
LadderLeak
Breaking ECDSA with Less than One Bit of Nonce Leakage

Black Hat Europe (also CCS’20 and ePrint: 2020/615)

Diego F. Aranha1 Felipe R. Novaes2 Akira Takahashi1 Mehdi Tibouchi3 Yuval Yarom4

1DIGIT, Aarhus University, Denmark

2University of Campinas, Brazil

3NTT Corporation, Japan

4University of Adelaide and Data61, Australia

This talk

New attacks on randomness leakage/bias from ECDSA/Schnorr-type schemes

• Discovered vulnerabilities in ECDSA implementations: OpenSSL and RELIC.
• Theoretical improvements to the attack framework on the Hidden Number
Problem (HNP).

• Part I: How to acquire side-channel information.
• Part II: How to exploit side-channel information to recover the secret key.

1

Background: Attack on ECDSA
Nonces

ECDSA and Schnorr Signatures

• Most popular signature schemes relying on the hardness of the (EC)DLP
• Signing operation involves secret randomness k ∈ Z/qZ, sometimes called
nonce

2

Randomness in ECDSA/Schnorr-like Schemes

Alice Bob

Message Alice’s Secret key

Sign
Verify

Alice’s Public key

0/1

Signed Message
101101 ・・・

• k is a uniformly random value satisfying

k ≡ z︸︷︷︸
public

+ h︸︷︷︸
public

·x mod q.

• k should NEVER be reused/exposed as x = (z− z′)/(h′ − h) mod q 3

Risk of Biased/Leaky Randomness

Alice Bob

Message Alice’s Secret key

Sign
Verify

Alice’s Public key

0/1

Signed Message
101101 ・・・

Bias

• What if k is slightly biased ?
• Secret key x is recovered by solving the hidden number problem (HNP)

4

Risk of Biased/Leaky Randomness

Alice Bob

Message Alice’s Secret key

Sign
Verify

Alice’s Public key

0/1

Signed Message
101101 ・・・

Leak

• What if k is slightly biased or partially leaked?
• Secret key x is recovered by solving the hidden number problem (HNP)

4

Risk of Biased/Leaky Randomness

Alice

Message Alice’s Secret key

Sign

Signed Message
101101 ・・・

Leak

• What if k is slightly biased or partially leaked? ; Attack!
• Secret key x is recovered by solving the hidden number problem (HNP)

4

Risk of Biased/Leaky Randomness

Alice

Message Alice’s Secret key

Sign

Signed Message
101101 ・・・

Leak

• What if k is slightly biased or partially leaked? ; Attack!
• Secret key x is recovered by solving the hidden number problem (HNP)

4

Randomness Failure in the Real World

• Poorly designed/implemented
RNGs.

• Predictable seed
(srand(time(0)).

• VM resets ; same snapshot will
end up with the same seed.

• Side-channel leakage.
• and many more. . .

BBC news. 2011. https://www.bbc.com/news/
technology-12116051

5

https://www.bbc.com/news/technology-12116051
https://www.bbc.com/news/technology-12116051

Contributions

1. Novel class of cache attacks against ECDSA implemented in OpenSSL 1.0.2u
and 1.1.0l, and RELIC 0.4.0.

Affected curves: NIST P-192, P-224, P-256, P-384, P-521, B-283, K-283, K-409,
B-571, sect163r1, secp192k1, secp256k1
Affected products: VMWare Photon, Chef, Wickr ?

2. Theoretical improvements to Fourier analysis-based attack on the HNP
• Significantly reduced the required input data
• Attack became feasible given less than 1-bit of nonce bias/leakage per
signature

3. Implemented a full secret key recovery attack against OpenSSL ECDSA over
sect163r1 and NIST P-192.

6

Curve-based cryptography

Elliptic curves

(a) Point addition R = P ⊕ Q (b) Point doubling R = [2]P

Group law: Points form an additive group under the operation ⊕ (chord and
tangent) of order q with∞ as the identity.

