
The Subtle Art of Chaining Headers – IKEv2 Case Study Antonios Atlasis

The Subtle Art of Chaining Headers
IKEv2 Attack Surface Case Study1

Antonios Atlasis
aatlasis@secfu.net, @AntoniosAtlasis

10 November 2020

Abstract
Internet Key Exchange (IKE) is a significant component of IP Security (IPSec), a suite of protocols used

extensively for creating Virtual Private Networks. IKE is used for performing mutual authentication,

establishing and maintaining the required Security Associations. IKE is of a particular interest in the

context of IPSec since a part of it is neither encrypted, nor authenticated and hence, it constitutes the

only attack surface for unauthenticated attackers. This paper provides a network protocol analysis of the

attack surface of the latest version of the protocol, IKE version 2 (IKEv2). By diving into the

corresponding specifications, the main points of interest are identified and attacking opportunities are

discussed. As it will be shown, despite IKEv2 has considerably been simplified in comparison with IKEv1,

the format of its messages can vary multifariously, mainly due to the different types and number of

payloads that can be incorporated. This complexity has already resulted in several known vulnerabilities.

An open-source tool, authored especially for implementing the identified attack opportunities, is used to

describe and test the described scenarios. By using this tool in combination with the described attack

scenarios, potential flaws on IKEv2 implementations can be identified and hence, have them fixed

before they are exploited in the wild.

1.Introduction
Internet Key Exchange (IKE) is a significant component of IP Security (IPsec), a family of protocols that

provide confidentiality, data integrity, access control, and data source authentication to IP datagrams

[1]. Specifically, IKE is used for performing mutual authentication and establishing and maintaining the

Security Associations (SAs), the shared states between the source and destinations that describe the

cryptographic algorithms to be used, characteristics of the keys, etc.

Internet Key Exchange (IKE) version 2 (IKEv2) [2], is the latest version of IKE. IKEv2 deprecates IKE version

1, although the last is still used widely. However, this paper focuses on IKEv2 only.

1 Disclaimer: The content of this paper is personal work of its author. It is not related by any means with his

current or past employers, and it does not constitute any kind of recommendation or official endorsement.

Page 1

mailto:aatlasis@secfu.net

The Subtle Art of Chaining Headers – IKEv2 Case Study Antonios Atlasis

IKE is of a particular interest in the context of IPSec since (a small) part of it is neither encrypted nor

authenticated and hence, it constitutes the only attack surface for unauthenticated attackers. While

several security considerations with regard to IKEv2 are discussed in RFC 7296 [2], to the best of the

author’s knowledge a thorough analysis of the attack surface of IKEv2 with regard to protocol

implementation itself has not yet been presented. To this end, in this paper, after analysing the protocol

specification [2], we identify the attacking opportunities that could exploit the complexity of the

protocol (in terms of types and number of payloads that can be incorporated in an IKEv2 message). An

open-source tool, authored especially for this purpose, is used to describe and test the described

scenarios [9].

2.Basic Background: IKEv2 Establishment and
IKEv2 Payloads

All IKE communications consist of pairs of messages: a request and a response (called "exchanges").

Communication using IKE always begins with IKE_SA_INIT and IKE_AUTH exchanges (known in IKEv1 as

Phase 1). These are used to establish an Security Association (SA) that includes shared secret

information, so as to eventually establish IPsec SAs (called “Child SAs”).

After the IKEv2 establishment, subsequent IKE exchanges are either CREATE_CHILD_SA exchanges

(which creates a Child SA) or INFORMATIONAL exchanges (which deletes an SA, reports error conditions,

or does other housekeeping).

The exchanges that take place during the IKEv2 SA establishment are depicted in the next diagram.

Page 2

The Subtle Art of Chaining Headers – IKEv2 Case Study Antonios Atlasis

Figure 1: IKEv2 SA Establishment

In exceptional cases there may be more than one of each of above exchanges.

In all cases, all IKE_SA_INIT exchanges MUST complete before any other exchange type, then all

IKE_AUTH exchanges MUST complete before any further IKE exchanges.

2.1. The IKE_SA_INIT exchange
IKE_SA_INIT exchange negotiates security parameters (cryptographic algorithms) for the IKE SA, sends

nonces, and performs a Diffie-Hellman [3] exchange.

Each IKE message begins with the IKE header (HDR); following the header, there are one or more IKE

payloads:

 1 The Security Association (SAi1)payload states the cryptographic algorithms the initiator

supports for the IKE SA.

 2 The Key Exchange (KEi) payload is used to exchange Diffie-Hellman public numbers as part of a

Diffie-Hellman key exchange .

