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This talk

New attacks on randomness leakage/bias from ECDSA/Schnorr-type schemes

• Discovered vulnerabilities in ECDSA implementations: OpenSSL and RELIC.
• Theoretical improvements to the attack framework on the Hidden Number
Problem (HNP).

• Part I: How to acquire side-channel information.
• Part II: How to exploit side-channel information to recover the secret key.
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Background: Attack on ECDSA
Nonces



ECDSA and Schnorr Signatures

• Most popular signature schemes relying on the hardness of the (EC)DLP
• Signing operation involves secret randomness k ∈ Z/qZ, sometimes called
nonce
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Randomness in ECDSA/Schnorr-like Schemes

Alice Bob

Message Alice’s Secret key

Sign
Verify

Alice’s Public key

0/1

Signed Message
101101 ・・・

• k is a uniformly random value satisfying

k ≡ z︸︷︷︸
public

+ h︸︷︷︸
public

·x mod q.

• k should NEVER be reused/exposed as x = (z− z′)/(h′ − h) mod q 3



Risk of Biased/Leaky Randomness

Alice Bob

Message Alice’s Secret key

Sign
Verify
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0/1
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101101 ・・・

Bias

• What if k is slightly biased ?
• Secret key x is recovered by solving the hidden number problem (HNP)
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Randomness Failure in the Real World

• Poorly designed/implemented
RNGs.

• Predictable seed
(srand(time(0)).

• VM resets ; same snapshot will
end up with the same seed.

• Side-channel leakage.
• and many more. . .

BBC news. 2011. https://www.bbc.com/news/
technology-12116051
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Contributions

1. Novel class of cache attacks against ECDSA implemented in OpenSSL 1.0.2u
and 1.1.0l, and RELIC 0.4.0.

Affected curves: NIST P-192, P-224, P-256, P-384, P-521, B-283, K-283, K-409,
B-571, sect163r1, secp192k1, secp256k1
Affected products: VMWare Photon, Chef, Wickr ?

2. Theoretical improvements to Fourier analysis-based attack on the HNP
• Significantly reduced the required input data
• Attack became feasible given less than 1-bit of nonce bias/leakage per
signature

3. Implemented a full secret key recovery attack against OpenSSL ECDSA over
sect163r1 and NIST P-192.
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Curve-based cryptography



Elliptic curves

(a) Point addition R = P ⊕ Q (b) Point doubling R = [2]P

Group law: Points form an additive group under the operation ⊕ (chord and
tangent) of order q with∞ as the identity.

Coordinate system: For efficiency, we represent a point in affine coordinates (x, y)
using projective coordinates (X,Y,Z) such that x = X/Zc and y = Y/Zd. 7



ECDSA signing

Scalar multiplication is critical for performance/security of ECC.

Algorithm 1 ECDSA signature generation

Input: Signing key sk ∈ Zq, message msg ∈ {0, 1}∗, group order q, base point G,
and cryptographic hash function H : 0, 1∗ → Zq.
Output: A valid signature (r, s)
1: k←$ Z∗

q
2: R = (rx, ry)← [k]G
3: r← rx mod q
4: s← (H(msg) + r · sk)/k mod q
5: return (r, s)

Critical: Should be implemented in constant time to avoid timing leakage about k.
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Cache-timing attacks

Modern CPUs have instructions (cflush) that can reveal secrets through cache
data eviction. When programs share a library, a Flush+Reload attack is possible:

9



Side-channel attacks in scalar multiplication

Algorithm 2 Left-to-right Montgomery ladder
Input: P = (x, y), k = (1, kt−2, . . . , k1, k0)

Output: Q = [k]P
1: R0 ← P, R1 ← [2]P
2: for i← t− 2 downto 0 do
3: if ki ← 1 then
4: R0 ← R0 ⊕ R1; R1 ← [2]R1
5: else
6: R1 ← R0 ⊕ R1; R0 ← [2]R0
7: end if
8: end for
9: return Q = R0

For constant-time:
• Fixed number of
iterations

• Accumulators Ri in the
same order.

• Group law is
implemented in
constant time.
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Side-channel attacks in scalar multiplication

Algorithm 3 Left-to-right Montgomery ladder
Input: P = (x, y), k = (1, kt−2, . . . , k1, k0)

Output: Q = [k]P
1: k′ ← Select (k + q, k + 2q)
2: R0 ← P, R1 ← [2]P
3: for i← lg(q)− 1 downto 0 do
4: Swap (R0, R1) if k′i = 0
5: R0 ← R0 ⊕ R1; R1 ← [2]R1
6: Swap (R0, R1) if k′i = 0
7: end for
8: return Q = R0

For constant-time:
• Fixed iterations by
adding 1 or 2 multiples
of q (preserves MSB of k
in second MSB of k′

when q is just below
power of 2.