Coordinate system: For efficiency, we represent a point in affine coordinates (x, y)
using projective coordinates (X,Y,Z) such that x = X/Zc and y = Y/Zd. 7

ECDSA signing

Scalar multiplication is critical for performance/security of ECC.

Algorithm 1 ECDSA signature generation

Input: Signing key sk ∈ Zq, message msg ∈ {0, 1}∗, group order q, base point G,
and cryptographic hash function H : 0, 1∗ → Zq.
Output: A valid signature (r, s)
1: k←$ Z∗

q
2: R = (rx, ry)← [k]G
3: r← rx mod q
4: s← (H(msg) + r · sk)/k mod q
5: return (r, s)

Critical: Should be implemented in constant time to avoid timing leakage about k.
8

Cache-timing attacks

Modern CPUs have instructions (cflush) that can reveal secrets through cache
data eviction. When programs share a library, a Flush+Reload attack is possible:

9

Side-channel attacks in scalar multiplication

Algorithm 2 Left-to-right Montgomery ladder
Input: P = (x, y), k = (1, kt−2, . . . , k1, k0)

Output: Q = [k]P
1: R0 ← P, R1 ← [2]P
2: for i← t− 2 downto 0 do
3: if ki ← 1 then
4: R0 ← R0 ⊕ R1; R1 ← [2]R1
5: else
6: R1 ← R0 ⊕ R1; R0 ← [2]R0
7: end if
8: end for
9: return Q = R0

For constant-time:
• Fixed number of
iterations

• Accumulators Ri in the
same order.

• Group law is
implemented in
constant time.

10

Side-channel attacks in scalar multiplication

Algorithm 3 Left-to-right Montgomery ladder
Input: P = (x, y), k = (1, kt−2, . . . , k1, k0)

Output: Q = [k]P
1: k′ ← Select (k + q, k + 2q)
2: R0 ← P, R1 ← [2]P
3: for i← lg(q)− 1 downto 0 do
4: Swap (R0, R1) if k′i = 0
5: R0 ← R0 ⊕ R1; R1 ← [2]R1
6: Swap (R0, R1) if k′i = 0
7: end for
8: return Q = R0

For constant-time:
• Fixed iterations by
adding 1 or 2 multiples
of q (preserves MSB of k
in second MSB of k′

when q is just below
power of 2.

• Replace branch with
conditional swap
(ideally implemented in
ASM).

• Careful implementation
of group law! 11

Side-channel attacks in scalar multiplication

Algorithm 4 Left-to-right Montgomery ladder
Input: P = (x, y), k = (1, kt−2, . . . , k1, k0)

Output: Q = [k]P
1: k′ ← Select (k + q, k + 2q)
2: R0 ← P, R1 ← [2]P
3: for i← lg(q)− 1 downto 0 do
4: Swap (R0, R1) if k′i = 0
5: R0 ← R0 ⊕ R1; R1 ← 2R1
6: Swap (R0, R1) if k′i = 0
7: end for
8: return Q = R0

Critical: Leakage in k allows to build set of biased signatures.
12

Experimental setup

Target platforms:

• Broadwell CPUs (Core i7-5500U @ 2.4GHz and i7-3520M @ 2.9GHz)
• TurboBoost disabled for reducing noise
• Binaries executed in userland runtime, no privileges
• OpenSSL built using default configuration, debugging symbols

Tooling:

• FR-Trace from Mastik side-channel analysis toolkit
• Flush+Reload slot selected as the 5,000 cycles
• Other cores evict code from cache (performance degradation)

13

Cache-timing attacks on prime curves

We can detect if R1 is in affine coordinates in point doubling (k′i = 0).

1 (...)
2 if (a->Z_is_one) {
3 if (!BN_copy(n0, &a->Y))
4 goto err;
5 } else {
6 if (!field_mul(group, n0, &a->Y, &a->Z, ctx))
7 goto err;
8 }
9 (...)

Performance degradation can amplify the difference to ≈ 15,000 cycles.