 3 Ni is the initiator's Nonce.

Page 3

In
it

ia
to

r R
e
s
p

o
n

d
e
r

HDR
SAi1

KEi
Ni

HDR SAr1 KEr Nr

HDR
SK{IDi,[CERT],[CERTREQ],[IDr],AUTH,SAi2,TSi,TSr}

HDR SK{IDr, [CERT], AUTH,SAr2, TSi, TSr }

{...} Encrypted – integrity protected

Authentication takes place

Dif fie-Helman exchange takes place

Not encrypted yet

[CERTREQ]

[N]

[N]

The Subtle Art of Chaining Headers – IKEv2 Case Study Antonios Atlasis

The responder chooses a cryptographic suite from the initiator’s offered choices and expresses that

choice in the SAr1 payload, completes the Diffie-Hellman exchange with the KEr payload, and sends its

nonce in the Nr payload. The responder may also include an optional CERTREQ (Certificate Request)

payload to request preferred certificates via IKEv2.

It should be noted that from this point onwards, all messages following the initial exchange are

cryptographically protected using the cryptographic algorithms and keys negotiated in the IKE_SA_INIT

exchange. However, authentication takes place in the next exchange, the IKE_AUTH exchange.

2.2. The IKE_AUTH exchange
IKE_AUTH exchange identities and (optionally) certificates, proves knowledge of the secrets

corresponding to the two identities, and sets up an SA for the first (and often only) Child SA. Parts of

these messages are encrypted and integrity protected with keys established through the IKE_SA_INIT

exchange, so the identities are hidden from eavesdroppers and all fields in all the messages are

authenticated.

IKE_AUTH messsages carry, in addition to the IKEV2 header, the so called “Encrypted and Authenticated”

payload, or simply the Encrypted payload (typically denoted as SK). The Encrypted payload, if present in

a message, MUST be the last payload in this message (often, it is the only one). Other payloads are

incorporated encrypted, integrity protected, and transferred as a payload to it into the “Encrypted and

Authenticated” payload as depicted in the following diagram:

Figure 2: How “Encrypted and Authenticated” {SK} Payload is constructed

Page 4

various IKEv2 payloads

plaintext padding pad. length

ciphertext

encryption

IVSK headerIKEv2 header

Calculation of integrity hash

int. hash

The Subtle Art of Chaining Headers – IKEv2 Case Study Antonios Atlasis

Figure 3: How an IKE_AUTH looks like

2.3. IKEv2 Payloads
IKEv2 supports a plethora of different payloads that are used for different purposes and under various

ways; a full list of them can be found in [10]:

Each one of them is identified by its payload number. To identify them in payload chain, each Payload as

well as each IKEv2 Header have a “Next Payload” field which has the value of the Payload to follow (see

figure below):

Figure 4: IKEv2 Payload Chaining

Page 5

Refers to the next Payload

The Subtle Art of Chaining Headers – IKEv2 Case Study Antonios Atlasis

It is beyond the scope of this paper to describe each IKEv2 payload and its purpose; this info can be

found in the corresponding RFCs. Some of them are discussed below as part of the analysis and the

description of the related attacks.

3.Reconnaissance
Every attack starts from Reconnaissance and IKE attacks could not be different. A man-in-the-middle

(MITM) attacker who cannot complete the IKE_AUTH exchange can nonetheless see the identity of the

initiator.

 3.1 Vendor ID
Attackers can take advantage of the legitimate usage of the Vendor ID Payload to identify the specific

IKEv2 implementation.

Specifically, the Vendor ID payload contains a vendor-defined constant, used by vendors to identify and

recognize remote instances of their implementations, so as to allow them to experiment with new

features while maintaining backward compatibility [2]. To abuse this, an attacker can simply send an

IKE_SA_INIT request; in response, a Vendor ID Payload is typically included. This Vendor ID identifies the

vendor of the specific IKE implementation.

Figure 5: A wireshark screenshot of a response sent by an IKEv2 server, clearly depicting the Vendor

(strongSwan in our example)

Page 6

The Subtle Art of Chaining Headers – IKEv2 Case Study Antonios Atlasis

The tool ike-scan [11] supports IKE reconnaissance using Vendor ID.

Vendor ID is also supported by nmap [12] using:

nmap -sU -p 500 --script ike-version <target>

A list of known Vendor IDs versus the corresponding vendors can be found at [13].

It should be noted that whether or not a target will respond with a message that includes Vendor ID

payload depends on its configuration.