• Replace branch with
conditional swap
(ideally implemented in
ASM).

• Careful implementation
of group law! 11



Side-channel attacks in scalar multiplication

Algorithm 4 Left-to-right Montgomery ladder
Input: P = (x, y), k = (1, kt−2, . . . , k1, k0)

Output: Q = [k]P
1: k′ ← Select (k + q, k + 2q)
2: R0 ← P, R1 ← [2]P
3: for i← lg(q)− 1 downto 0 do
4: Swap (R0, R1) if k′i = 0
5: R0 ← R0 ⊕ R1; R1 ← 2R1
6: Swap (R0, R1) if k′i = 0
7: end for
8: return Q = R0

Critical: Leakage in k allows to build set of biased signatures.
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Experimental setup

Target platforms:

• Broadwell CPUs (Core i7-5500U @ 2.4GHz and i7-3520M @ 2.9GHz)
• TurboBoost disabled for reducing noise
• Binaries executed in userland runtime, no privileges
• OpenSSL built using default configuration, debugging symbols

Tooling:

• FR-Trace from Mastik side-channel analysis toolkit
• Flush+Reload slot selected as the 5,000 cycles
• Other cores evict code from cache (performance degradation)
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Cache-timing attacks on prime curves

We can detect if R1 is in affine coordinates in point doubling (k′i = 0).

1 (...)
2 if (a->Z_is_one) {
3 if (!BN_copy(n0, &a->Y))
4 goto err;
5 } else {
6 if (!field_mul(group, n0, &a->Y, &a->Z, ctx))
7 goto err;
8 }
9 (...)

Performance degradation can amplify the difference to ≈ 15,000 cycles.

Attack: Flush+Reload can detect if BN_copy() is called with > 99% precision.
14



Cache-timing attacks on prime curves
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Cache-timing attacks on binary curves

We can detect if R1 has projective coordinates in point addition (k′i = 1).

1 (...)
2 if (!BN_copy(t1, x))
3 goto err;
4 if (!group->meth->field_mul(group, x1, x1, z2, ctx))
5 goto err;
6 if (!group->meth->field_mul(group, z1, z1, x2, ctx))
7 goto err;
8 (...)

Performance degradation can amplify difference to ≈ 100,000 cycles.

Attack: Flush+Reload can detect if z2= 1 with > 99% precision.
16



Cache-timing attacks on binary curves
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Software countermeasures

There are at least three possible fixes:

1. Randomize Z coordinates at the beginning of scalar multiplication.
2. Implement group law in constant time, for example using complete addition

formulas (no branches).
3. Implement ladder over co-Z arithmetic to not handle Z directly.

Coordinated disclosure: reported in December 2019, fixed in April 2020 with the
first countermeasure.
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Main takeaways

• Securely implementing brittle cryptographic algorithms is still hard.

• Do not underestimate timing leakage without careful analysis, even if tiny.

• Upgrade OpenSSL to 1.1.1 (or 3.0 when available) as soon as possible!
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How to Exploit Nonce Leakage



Overview

• Recover the ECDSA secret by solving the hidden number problem
(HNP) [BV96]

• Fourier analysis-based attack (Bleichenbacher ’00)

• Allows us to recover the secret using only 1-bit of nonce info per signature.
• Analysis considers side-channel attacker’s misdetection of nonce bits
• The techniques in principle apply to other sources of bias/leakage
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The problem we tackle

Definition (Hidden Number Problem)
Let hi and ki be uniformly random elements in Zq for each i = 1, . . . ,M and

zi = ki − hi · sk mod q.

The HNP asks to find sk, given the pairs (hi, zi) and MSBℓ(ki) for all i (the ℓ most
significant bits of ki).

* (hi, zi) can be computed from ECDSA signature:

hi = r/s (mod q)
zi = H(msg)/s (mod q)

21



The problem we tackle

Definition (Hidden Number Problem)
Let hi and ki be uniformly random elements in Zq for each i = 1, . . . ,M and

zi = ki − hi · sk mod q.

The HNP asks to find sk, given the pairs (hi, zi) and MSBℓ(ki) for all i (the ℓ most
significant bits of ki).