Attack: Flush+Reload can detect if BN_copy() is called with > 99% precision.
14

Cache-timing attacks on prime curves

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70 80 90 100

A
cc

es
s

tim
e

(c
yc

le
s)

Sample number

Sample trace for prime case when second MSB is 1

Call to BN_copy().
Call to next field operation

Cache hit threshold

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70 80 90 100

A
cc

es
s

tim
e

(c
yc

le
s)

Sample number

Sample trace for prime case when second MSB is 0

Call to BN_copy().
Call to next field operation

Cache hit threshold

15

Cache-timing attacks on binary curves

We can detect if R1 has projective coordinates in point addition (k′i = 1).

1 (...)
2 if (!BN_copy(t1, x))
3 goto err;
4 if (!group->meth->field_mul(group, x1, x1, z2, ctx))
5 goto err;
6 if (!group->meth->field_mul(group, z1, z1, x2, ctx))
7 goto err;
8 (...)

Performance degradation can amplify difference to ≈ 100,000 cycles.

Attack: Flush+Reload can detect if z2= 1 with > 99% precision.
16

Cache-timing attacks on binary curves

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80 90 100

A
cc

es
s

tim
e

(c
yc

le
s)

Sample number

Sample trace for binary curve case when second MSB is 0

Call to first field mult.
Call to second field mult.

Cache hit threshold

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 10 20 30 40 50 60 70 80 90 100

A
cc

es
s

tim
e

(c
yc

le
s)

Sample number

Sample trace for binary curve case when second MSB is 1

Call to first field mult.
Call to second field mult.

Cache hit threshold

17

Software countermeasures

There are at least three possible fixes:

1. Randomize Z coordinates at the beginning of scalar multiplication.
2. Implement group law in constant time, for example using complete addition

formulas (no branches).
3. Implement ladder over co-Z arithmetic to not handle Z directly.

Coordinated disclosure: reported in December 2019, fixed in April 2020 with the
first countermeasure.

18

Main takeaways

• Securely implementing brittle cryptographic algorithms is still hard.

• Do not underestimate timing leakage without careful analysis, even if tiny.

• Upgrade OpenSSL to 1.1.1 (or 3.0 when available) as soon as possible!

19

How to Exploit Nonce Leakage

Overview

• Recover the ECDSA secret by solving the hidden number problem
(HNP) [BV96]

• Fourier analysis-based attack (Bleichenbacher ’00)

• Allows us to recover the secret using only 1-bit of nonce info per signature.
• Analysis considers side-channel attacker’s misdetection of nonce bits
• The techniques in principle apply to other sources of bias/leakage

20

The problem we tackle

Definition (Hidden Number Problem)
Let hi and ki be uniformly random elements in Zq for each i = 1, . . . ,M and

zi = ki − hi · sk mod q.

The HNP asks to find sk, given the pairs (hi, zi) and MSBℓ(ki) for all i (the ℓ most
significant bits of ki).

* (hi, zi) can be computed from ECDSA signature:

hi = r/s (mod q)
zi = H(msg)/s (mod q)

21

The problem we tackle

Definition (Hidden Number Problem)
Let hi and ki be uniformly random elements in Zq for each i = 1, . . . ,M and

zi = ki − hi · sk mod q.

The HNP asks to find sk, given the pairs (hi, zi) and MSBℓ(ki) for all i (the ℓ most
significant bits of ki).

* (hi, zi) can be computed from ECDSA signature:

hi = r/s (mod q)
zi = H(msg)/s (mod q)

21

Chronology of HNP: a 24-year retrospective

1996 Boneh–Venkatesan defined the HNP

1999 Howgrave-Graham–Smart proposed the lattice attack against HNP

2000 Bleichenbacher announced the Fourier analysis attack
...

2018 CacheQuote on SGX EPID; PortSmash on SMT/Hyper-Threading; ROHNP

2019 TPM-FAIL; Minerva

2020 Dé jà Vu attack on Mozilla’s NSS; Raccoon attack on TLS 1.2

Still at the heart of many recent real-world vulnerabilities in
ECDSA/Diffie–Hellman key exchange implementations!