 3.2 Fingerprinting based on Responses to Unusual IKEv2
Messages

Fingerprinting of a target can be achieved by triggering different responses sending “weird” or not so

weird combinations; these responses that can vary depending on the vendor can help a remote attacker

to identify its target even if this is configured not to send Vendor ID payload. Such cases can be:

• Sending of lengthy IKEv2 messages; for instance, in its default configuration StrongSwan does

not respond to messages which are longer than 10000 bytes.

• Sending of many Notify messages; for example, StrongSwan responds with an INVALID SYNTAX

message when more than 20 Notify messages are sent.

• Sending of more than one SA, KE, or Nonce Payloads; again, such a case triggers an INVALID

SYNTAX response message from Strongswan.

4.Fragmentation
Sometimes, IKEv2 messages can be large enough so as to require fragmentation to transverse networks

with an MTU (Maximum Transmission Unit) smaller than their length. These can be the case for

IKE_AUTH messages, especially if certificates are employed. However, there can be cases of

intermediate network devices that block IP fragmented packets, mainly due to security reasons; the

most notable case is the filtering of IPv6 fragments [6].

To overcome this problem, in [4] the fragmentation of large IKEv2 messages to small ones (called called

IKE Fragment messages) is specified, so as the resulting IP datagrams will be small enough not to require

fragmentation at the IP level.

The IKEv2 Fragment Payload is depicted to the below figure.

Page 7

The Subtle Art of Chaining Headers – IKEv2 Case Study Antonios Atlasis

Figure 6: IKEv2 Fragment Payload (source: IETF RFC 7383 [4])

It should be noted though that IKE Fragment messages are cryptographically protected, i.e. the original

message can be fragmented if and only if it contains an Encrypted payload. This implies that messages of

the IKE_SA_INIT exchange cannot be fragmented.

However, as it is defined in [4], the initiator indicates its support and willingness to use IKE

fragmentation by including a Notification payload of type IKEV2_FRAGMENTATION_SUPPORTED in the

IKE_SA_INIT request message. If the responder also supports and is willing to use this extension, it

includes the same notification in its response message. Only if both peers have indicated their support

for it, IKE fragmentation will be used.

Therefore, following the above, the following fragmentation-related attacks can be launched:

a) IKE_SA_INIT exchange can still be subject to IP fragmentation attacks (although typically these

messages are sort).

b) In case a MITM attacker wants to attempt to abuse IP fragmentation during the whole

duration of the IPSec communication, he can remove the corresponding Notify messages to

prevent IKE fragmentation.

c) During an IKE_AUTH request, IKE fragmentation can be abused. For instance, an attacker can

send a large but still incomplete set of IKE_AUTH fragments, aiming at exhausting memory

resources [4].

Page 8

The Subtle Art of Chaining Headers – IKEv2 Case Study Antonios Atlasis

d) In general, typical fragmentation attacks (e.g. fragmentation overlapping) cannot take place in

IKE fragmentation by an unauthenticated attacker (since the “Encrypted Fragment Payload”used

for IKE fragmentation is encrypted and authenticated). However, fragmentation overlapping

attacks (based on duplicate fragments only, since there is no “offset” field in the Fragment

payoad) can still take place in the IKE_AUTH requests, but their potential effect can only be

crashing the target. Such a case would be a typical IP fragmentation attack.

e) Finally, by using fragmentation, IKEv2 chains bigger than 65535 bytes (the maximum IP size)

can be constructed (theoretically there is no limit).

Combination of IP and IKEv2 fragments may not make sense for legitimate purposes, but it is not

prevented. By combining both, really huge IKE packets can be constructed,

Testing some popular implementations has shown that responses can be triggered for fragmented IKE

AUTH messages that, when reconstructed, can exceed the typical legitimate packets (i.e. more that

65535 bytes),

A known vulnerability due to IKEv2 fragmentation is CVE-2016-1344 (according to which, the IKEv2

implementation in Cisco IOS 15.0 through 15.6 and IOS XE 3.3 through 3.17 allows remote attackers to

cause a denial of service - device reload - via fragmented packets, aka Bug ID CSCux38417). Similar issue

had been found out at IKEv1 (CVE-2013-6076) against strongSwan.

5.Fuzzing (IKEv2 Payloads)
From the IKEv2 payloads, of a special interest is the Security Association Payload, since this is the most

complicated one.

In a nutshell, each Security Association (SA) Payload MAY contain one or more Proposals, each one of

which MAY contain one or more Transforms, each one of which MAY contain one or more Attribute

information. Each one of the Proposals, Transforms, and Attributes have their own variable-length

encodings. They are nested such that the Payload Length of an SA payload includes the combined

contents of the SA, Proposal, Transform, and Attribute information.