* (hi, zi) can be computed from ECDSA signature:

hi = r/s (mod q)
zi = H(msg)/s (mod q)

21



Chronology of HNP: a 24-year retrospective

1996 Boneh–Venkatesan defined the HNP

1999 Howgrave-Graham–Smart proposed the lattice attack against HNP

2000 Bleichenbacher announced the Fourier analysis attack
...

2018 CacheQuote on SGX EPID; PortSmash on SMT/Hyper-Threading; ROHNP

2019 TPM-FAIL; Minerva

2020 Dé jà Vu attack on Mozilla’s NSS; Raccoon attack on TLS 1.2

Still at the heart of many recent real-world vulnerabilities in
ECDSA/Diffie–Hellman key exchange implementations!

22



Chronology of HNP: a 24-year retrospective

1996 Boneh–Venkatesan defined the HNP

1999 Howgrave-Graham–Smart proposed the lattice attack against HNP

2000 Bleichenbacher announced the Fourier analysis attack
...

2018 CacheQuote on SGX EPID; PortSmash on SMT/Hyper-Threading; ROHNP

2019 TPM-FAIL; Minerva

2020 Dé jà Vu attack on Mozilla’s NSS; Raccoon attack on TLS 1.2

Still at the heart of many recent real-world vulnerabilities in
ECDSA/Diffie–Hellman key exchange implementations!

22



Chronology of HNP: a 24-year retrospective

1996 Boneh–Venkatesan defined the HNP

1999 Howgrave-Graham–Smart proposed the lattice attack against HNP

2000 Bleichenbacher announced the Fourier analysis attack
...

2018 CacheQuote on SGX EPID; PortSmash on SMT/Hyper-Threading; ROHNP

2019 TPM-FAIL; Minerva

2020 Dé jà Vu attack on Mozilla’s NSS; Raccoon attack on TLS 1.2

Still at the heart of many recent real-world vulnerabilities in
ECDSA/Diffie–Hellman key exchange implementations!

22



Chronology of HNP: a 24-year retrospective

1996 Boneh–Venkatesan defined the HNP

1999 Howgrave-Graham–Smart proposed the lattice attack against HNP

2000 Bleichenbacher announced the Fourier analysis attack
...

2018 CacheQuote on SGX EPID; PortSmash on SMT/Hyper-Threading; ROHNP

2019 TPM-FAIL; Minerva

2020 Dé jà Vu attack on Mozilla’s NSS; Raccoon attack on TLS 1.2

Still at the heart of many recent real-world vulnerabilities in
ECDSA/Diffie–Hellman key exchange implementations!

22



Chronology of HNP: a 24-year retrospective

1996 Boneh–Venkatesan defined the HNP

1999 Howgrave-Graham–Smart proposed the lattice attack against HNP

2000 Bleichenbacher announced the Fourier analysis attack
...

2018 CacheQuote on SGX EPID; PortSmash on SMT/Hyper-Threading; ROHNP

2019 TPM-FAIL; Minerva

2020 Dé jà Vu attack on Mozilla’s NSS; Raccoon attack on TLS 1.2

Still at the heart of many recent real-world vulnerabilities in
ECDSA/Diffie–Hellman key exchange implementations!

22



Chronology of HNP: a 24-year retrospective

1996 Boneh–Venkatesan defined the HNP

1999 Howgrave-Graham–Smart proposed the lattice attack against HNP

2000 Bleichenbacher announced the Fourier analysis attack
...

2018 CacheQuote on SGX EPID; PortSmash on SMT/Hyper-Threading; ROHNP

2019 TPM-FAIL; Minerva

2020 Dé jà Vu attack on Mozilla’s NSS; Raccoon attack on TLS 1.2

Still at the heart of many recent real-world vulnerabilities in
ECDSA/Diffie–Hellman key exchange implementations!

22



Chronology of HNP: a 24-year retrospective

1996 Boneh–Venkatesan defined the HNP

1999 Howgrave-Graham–Smart proposed the lattice attack against HNP

2000 Bleichenbacher announced the Fourier analysis attack
...

2018 CacheQuote on SGX EPID; PortSmash on SMT/Hyper-Threading; ROHNP

2019 TPM-FAIL; Minerva

2020 Dé jà Vu attack on Mozilla’s NSS; Raccoon attack on TLS 1.2

Still at the heart of many recent real-world vulnerabilities in
ECDSA/Diffie–Hellman key exchange implementations!

22



Chronology of HNP: a 24-year retrospective

1996 Boneh–Venkatesan defined the HNP

1999 Howgrave-Graham–Smart proposed the lattice attack against HNP

2000 Bleichenbacher announced the Fourier analysis attack
...

2018 CacheQuote on SGX EPID; PortSmash on SMT/Hyper-Threading; ROHNP

2019 TPM-FAIL; Minerva

2020 Dé jà Vu attack on Mozilla’s NSS; Raccoon attack on TLS 1.2

Still at the heart of many recent real-world vulnerabilities in
ECDSA/Diffie–Hellman key exchange implementations!