22

Chronology of HNP: a 24-year retrospective

1996 Boneh–Venkatesan defined the HNP

1999 Howgrave-Graham–Smart proposed the lattice attack against HNP

2000 Bleichenbacher announced the Fourier analysis attack
...

2018 CacheQuote on SGX EPID; PortSmash on SMT/Hyper-Threading; ROHNP

2019 TPM-FAIL; Minerva

2020 Dé jà Vu attack on Mozilla’s NSS; Raccoon attack on TLS 1.2

Still at the heart of many recent real-world vulnerabilities in
ECDSA/Diffie–Hellman key exchange implementations!

22

Chronology of HNP: a 24-year retrospective

1996 Boneh–Venkatesan defined the HNP

1999 Howgrave-Graham–Smart proposed the lattice attack against HNP

2000 Bleichenbacher announced the Fourier analysis attack
...

2018 CacheQuote on SGX EPID; PortSmash on SMT/Hyper-Threading; ROHNP

2019 TPM-FAIL; Minerva

2020 Dé jà Vu attack on Mozilla’s NSS; Raccoon attack on TLS 1.2

Still at the heart of many recent real-world vulnerabilities in
ECDSA/Diffie–Hellman key exchange implementations!

22

Chronology of HNP: a 24-year retrospective

1996 Boneh–Venkatesan defined the HNP

1999 Howgrave-Graham–Smart proposed the lattice attack against HNP

2000 Bleichenbacher announced the Fourier analysis attack
...

2018 CacheQuote on SGX EPID; PortSmash on SMT/Hyper-Threading; ROHNP

2019 TPM-FAIL; Minerva

2020 Dé jà Vu attack on Mozilla’s NSS; Raccoon attack on TLS 1.2

Still at the heart of many recent real-world vulnerabilities in
ECDSA/Diffie–Hellman key exchange implementations!

22

Chronology of HNP: a 24-year retrospective

1996 Boneh–Venkatesan defined the HNP

1999 Howgrave-Graham–Smart proposed the lattice attack against HNP

2000 Bleichenbacher announced the Fourier analysis attack
...

2018 CacheQuote on SGX EPID; PortSmash on SMT/Hyper-Threading; ROHNP

2019 TPM-FAIL; Minerva

2020 Dé jà Vu attack on Mozilla’s NSS; Raccoon attack on TLS 1.2

Still at the heart of many recent real-world vulnerabilities in
ECDSA/Diffie–Hellman key exchange implementations!

22

Chronology of HNP: a 24-year retrospective

1996 Boneh–Venkatesan defined the HNP

1999 Howgrave-Graham–Smart proposed the lattice attack against HNP

2000 Bleichenbacher announced the Fourier analysis attack
...

2018 CacheQuote on SGX EPID; PortSmash on SMT/Hyper-Threading; ROHNP

2019 TPM-FAIL; Minerva

2020 Dé jà Vu attack on Mozilla’s NSS; Raccoon attack on TLS 1.2

Still at the heart of many recent real-world vulnerabilities in
ECDSA/Diffie–Hellman key exchange implementations!

22

Chronology of HNP: a 24-year retrospective

1996 Boneh–Venkatesan defined the HNP

1999 Howgrave-Graham–Smart proposed the lattice attack against HNP

2000 Bleichenbacher announced the Fourier analysis attack
...

2018 CacheQuote on SGX EPID; PortSmash on SMT/Hyper-Threading; ROHNP

2019 TPM-FAIL; Minerva

2020 Dé jà Vu attack on Mozilla’s NSS; Raccoon attack on TLS 1.2

Still at the heart of many recent real-world vulnerabilities in
ECDSA/Diffie–Hellman key exchange implementations!

22

Chronology of HNP: a 24-year retrospective

1996 Boneh–Venkatesan defined the HNP

1999 Howgrave-Graham–Smart proposed the lattice attack against HNP

2000 Bleichenbacher announced the Fourier analysis attack
...

2018 CacheQuote on SGX EPID; PortSmash on SMT/Hyper-Threading; ROHNP

2019 TPM-FAIL; Minerva

2020 Dé jà Vu attack on Mozilla’s NSS; Raccoon attack on TLS 1.2

Still at the heart of many recent real-world vulnerabilities in
ECDSA/Diffie–Hellman key exchange implementations!