In addition, another payload of a special interest is the Notify payload. A Notify payload may appear in a

response message (usually specifying why a request was rejected), in an INFORMATIONAL exchange (to

report an error in an IKE request), or in any other message to indicate sender capabilities or to modify

the meaning of the request. Its length can be up to 2 octets (including the generic payload header).

Page 9

The Subtle Art of Chaining Headers – IKEv2 Case Study Antonios Atlasis

IKEv2 RFC enforces an implicit length limitation: “All IKEv2 implementations MUST2 be able to send,

receive, and process IKE messages that are up to 1280 octets long, and they SHOULD be able to send,

receive, and process messages that are up to 3000 octets long” [2].

Based on the above, potential fuzzing attacks against IKEv2 can include the following:

1. Many Transforms in a Proposal. The maximum number of Transforms that can fit in a proposal is

255. This typically results in two fragmented IP packets.

2. Many Proposals in an SA.

3. Multiple Proposals in an SA and Multiple Transforms per Proposal.

4. Too Many Notify Messages.

5. Notify Messages of a Big Size.

6. Manipulation of the order of the payloads.

7. Manipulation of the number of occurrences of the payloads.

8. Abusing field values

◦ Number of Transforms Field = 255 and actual number of transforms < 255

◦ Size of Nonce data > 256 octets (the size of the Nonce Data MUST be between 16 and 256

octets),

etc..

While the obvious way to test all the above is during the IKE_INIT negotiation (either as Initiator or as a

Responder), all these attacks can also be used during the IKE_AUTH phase. Whilst it is the phase the two

ends are mutually authenticated, a potential protocol abuse (i.e. adding an arbitrary number of payloads

or types) will take place after the decryption but before authentication is performed.

Testing of various of the aforementioned scenarios in popular applications (Strongswan, Libreswan,

Windows 2019) has shown that:

• Each implementation reacts differently in unusual combinations of payloads, like:

◦ “Invalid Syntax” Notify message

◦ “No Proposal Chosen” Notify message

◦ “Invalid IKE SPI” Notify message

◦ “Private Use – Errors” Notify message (for Notify types not defined in RFCs yet).

◦ No response at all

2 When words like “MUST”, “SHOULD”, etc. are used in capitals, they are to be interpreted as described in RFC

2119 [14].

Page 10

The Subtle Art of Chaining Headers – IKEv2 Case Study Antonios Atlasis

• In default configuration, different limitations are applied on the accepted IKE packets (e.g.

Strongswan by default does not accept packets bigger than around 10000 bytes, while

Libreswan does not really impose a limit); RFC 7296 does not impose a maximum limit.

• While Libreswan and Strongswan do not accept IKE packets with more than 1 SA payload, KE

payload, or Nonce payload, this is not the case for Windows 2019, which accept packets wit

more than 140 SA payloads (of course there is no legitimate usage for such packets)!

Unexpected construction of IKEv2 packets like the ones described above except from the obvious result

of fingerprinting have also resulted and tenths of published related CVEs (e.g. CVE-2020-3230, CVE-

2019-12312, CVE-2017-17157, etc.).

6.Denial of Service
6.1. Many Half-Open IKE-INIT

As described in [7], an attacker, as an Initiator, can send multiple IKE_SA_INIT messages, and then never

send the subsequent IKE_AUTH ones. In such a case, the created half-open SA is kept for an unspecified

amount of time at the Responder.

Specifically, when the IKE_SA_INIT request arrives, the Responder generates or reuses a Diffie-Hellman

(DH) private part, also generates a Responder Security Parameter Index (SPI), and stores the private part

and peer public part in a half-open SA database. Depending on the algorithms used and implementation,

such a half-open SA will use from around one hundred to several thousand bytes of memory. As

mentioned in [7], this creates an easy attack vector against an IKE Responder. To make matter worst, the

attacker can spoof several source address rendering the limitation of the number of half-open SAs

opened by a single peer not an effective mitigation. In addition, throttling of new requests is not a

feasible mitigation, since this will also prevent legitimate Initiators from setting up IKE SAs.

The stateless “cookie” mechanism introduced in [2] attempts to prevent an attack with spoofed source

addresses. An additional mechanism introduced in [7], “puzzles”, attempt to make it harder for an

attacker to reach the goal of getting a half-open SA (by making more computationally expensive for an

attacker to create these half-open IKE-INIT SAs than for the defender to address them). These defensive

mechanisms in combination with the reduction of the lifetime of an abandoned half-open SA reduce the

impact of such attacks.