22



How to solve the HNP: Lattice vs Fourier analysis

More bias/leakage
& 

Fewer signatures

Less bias/leakage 
& 

More signatures

Lattice

Fourier
Analysis
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How to solve the HNP: Lattice vs Fourier analysis

More bias/leakage
& 

Fewer signatures

Less bias/leakage 
& 

More signatures

Lattice

Fourier
Analysis

Not applicable to 
small bias !

Too much data 
complexity !
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Challenges

• Can we reduce the data complexity of Fourier analysis-based attack?

• Can we attack even less than 1-bit of nonce leakage (= MSB is only leaked
with prob. < 1)?

• Is there such a small leakage from practical ECDSA implementations?

YES!
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New attack records for the HNP!

Comparison with the previous records of solutions to the HNP: Fourier analysis vs Lattice

< 1 1 2 3 4

256-bit — — [TTA18] [TTA18] [Rya18, Rya19, MSEH19, WSBS20]
192-bit This work This work — — —

160-bit This work This work (less data), [Ble00][LN13] [NS02] —[AFG+14, Ble05]

• Require fewer input signatures to attack 160-bit HNP with 1-bit leak!
• First attack records for 192-bit HNP with (less than) 1-bit leak!
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Bleichenbacher’s Fourier Analysis
Attack



Bleichenbacher’s Attack: High-level Overview

• Step 1. Quantify the bias of nonce K = {ki}i∈{1,...,M}
• Biasq(K) ≈ 0 if k is uniform in Zq
• Biasq(K) ≈ 1 if k is biased in Zq
• Contribution-1 Analyzed the behavior Biasq(K) when k’s MSB is biased with
probability < 1!

• Step 2. Find a candidate secret key which leads to the peak of Biasq(K) (by
computing FFT)

• Critical intermediate step: collision search of integers h
• Detect the bias peak correctly and efficiently
• Contribution-2 Established unified time-memory-data tradeoffs by applying
K-list sum algorithm for the GBP!
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Bias Function (Essentially DFT)

Re

Im

Uniform ki ∈ Zq

Re

Im

Biased ki ∈ [0, q/2)

Definition
The sampled bias of a set of points K = {ki}i∈{1,...,M} in Zq is defined by

Biasq(K) =
1
M

M∑
i=1

e2πiki/q.
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Analyzing misdetection of nonce bits

When the MSB of ki is leaked, then the at-
tacker can collect biased signatures

k1 =011101 . . .
k2 =001010 . . .
k3 =010110 . . .
k4 =000011 . . .

...
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Analyzing misdetection of nonce bits

When the MSB of ki is leaked, then the at-
tacker can collect biased signatures

k1 =011101 . . .
k2 =001010 . . .
k3 =010110 . . .
k4 =000011 . . .

...

But sometimes the side-channel attacker
makes mistakes..

k1 =011101 . . .
k2 =101010 . . .
k3 =010110 . . .
k4 =100011 . . .

...

Our analysis covers the behavior of Biasq(K) under misdetection!

|Biasq(K)| ≈ (1− 2ϵ)× |Biasq(K0)|

where ϵ ∈ [0, 1/2) is an error rate and Biasq(K0) is a bias without errors.
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Time–Data tradeoffs for 1-bit leakage
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Figure 2: Time–Data tradeoff graphs (in a log2 scale) when memory is fixed to 235

* Optimized data complexity by solving the linear programming problem
* Much smaller amount of signatures needed if 2 or 3-bit leakage is available!
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Experimental Results on Full Key Recovery

Target Facility Error rate Input Output Thread Time RAM LFFT Recovered
(Collision) (Collision) (Collision) MSBs

NIST P-192 AWS EC2 0 229 229 96 × 24 113h 492GB 238 39
NIST P-192 AWS EC2 1% 235 230 96 × 24 52h 492GB 237 39
sect163r1 Cluster 0 223 227 16 × 16 7h 80GB 235 36
sect163r1 Workstation 2.7% 224 229 48 42h 250GB 234 35

• Attack on P-192 is made possible by our highly optimized parallel
implementation.

• Attack on sect163r1 is even feasible with a laptop.
• Recovering remaining bits is much cheaper in Bleichenbacher’s framework.
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Main takeaways

• ECDSA nonce is extremely sensitive
• Even < 1-bit leakage/signature is exploitable!

• HNP is still relevant nowadays, even in 2020’s!

• Open questions:
• Can we further improve time–data tradeoffs?
• Other sources of small leakage (e.g., 2 or 3-bit leakage under errors)?

Thank you! & Questions?
More details at https://ia.cr/2020/615

31
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