22

How to solve the HNP: Lattice vs Fourier analysis

More bias/leakage
&

Fewer signatures

Less bias/leakage
&

More signatures

Lattice

Fourier
Analysis

23

How to solve the HNP: Lattice vs Fourier analysis

More bias/leakage
&

Fewer signatures

Less bias/leakage
&

More signatures

Lattice

Fourier
Analysis

Not applicable to
small bias !

23

How to solve the HNP: Lattice vs Fourier analysis

More bias/leakage
&

Fewer signatures

Less bias/leakage
&

More signatures

Lattice

Fourier
Analysis

Not applicable to
small bias !

Too much data
complexity !

23

Challenges

• Can we reduce the data complexity of Fourier analysis-based attack?

• Can we attack even less than 1-bit of nonce leakage (= MSB is only leaked
with prob. < 1)?

• Is there such a small leakage from practical ECDSA implementations?

YES!

24

Challenges

• Can we reduce the data complexity of Fourier analysis-based attack?

• Can we attack even less than 1-bit of nonce leakage (= MSB is only leaked
with prob. < 1)?

• Is there such a small leakage from practical ECDSA implementations?

YES!

24

Challenges

• Can we reduce the data complexity of Fourier analysis-based attack?

• Can we attack even less than 1-bit of nonce leakage (= MSB is only leaked
with prob. < 1)?

• Is there such a small leakage from practical ECDSA implementations?

YES!

24

Challenges

• Can we reduce the data complexity of Fourier analysis-based attack?

• Can we attack even less than 1-bit of nonce leakage (= MSB is only leaked
with prob. < 1)?

• Is there such a small leakage from practical ECDSA implementations?

YES!

24

New attack records for the HNP!

Comparison with the previous records of solutions to the HNP: Fourier analysis vs Lattice

< 1 1 2 3 4

256-bit — — [TTA18] [TTA18] [Rya18, Rya19, MSEH19, WSBS20]
192-bit This work This work — — —

160-bit This work This work (less data), [Ble00][LN13] [NS02] —[AFG+14, Ble05]

• Require fewer input signatures to attack 160-bit HNP with 1-bit leak!
• First attack records for 192-bit HNP with (less than) 1-bit leak!

25

Bleichenbacher’s Fourier Analysis
Attack

Bleichenbacher’s Attack: High-level Overview

• Step 1. Quantify the bias of nonce K = {ki}i∈{1,...,M}
• Biasq(K) ≈ 0 if k is uniform in Zq
• Biasq(K) ≈ 1 if k is biased in Zq
• Contribution-1 Analyzed the behavior Biasq(K) when k’s MSB is biased with
probability < 1!

• Step 2. Find a candidate secret key which leads to the peak of Biasq(K) (by
computing FFT)

• Critical intermediate step: collision search of integers h
• Detect the bias peak correctly and efficiently
• Contribution-2 Established unified time-memory-data tradeoffs by applying
K-list sum algorithm for the GBP!

26

Bleichenbacher’s Attack: High-level Overview

• Step 1. Quantify the bias of nonce K = {ki}i∈{1,...,M}
• Biasq(K) ≈ 0 if k is uniform in Zq
• Biasq(K) ≈ 1 if k is biased in Zq
• Contribution-1 Analyzed the behavior Biasq(K) when k’s MSB is biased with
probability < 1!

• Step 2. Find a candidate secret key which leads to the peak of Biasq(K) (by
computing FFT)

• Critical intermediate step: collision search of integers h
• Detect the bias peak correctly and efficiently
• Contribution-2 Established unified time-memory-data tradeoffs by applying
K-list sum algorithm for the GBP!

