, with a bunch of
conditions:

1. You need to find some covering-gadget.

2. The target app’s fingerprint authorization can be invoked from the browser.
• A common case: mobile payment app that supports payment from webpages in mobile browsers.

What is covering-gadget?

We define covering-gadgets to be Activities in benign installed apps that
• Allows invocation from browser
• With attacker-controllable visual content
• Having the translucent property

They are usually in the form of deep-links (URLs that link to mobile apps/Activities)
benignapp://webview/?url=http://malicious.com

They are not easy to find L. Currently, I only found one with partial content control.

Attacking HTML source

Summary of Attack Techniques and Conditions

Suggestions to Developers

• Use AndroidX’s androidx.biometric API. It’s a wrapper for FingerprintManager and
BiometriPrompt API with secure implementation.

• Use third-party fingerprint libraries carefully. We tested some unofficial fingerprint
libraries and found them vulnerable to the fingerprint-jacking attack.

• Check your existing implementations, if you use FingerprintManager API, make sure
your app explicitly cancel the fingerprint authentication process in the onPause event.

Demo with Covering Revealed

fingerprint-jacking

Gain root permission in Magisk
* Latest Magisk Manager is not vulnerable

fingerprint-jacking &
touchjacking

Money stealing in a Payment App
* An open-source 3rd party fingerprint payment plugin

Thank you!
Q&A Time

* We have more details in our whitepaper

References
• [1] Niemietz, Marcus, and Jörg Schwenk. "Ui redressing attacks on android devices." Black

Hat Abu Dhabi (2012).
• [2] Fratantonio, Yanick, et al. "Cloak and dagger: from two permissions to complete control

of the UI feedback loop." 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017.
• [3] Yan, Yuxuan, et al. "Understanding and Detecting Overlay-based Android Malware at

Market Scales." Proceedings of the 17th Annual International Conference on Mobile
Systems, Applications, and Services. 2019.

• [4] Zheng, Cong, et al. “Android Toast Overlay Attack: “Cloak and Dagger” with No
Permissions.” Paloalto Networks. 2017.

• [5] Zhang, Chen, et al. “Fingerprints On Mobile Devices: Abusing and Leaking.” BlackHat
USA. 2015.

• [6] Bianchi, Antonio, et al. "Broken Fingers: On the Usage of the Fingerprint API in
Android." NDSS. 2018.