The above mechanisms seem to be capable of solving the discussed issue, at least to some extent (e.g.

the “cookie” mechanism can prevent spoofing-related attacks). However, the Internet Protocol suite is

increasingly used on small devices with severe constraints on power, memory, and processing resources

[8], like IoT (Internet of Things). Due to the obvious hardware and other limitations of these devices, a

specific IKEv2 implementation has been introduced by [8] for this type of Initiators. In these minimal

implementations, most of the optional features of IKEv2 are left out, including COOKIEs and PUZZLEs.

Page 11

The Subtle Art of Chaining Headers – IKEv2 Case Study Antonios Atlasis

By testing a StrongSwan implementation, it was found out that after several INIT requests (with many

IKE-INIT requests with spoofed IP addresses and different SPIs), IKE-INIT response is sent with a COOKIE

Notify message. It was also noticed that it takes only a few spoofed IKE-INIT message to trigger

responses with COOKIE Notify messages.

Figure 7: A wireshark screenshot of a response sent by an IKEv2 server, depicting the COOKIE Notify

message

However, such a behaviour is problematic for IoT devices that implement Minimum IKEv2

implementation since the COOKIE option is not meant to be implemented.

Page 12

The Subtle Art of Chaining Headers – IKEv2 Case Study Antonios Atlasis

Figure 8: Extract of RFC 7815 (Minimal IKEv2 Implementation) [8]

Therefore, when IoT devices use IKEv2 to connect to their server, an attacker can very easily cause an

DoS of their connection to their server implicitly by issuing several half-open IKE-INIT messages.

6.2. Many half-open IKE_AUTH
The attacker, as an Initiator, can also complete the IKE_INIT exchange and leave half-complete the

IKE_AUTH exchange [7]. In such a case the attacker sends some dummy data, but the responder will still

have to verify its integrity (to find out that it is invalid).

Proof-of-concept testing has shown that the CPU usage can easily rise from about 0% to 63% or so.

Further stress testing could constitute the IPSec server unusable.

 Figure 9: Increasing CPU load of an IKE Server by sending many half-open IKE_AUTH messages.

Page 13

The Subtle Art of Chaining Headers – IKEv2 Case Study Antonios Atlasis

7.Conclusions
As stated very nicely in [15], “in protocol design, perfection has been reached not when there is nothing

left to add, but when there is nothing left to take away”; and IKEv2 could not be an exception. Indeed,

the IKEv2 establishment has been simplified a lot, reducing significantly the attack surface. However, it

seems that IKEv2 payloads are still quite complex providing several attacking opportunities; these

opportunities though are mainly related with fuzzing IKEv2 or with Denial of Service attacks. Many of

these opportunities are identified and described in this paper, while an open-source tool is being

released for testing them. While identification of potential issues mainly depend on each

implementation by the vendors, the author believes that further simplification of the protocol

(especially in terms of the payloads) could be considered, or at least stricter rules regarding their usage

should be defined.

Page 14

The Subtle Art of Chaining Headers – IKEv2 Case Study Antonios Atlasis

References
[1] Kent, S. and K. Seo, "Security Architecture for the Internet Protocol", RFC 4301, DOI

10.17487/RFC4301, December 2005, <https://tools.ietf.org/html/rfc 4301 >.

[2] Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T. Kivinen, "Internet Key Exchange Protocol Version

2 (IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October 2014,

<https://tools.ietf.org/html/rfc7296>.

[3] Diffie, W. and M. Hellman, "New Directions in Cryptography", IEEE Transactions on Information

Theory, V.IT-22 n. 6, June 1977.

[4] Smyslov, V., "Internet Key Exchange Protocol Version 2 (IKEv2) Message Fragmentation", RFC 7383,

DOI 10.17487/RFC7383, November 2014, <https://www.rfc-editor.org/info/rfc7383>.

[5] https://www.iana.org/assignments/ikev2-parameters/ikev2-parameters.xhtml#ikev2-parameters-14

[6] Gont, F., Linkova, J., Chown, T., and W. Liu, "Observations on the Dropping of Packets with IPv6

Extension Headers in the Real World", RFC 7872, DOI 10.17487/RFC7872, June 2016.

[7] Nir, Y. and V. Smyslov, "Protecting Internet Key Exchange Protocol Version 2 (IKEv2) Implementations

from Distributed Denial-of-Service Attacks", RFC 8019, DOI 10.17487/RFC8019, November 2016,

<https://www.rfc-editor.org/info/rfc8019>.

[8] Kivinen, T., "Minimal Internet Key Exchange Version 2 (IKEv2) Initiator Implementation", RFC 7815,

DOI 10.17487/RFC7815, March 2016, <https://www.rfc-editor.org/info/rfc7815>.