26

Bleichenbacher’s Attack: High-level Overview

• Step 1. Quantify the bias of nonce K = {ki}i∈{1,...,M}
• Biasq(K) ≈ 0 if k is uniform in Zq
• Biasq(K) ≈ 1 if k is biased in Zq
• Contribution-1 Analyzed the behavior Biasq(K) when k’s MSB is biased with
probability < 1!

• Step 2. Find a candidate secret key which leads to the peak of Biasq(K) (by
computing FFT)

• Critical intermediate step: collision search of integers h
• Detect the bias peak correctly and efficiently
• Contribution-2 Established unified time-memory-data tradeoffs by applying
K-list sum algorithm for the GBP!

26

Bias Function (Essentially DFT)

Re

Im

Uniform ki ∈ Zq

Re

Im

Biased ki ∈ [0, q/2)

Definition
The sampled bias of a set of points K = {ki}i∈{1,...,M} in Zq is defined by

Biasq(K) =
1
M

M∑
i=1

e2πiki/q.

27

Bias Function (Essentially DFT)

Re

ImUniform ki ∈ Zq

Re

Im

Biased ki ∈ [0, q/2)

Definition
The sampled bias of a set of points K = {ki}i∈{1,...,M} in Zq is defined by

Biasq(K) =
1
M

M∑
i=1

e2πiki/q.

27

Bias Function (Essentially DFT)

Re

ImUniform ki ∈ Zq

Re

Im

Biased ki ∈ [0, q/2)

Definition
The sampled bias of a set of points K = {ki}i∈{1,...,M} in Zq is defined by

Biasq(K) =
1
M

M∑
i=1

e2πiki/q.

27

Bias Function (Essentially DFT)

Re

ImUniform ki ∈ Zq

Re

ImBiased ki ∈ [0, q/2)

Definition
The sampled bias of a set of points K = {ki}i∈{1,...,M} in Zq is defined by

Biasq(K) =
1
M

M∑
i=1

e2πiki/q.

27

Bias Function (Essentially DFT)

Re

ImUniform ki ∈ Zq

Re

ImBiased ki ∈ [0, q/2)

Definition
The sampled bias of a set of points K = {ki}i∈{1,...,M} in Zq is defined by

Biasq(K) =
1
M

M∑
i=1

e2πiki/q.

27

Analyzing misdetection of nonce bits

When the MSB of ki is leaked, then the at-
tacker can collect biased signatures

k1 =011101 . . .
k2 =001010 . . .
k3 =010110 . . .
k4 =000011 . . .

...

28

Analyzing misdetection of nonce bits

When the MSB of ki is leaked, then the at-
tacker can collect biased signatures

k1 =011101 . . .
k2 =001010 . . .
k3 =010110 . . .
k4 =000011 . . .

...

But sometimes the side-channel attacker
makes mistakes..

k1 =011101 . . .
k2 =101010 . . .
k3 =010110 . . .
k4 =100011 . . .

...

28

Analyzing misdetection of nonce bits

When the MSB of ki is leaked, then the at-
tacker can collect biased signatures

k1 =011101 . . .
k2 =001010 . . .
k3 =010110 . . .
k4 =000011 . . .

...

But sometimes the side-channel attacker
makes mistakes..

k1 =011101 . . .
k2 =101010 . . .
k3 =010110 . . .
k4 =100011 . . .

...

Our analysis covers the behavior of Biasq(K) under misdetection!

|Biasq(K)| ≈ (1− 2ϵ)× |Biasq(K0)|

where ϵ ∈ [0, 1/2) is an error rate and Biasq(K0) is a bias without errors.
28

Time–Data tradeoffs for 1-bit leakage

20 25 30 35 40 45 50
Data25

30
35
40
45
50
55
60
65
Time sect163r1

`FFT =35
`FFT =40
`FFT =45

25 30 35 40 45 50 55
Data25

30
35
40
45
50
55
60
65
Time P-192

`FFT =35
`FFT =40
`FFT =45

30 35 40 45 50 55 60
Data25

30
35
40
45
50
55
60
65
Time P-224

`FFT =35
`FFT =40
`FFT =45

40 45 50 55 60 65 70
Data25

30
35
40
45
50
55
60
65
Time P-256

`FFT =35
`FFT =40
`FFT =45

Figure 2: Time–Data tradeoff graphs (in a log2 scale) when memory is fixed to 235

* Optimized data complexity by solving the linear programming problem
* Much smaller amount of signatures needed if 2 or 3-bit leakage is available!

