
The Subtle Art of Chaining Headers

@AntoniosAtlasis
December 2020

IKEv2 Attack Surface Case Study

@AntoniosAtlasis

Disclaimer

● The content of this presentation is personal work
of its author. It is not related by any means with
his current or past employers, and it does not
constitute any kind of recommendation or official
endorsement.

@AntoniosAtlasis

[localhost] $ whoami
Cyber Security Engineer at European Space Agency during day.

IT Security Researcher for fun at night :-)

Presenter at various Security Cons

– BlackHat, Troopers, Hack in the Box, Brucon, Deepsec, etc.

Main are of interest: Security Analysis of Network Protocols.

– IPv6 has been my favourite :-)

You can follow on twitter @AntoniosAtlasis

Personal blog post: www.secfu.net.

@AntoniosAtlasis

Outline

● Introduction: Motivation and Objective
● Basic IKEv2 Background
● IKEv2 Attack Surface & Attacking Possibilities
● ‘yIKEs’: An open-source tool for IKEv2 security

assessment
– Released today for first time

● Conclusions

@AntoniosAtlasis

Why is the IKEv2 Analysis Important?

● IKE is the key-negotiation
mechanism for IPSec, one of
the main solutions for
establishing VPNs.
– Some of these solutions are even

accredited for the exchange of
classified information.

@AntoniosAtlasis

Objective

● Examine the IKEv2 attack surface
– from an unauthenticated attacker’s perspective.
– By analysing the specifications (RFCs).
– By testing specific implementations.

● This talk will not reveal any new vulnerability.
● But it will help you understand areas of potential exploitation.
● An open-source tool is released today capable of implementing

the described attacks.
● This is not a cryptographic talk

– We will not discuss potential crypto weaknesses – I am not a cryptographer
after all.

Basic IKEv2 Background

@AntoniosAtlasis

The IKEv2 SA EstablishmentThe IKEv2 SA Establishment
In

it
ia

to
r

 (
c
li
e
n

t)
R

e
s
p

o
n

d
e
r (s

e
rv

e
r)

{...} Encrypted – integrity protected

Authentication takes place

Diffie-Helman exchange takes place

Not encrypted yet

IKE_SA_INIT
Exchange

IKE_AUTH
Exchange

@AntoniosAtlasis

IKEv2 Payloads

https://www.iana.org/assignments/ikev2-parameters/ikev2-parameters.xhtml

https://www.iana.org/assignments/ikev2-parameters/ikev2-parameters.xhtml

@AntoniosAtlasis

and IKEv2 Payload Chaining

● Each IKE payload starts with the following generic
payload header:

Refers to the next Payload

Source: IETF RFC 7296

@AntoniosAtlasis

Security Association (SA) Payload

● An SA can have one or
more Proposals.

● Each Proposal can have
one or more Transforms.

● Each Transform can have
one or more Attributes.

@AntoniosAtlasis

Notify Payload

● Potentially almost unlimited length!
● Potentially unlimited different types (> 70 already

defined).

Source:
IETF RFC 7296

@AntoniosAtlasis

How “Encrypted and Authenticated”
{SK} Payload is constructed

various IKEv2 payloads

padding pad. length

ciphertext

encryption

IVSK headerIKEv2 header

Calculation of integrity
hash

int. hash

plaintext

@AntoniosAtlasis

How an IKE_AUTH looks like

IKEv2 Attack Surface
& Attacking Possibilities

@AntoniosAtlasis

Attack Opportunities
for an Unauthenticated Attacker

● At a first glance, IKEv2 is simple.
● Room for potential abuse:

– IKE_INIT Exchange
● Not Encrypted/integrity protected, not authenticated
● Open for MITM (authentication challenge follows)

– IKE_AUTH Exchange (?)
● Encrypted, integrity protected, authentication takes place at the end of it.
● An initiator still have some changes for abuse, until authentication step.

– Child SAs is not an option
● The other end has already been authenticated.

@AntoniosAtlasis

yIKEs – an open source IKEv2 Security
Assessment Tool

● Python3 tool, requires Scapy library; you need to be root :-)

● Auto-configures (bocks) iptables ICMP Destination Unreachable

● To perform successful Diffie-Helman Exchange and IKE_AUTH
Encryption/Decryption, currently only the following are
supported:

– Diffie-Helman Group: 2
– Encryption Key length: 256
– Encryption algorithm: AES-CBC
– Integrity protection algorithm: SHA2-256-128
– PRF: PRF_HMAC_SHA2_256

@AntoniosAtlasis

Triggered IKE_AUTH Responses

● yIKEs does not implement
successful authentication
(due to its testing
objective).

● It does perform though
successful Diffie-Helman
exchange (to trigger the
“Authentication Failed”
Notification and all
potential attacks up to this
point).