[9] Atlasis, A. “yIKEs: an IKEv2 Security Assessment Tool” (to be published at github).

[10] Internet Assigned Numbers Authority (IANA), “Internet Key Exchange Version 2 (IKEv2)

Parameters”, 13th March 2020, https://www.iana.org/assignments/ikev2-parameters/ikev2-

parameters.xhtml

[11] Hills R., “ike-scan: Discover and fingerprint IKE hosts (IPsec VPN Servers)” ,

https://github.com/royhills/ike-scan.

[12] Lyon G., “Nmap: A free and open-source network scanner”, https://nmap.org/.

[13] Hills R., “ike-scan: - IKE Vendor IDs” , “ike-scan: Discover and fingerprint IKE hosts (IPsec VPN

Servers)”, https://raw.githubusercontent.com/royhills/ike-scan/master/ike-vendor-ids

[14] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI

10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.

[15] Callon, R., "The Twelve Networking Truths", RFC 1925, DOI 10.17487/RFC1925, April 1 1996,

<https://www.rfc-editor.org/info/rfc1925>.

Page 15

https://www.rfc-editor.org/info/rfc1925
https://www.rfc-editor.org/info/rfc2119
https://raw.githubusercontent.com/royhills/ike-scan/master/ike-vendor-ids
https://nmap.org/
https://github.com/royhills/ike-scan
https://www.iana.org/assignments/ikev2-parameters/ikev2-parameters.xhtml
https://www.iana.org/assignments/ikev2-parameters/ikev2-parameters.xhtml
https://www.rfc-editor.org/info/rfc7815
https://www.rfc-editor.org/info/rfc8019
https://www.iana.org/assignments/ikev2-parameters/ikev2-parameters.xhtml#ikev2-parameters-14
https://www.rfc-editor.org/info/rfc7383
https://tools.ietf.org/html/rfc7296
https://tools.ietf.org/html/rfc4301
https://tools.ietf.org/html/rfc4301

The Subtle Art of Chaining Headers – IKEv2 Case Study Antonios Atlasis

About the Author
Antonios Atlasis (PhD) is a Cyber Security Engineer at European Space Agency (ESA) and an enthusiastic

IT Security Researcher. His main interest is the analysis of network protocols from a security perspective

(with IPv6 being rather his favourite). He has been a frequent presenter at various security conferences

(BlackHat, Troopers, Hack in the Box, Brucon, Deepsec, etc.), BlackHat Europe Review Board member,

past Giac Gold Adviser and author of a few open-source security assessment tools like Chiron.

Page 16

The Subtle Art of Chaining Headers – IKEv2 Case Study Antonios Atlasis

Appendix: Testing Examples using yIKEs
In this appendix, blue fonts are used to depict the used yIKEs command, while the green ones (part of) a

typical response.

Triggering Legitimate Responses

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip SA,KE,Nonce,Notify.16388-16389 -pr
1.12,3.12,2.5,4.2 -kl 256

Triggering Legitimate Responses with Minimum Types of Payloads

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip SA,KE,Nonce -pr 1.12,3.12,2.5,4.2 -kl 256

Many Transforms in a Proposal

Using ranges:

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip SA,KE,Nonce,Notify.16388-16389 -pr 1.1-
135,3.1-40,2.1-40,4.1-40 -kl 256

NOTE: If you intend to use more than 255 transforms, you must manually define the number of

transforms field such as to be ≤255 using the -nt switch (see next examples).

Many Proposals in an SA

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip SA,KE,Nonce -pr 1.12,3.12,2.5,4.2`python -c
'print ("/1.12,3.12,2.5,4.2" *221)'` -kl 256

Multiple Proposals in an SA and Multiple Transforms per Proposal

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip SA,KE,Nonce -pr 1.1-25,3.12,2.5,4.2`python
-c 'print ("/1.1-18,3.12,2.5,4.2" *254)'` -listen -stimeout 300

Plus too many SAs

./yIKEs.py -d 192.168.56.105 -i vboxnet0 -kl 256 -listen -recon -ip Notify.16388-
16389,SA,KE,Nonce,KE,SA,SA,Notify.16388-16389,SA,Notify.16388-16389,SA,`python -c 'print(
"SA," *141)'`KE,Nonce -pr 1.1-12,3.1-12,2.1-12,4.1-12

Too Many Notify Messages

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip SA,Notify.16388-16396,KE,Notify.16388-
16389,Nonce,Notify.16388-16396 -pr 1.12,3.12,2.5,4.2 -kl 256

Page 17

The Subtle Art of Chaining Headers – IKEv2 Case Study Antonios Atlasis

Trying with the smallest Notify Message (COOKIE=16390 – without data).