29

Experimental Results on Full Key Recovery

Target Facility Error rate Input Output Thread Time RAM LFFT Recovered
(Collision) (Collision) (Collision) MSBs

NIST P-192 AWS EC2 0 229 229 96 × 24 113h 492GB 238 39
NIST P-192 AWS EC2 1% 235 230 96 × 24 52h 492GB 237 39
sect163r1 Cluster 0 223 227 16 × 16 7h 80GB 235 36
sect163r1 Workstation 2.7% 224 229 48 42h 250GB 234 35

• Attack on P-192 is made possible by our highly optimized parallel
implementation.

• Attack on sect163r1 is even feasible with a laptop.
• Recovering remaining bits is much cheaper in Bleichenbacher’s framework.

30

Main takeaways

• ECDSA nonce is extremely sensitive
• Even < 1-bit leakage/signature is exploitable!

• HNP is still relevant nowadays, even in 2020’s!

• Open questions:
• Can we further improve time–data tradeoffs?
• Other sources of small leakage (e.g., 2 or 3-bit leakage under errors)?

Thank you! & Questions?
More details at https://ia.cr/2020/615

31

https://ia.cr/2020/615

Main takeaways

• ECDSA nonce is extremely sensitive
• Even < 1-bit leakage/signature is exploitable!

• HNP is still relevant nowadays, even in 2020’s!

• Open questions:
• Can we further improve time–data tradeoffs?
• Other sources of small leakage (e.g., 2 or 3-bit leakage under errors)?

Thank you! & Questions?
More details at https://ia.cr/2020/615

31

https://ia.cr/2020/615

Main takeaways

• ECDSA nonce is extremely sensitive
• Even < 1-bit leakage/signature is exploitable!

• HNP is still relevant nowadays, even in 2020’s!

• Open questions:
• Can we further improve time–data tradeoffs?
• Other sources of small leakage (e.g., 2 or 3-bit leakage under errors)?

Thank you! & Questions?
More details at https://ia.cr/2020/615

31

https://ia.cr/2020/615

Main takeaways

• ECDSA nonce is extremely sensitive
• Even < 1-bit leakage/signature is exploitable!

• HNP is still relevant nowadays, even in 2020’s!

• Open questions:
• Can we further improve time–data tradeoffs?
• Other sources of small leakage (e.g., 2 or 3-bit leakage under errors)?

Thank you! & Questions?
More details at https://ia.cr/2020/615

31

https://ia.cr/2020/615

References i

Diego F. Aranha, Pierre-Alain Fouque, Benoît Gérard, Jean-Gabriel Kammerer,
Mehdi Tibouchi, and Jean-Christophe Zapalowicz.
GLV/GLS decomposition, power analysis, and attacks on ECDSA signatures
with single-bit nonce bias.
In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I, volume 8873
of LNCS, pages 262–281. Springer, Heidelberg, December 2014.

Daniel Bleichenbacher.
On the generation of one-time keys in DL signature schemes.
Presentation at IEEE P1363 working group meeting, 2000.

References ii

Daniel Bleichenbacher.
Experiments with DSA.
Rump session at CRYPTO 2005, 2005.
Available from https://www.iacr.org/conferences/crypto2005/r/3.pdf.

Dan Boneh and Ramarathnam Venkatesan.
Hardness of computing the most significant bits of secret keys in
Diffie-Hellman and related schemes.
In Neal Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 129–142.
Springer, Heidelberg, August 1996.

https://www.iacr.org/conferences/crypto2005/r/3.pdf

References iii

Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida
García, and Nicola Tuveri.
Port contention for fun and profit.
In 2019 IEEE Symposium on Security and Privacy, pages 870–887. IEEE
Computer Society Press, May 2019.

Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin, Nadia
Heninger, Ahmad Moghimi, and Yuval Yarom.
CacheQuote: Efficiently recovering long-term secrets of SGX EPID via cache
attacks.
IACR TCHES, 2018(2):171–191, 2018.
https://tches.iacr.org/index.php/TCHES/article/view/879.

https://tches.iacr.org/index.php/TCHES/article/view/879

References iv

Freepik.
Icons made by Freepik from Flaticon.com.
http://www.flaticon.com.
Nick Howgrave-Graham and Nigel Smart.
Lattice attacks on digital signature schemes.
Designs, Codes and Cryptography, 23(3):283–290, 2001.

Jan Jancar, Vladimir Sedlacek, Petr Svenda, and Marek Sýs.
Minerva: The curse of ECDSA nonces systematic analysis of lattice attacks on
noisy leakage of bit-length of ECDSA nonces.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(4):281–308, 2020.

http://www.flaticon.com

References v

Mingjie Liu and Phong Q. Nguyen.
Solving BDD by enumeration: An update.
In Ed Dawson, editor, CT-RSA 2013, volume 7779 of LNCS, pages 293–309.
Springer, Heidelberg, February / March 2013.

Robert Merget, Marcus Brinkmann, Nimrod Aviram, Juraj Somorovsky,
Johannes Mittmann, and Jörg Schwenk.
Raccoon attack: Finding and exploiting most-significant-bit-oracles in
tls-dh(e).
Cryptology ePrint Archive, Report 2020/1151, 2020.
https://eprint.iacr.org/2020/1151.

https://eprint.iacr.org/2020/1151

References vi

Daniel Moghimi, Berk Sunar, Thomas Eisenbarth, and Nadia Heninger.
TPM-FAIL: TPM meets timing and lattice attacks.
CoRR, abs/1911.05673, 2019.
To appear at USENIX Security 2020.

Phong Q. Nguyen and Igor Shparlinski.
The insecurity of the digital signature algorithm with partially known
nonces.
Journal of Cryptology, 15(3):151–176, June 2002.

References vii

Keegan Ryan.
Return of the hidden number problem.
IACR TCHES, 2019(1):146–168, 2018.
https://tches.iacr.org/index.php/TCHES/article/view/7337.

Keegan Ryan.
Hardware-backed heist: Extracting ECDSA keys from qualcomm’s TrustZone.
In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz,
editors, ACM CCS 2019, pages 181–194. ACM Press, November 2019.

https://tches.iacr.org/index.php/TCHES/article/view/7337

References viii

Akira Takahashi, Mehdi Tibouchi, and Masayuki Abe.
New Bleichenbacher records: Fault attacks on qDSA signatures.
IACR TCHES, 2018(3):331–371, 2018.
https://tches.iacr.org/index.php/TCHES/article/view/7278.

Sohaib ul Hassan, Iaroslav Gridin, Ignacio M. Delgado-Lozano, Cesar Pereida
García, Jesús-Javier Chi-Domínguez, Alejandro Cabrera Aldaya, and Billy Bob
Brumley.
Déjà vu: Side-channel analysis of mozilla’s NSS.
In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, CCS ’20:
2020 ACM SIGSAC Conference on Computer and Communications Security,
Virtual Event, USA, November 9-13, 2020, pages 1887–1902. ACM, 2020.

https://tches.iacr.org/index.php/TCHES/article/view/7278

References ix

Samuel Weiser, David Schrammel, Lukas Bodner, and Raphael Spreitzer.
Big Numbers - Big Troubles: Systematically analyzing nonce leakage in
(EC)DSA implementations.
In USENIX Security 2020), Boston, MA, August 2020. USENIX Association.

	Background: Attack on ECDSA Nonces
	Curve-based cryptography
	How to Exploit Nonce Leakage
	Bleichenbacher's Fourier Analysis Attack
	Application and Experimental Results

	Appendix