 ./yIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip SA,KE,Notify.16390,Nonce`python -c
'print(",Notify.16390"*19)'` -pr 1.12,3.12,2.5,4.2 -kl 256

Maximum number of Notify Messages and Proposal

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip SA,Notify.16388-16396,KE,Notify.16388-
16389,Nonce,Notify.16388-16396 -pr 1.12,3.12,2.5,4.2`python -c 'print("/1.12,3.12,2.5,4.2"
*215)'` -kl 256

Notify Messages of a Big Size

 -sN <SIZE_NOTIFY_DATA> The size of Notify data (for Notify Types in [16440,16449]), >=0

Example:

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip SA,KE,Nonce,Notify.16388-
16389,Notify.14,Notify.16430-16431,Notify.16440-16449,Notify.16404 -sN 6512

==>65528 bytes

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip SA,KE,Nonce,Notify.16440 -pr
1.12,3.12,2.5,4.2 -kl 256 -sN 9744

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip SA,KE,Nonce -ip2
IDi,Notify.16384,IDr,AUTH,TSi,TSr,Notify.16440 -sN 9775 -pr 1.12,3.12,2.5,4.2 -kl 256 -listen -
pr2 1.12,3.12,5.0

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip SA,KE,Nonce -ip2
IDi,Notify.16384,IDr,AUTH,TSi,TSr,Notify.16443 -sN 9840 -pr 1.12,3.12,2.5,4.2 -kl 256 -listen -
pr2 1.12,3.12,5.0 -fr 14

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip SA,KE,Nonce,Notify.16430 -ip2
IDr,Notify.16384,IDi,AUTH,TSi,TSr,Notify.16388-16389,Notify.16440 -pr 1.12,3.12,2.5,4.2 -listen
-pr2 1.12,3.12,5.0`python -c 'print("/1.12,3.12,2.5,4.2" *215)'` -fr 60 -sN 65000 -stimeout 20

Out of Common Order Payloads

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip Notify.16388-16389,Nonce,KE,Notify.16388-
16389,SA,Notify.16388-16389 -pr 1.12,3.12,2.5,4.2 -kl 256

Actual number of Transforms < 255 and Number of Transforms Field =
255

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip SA,KE,Nonce,Notify.16388-16389 -pr
1.12,3.12,2.5,4.2 -kl 256 -nt 255

Page 18

The Subtle Art of Chaining Headers – IKEv2 Case Study Antonios Atlasis

Actual Number of Transforms = 255 and number of Transforms in the
corresponding field = 1

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip SA,KE,Nonce,Notify.16388-16389 -pr 1.1-
135,3.1-40,2.1-40,4.1-40 -kl 256 -nt 1

Unexpected Payloads in INIT messages: CERTREQ Payloads

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip SA,KE,Nonce,Notify.16388-
16389,CERTREQ -crt 6 -pr 1.12,3.12,2.5,4.2 -kl 256

Too big certreq

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip SA,KE,Nonce,CERTREQ -ip2
IDi,Notify.16384,IDr,AUTH,TSi,TSr,CERTREQ -pr 1.12,3.12,2.5,4.2 -kl 256 -listen -pr2
1.12,3.12,5.0 -crt 4 -no_of_ca 3263

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip SA,KE,Nonce -ip2
IDi,Notify.16384,IDr,AUTH,TSi,TSr,CERTREQ -pr 1.12,3.12,2.5,4.2 -kl 256 -listen -pr2
1.12,3.12,5.0 -crt 4 -no_of_ca 3276 -fr 2

./yIKEs.py -i vboxnet0 -d 192.168.56.105 -kl 256 -recon -listen -ip SA,KE,Nonce -ip2
Notify.16440,IDi,Notify.16440,IDr,Notify.16440,AUTH,Notify.16440,TSi,Notify.16440,TSr,Notify.1
6440,CERTREQ -sN 50000 -pr 1.12,3.12,2.5,4.2 -pr2 1.12,3.12,5.0 -crt 4 -no_of_ca 3276 -fr 60

Half-Open IKE_INIT messages

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -half-init -sub 192.168.56.128/25 -ip SA,KE,Nonce -pr
1.12,3.12,2.5,4.2 -stimeout 120 -rand

==> AUTO responds to COOKIES

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -half-init -sub 192.168.56.0/24 -ip SA,KE,Nonce -pr
1.12,3.12,2.5,4.2 -stimeout 120 -rand

As an initiator, send up to IKE_AUTH message

./iyIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip SA,KE,Nonce -ip2
IDi,Notify.16384,IDr,AUTH,TSi,TSr -pr 1.12,3.12,2.5,4.2 -kl 256 -listen -pr2 1.12,3.12,5.0

With Fragmentation Supported

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip SA,KE,Nonce,Notify.16430 -ip2
IDr,Notify.16384,IDi,AUTH,TSi,TSr,Notify.16388-16389,Notify.16440 -pr 1.12,3.12,2.5,4.2 -kl
256 -listen -pr2 1.12,3.12,5.0 -fr 2

Page 19

The Subtle Art of Chaining Headers – IKEv2 Case Study Antonios Atlasis

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip SA,KE,Nonce,Notify.16430 -ip2
IDr,Notify.16384,IDi,AUTH,TSi,TSr,Notify.16388-16389,Notify.16440 -pr 1.12,3.12,2.5,4.2 -kl
256 -listen -pr2 1.12,3.12,5.0`python -c 'print("/1.12,3.12,2.5,4.2" *215)'` -fr 20 -sN 10000

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip SA,KE,Nonce,Notify.16430 -ip2
IDr,Notify.16384,IDi,AUTH,TSi,TSr,Notify.16388-16389,Notify.16440,Notify.16440 -pr
1.12,3.12,2.5,4.2 -kl 256 -listen -pr2 1.12,3.12,5.0`python -c 'print("/1.12,3.12,2.5,4.2" *215)'` -fr
160 -sN 65000

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip SA,KE,Nonce,Notify.16430 -ip2
IDr,Notify.16384,IDi,AUTH,TSi,TSr,Notify.16388-16389,Notify.16440 -pr 1.12,3.12,2.5,4.2 -kl
256 -listen -pr2 1.12,3.12,5.0`python -c 'print("/1.12,3.12,2.5,4.2" *215)'` -sN 65230

Many Proposals in an SA and Multiple Transforms in a Proposal of an
IKE_AUTH message

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip SA,KE,Nonce -ip2
IDi,Notify.16384,IDr,Notify.16440,AUTH,TSi,TSr,Notify.16440,SA -pr 1.12,3.12,2.5,4.2 -kl 256 -
listen -pr2 1.12-14,3.12,2.5,4.2`python -c 'print ("/1.12,3.12,2.5,4.2" *221)'` -stimeout 20 -fr 30

Create a Payload > 65535 Bytes

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip SA,KE,Nonce -ip2
IDi,IDr,AUTH,TSi,TSr,Notify.16440 -sN 65000 -pr 1.12,3.12,2.5,4.2 -kl 256 -listen -pr2
1.12,3.12,5.0 -fr 120

DELETE

./yIKEs.py -d 192.168.56.101 -i vboxnet0 -recon -ip Delete -pr 1.12,3.12,2.5,4.2 -kl 256 -spi
"b9516f169a1c4977" -no_of_spi 1 -spi_other "4dc9b679ee4a6320"

Page 20

	Abstract
	1. Introduction
	2. Basic Background: IKEv2 Establishment and IKEv2 Payloads
	2.1. The IKE_SA_INIT exchange
	2.2. The IKE_AUTH exchange
	2.3. IKEv2 Payloads

	3. Reconnaissance
	3.1 Vendor ID
	3.2 Fingerprinting based on Responses to Unusual IKEv2 Messages

	4. Fragmentation
	5. Fuzzing (IKEv2 Payloads)
	6. Denial of Service
	6.1. Many Half-Open IKE-INIT
	6.2. Many half-open IKE_AUTH

	7. Conclusions
	References
	About the Author
	Appendix: Testing Examples using yIKEs
	Triggering Legitimate Responses
	Triggering Legitimate Responses with Minimum Types of Payloads
	Many Transforms in a Proposal
	Many Proposals in an SA
	Multiple Proposals in an SA and Multiple Transforms per Proposal
	Too Many Notify Messages
	Notify Messages of a Big Size
	Out of Common Order Payloads
	Actual number of Transforms < 255 and Number of Transforms Field = 255
	Actual Number of Transforms = 255 and number of Transforms in the corresponding field = 1
	Unexpected Payloads in INIT messages: CERTREQ Payloads
	Half-Open IKE_INIT messages
	As an initiator, send up to IKE_AUTH message
	With Fragmentation Supported
	Many Proposals in an SA and Multiple Transforms in a Proposal of an IKE_AUTH message
	Create a Payload > 65535 Bytes
	DELETE