@AntoniosAtlasis

Reconnaissance?

● VendorID Payload is your friend
– If enabled in the configuration.
– Nothing new here, of course (just a reminder).

Check ike-scan and
https://github.com/royhills/ike-scan/blob/master/ike-vendor-ids for more info.

https://github.com/royhills/ike-scan/blob/master/ike-vendor-ids

@AntoniosAtlasis

Fingerprinting

● Different responses in “weird” or not so weird combinations can
help a remote attacker to identify its target

– What is the limit (if any) on lengthy (e.g. more than 10000 bytes) IKEv2 messages?
– What is the response in “malformed” packets?

● “Invalid Syntax”?
● “No Proposal Chosen”?
● “Invalid IKE SPI”?
● “Private Use – Errors”?
● No response at all?

● It has been found out that different implementations respond
differently.

● More on “malformed” or rather unusual IKEv2 chains, later.

@AntoniosAtlasis

Denial of Service Attack Possibilities
& Protections

● Initiate many Half-Open IKE-INIT using different spoofed
addresses (IKE is transmitted over UDP):
– Responder will have to reserve resources for an amount of time. Legitimate

users, one way or another, may not be able to reach the VPN server.
– Suitable for DDoS attacks.

● RFC solutions:
– “Cookies”: A simple mechanism introduced to prevent spoofed DoS attacks.

The attacker has just to return the Cookie (sent via Notify payloads).
 [RFC 7296]

– “Puzzles”: Make more computationally expensive for an attacker (typically
Initiator) to create these half-open IKE-INIT SAs than for the defender to
address them. [RFC 8019]

@AntoniosAtlasis

IKEv2 and IoTs

● Sometimes RFCs solve a problem, and then
create a problem for the solution they have
provided.

● [RFC 7815]: “The Internet Protocol Suite is
increasingly used on small devices with severe
constraints on power, memory, and processing
resources”.
– Therefore, [RFC 7815] provides a minimal IKEv2

implementation for such devices.

@AntoniosAtlasis

Minimal IKEv2 Initiator
Implementation [RFC 7815]

@AntoniosAtlasis

So, if you want to DoS IoT Devices
that use IPSec/IKEv2

● You flood a Responder with half IKEv2-INIT
requests by spoofing the address of the devices
you want to spoof.

● Responder responds with a Cookie, or even
worst, with a Puzzle.

● IoT devices cannot complete the IKEv2 SA
Establishment due to the lack of support of
Cookies / Puzzles.

@AntoniosAtlasis

Other Denial of Service Attack
Possibilities

● When source spoofing is not an option, the best
possibility for an attacker is to complete the
IKE_INIT and submit an fake IKE_AUTH request.
– Fake IKE_AUTH = dummy load on the “Encrypted and

Authenticate” Payload
● Cheap for the attacker (i.e. no computations are required)
● Recipient still has to calculate the Integrity hash to verify the

message.

@AntoniosAtlasis

Half-Init & Half-Auth Attacks using
yIKEs

● ./yIKEs.py -d <dst ip addr> -i <iface> -half-init

It does not spoof source address

=> Typically “blocked” after few attempts

● ./yIKEs.py -d <dst ip addr> -i <iface> -half-init -sub
<subnet> -rand

=> Randomise (spoofs) source address from a given subnet
and triggers “Cookies”

=> If in the same LAN, it responds to ARP and performs Half-
Auth attack (with “dummy” encrypted payload) – proof of
concept.

@AntoniosAtlasis

IKE Half-Auth Attack- PoC

@AntoniosAtlasis

IKEv2 Fragmentation
[RFC 7383]

● Fragmentation at IKEv2 level
– To avoid IP fragmentation (due to potential dropping of IP fragments)

● Only IKE_SA_AUTH messages can be IKE-fragmented
● A Notify type=16430 message denotes IKEv2 fragmentation

capabilities
● Combination of IP and IKEv2 fragments may not make sense for

legitimate purposes, but it is not prevented.

@AntoniosAtlasis

IKEv2 Encrypted Fragment Payload

Source: IETF RFC 7383

@AntoniosAtlasis

IKEv2 Fragmentation Attacks

● Incomplete fragments
– Fill-up target’s memory

● Create chains > 65535 bytes
– Theoretically unlimited

● Fragmentation overlapping?
– Not partially (i.e. no offset in fragments)
– Only duplicated fragments

● Still rather not an option.

@AntoniosAtlasis

yIKEs - Fragmentation

-fr The number of IKEv2 fragments > 0 to be
used for IKEv2 fragmentation (in IKE_AUTH
messages).

-ifr The last fragment is not sent

Try to fill-up target’s memory with many huge but
incomplete fragments.

==> imagine multiple (spoofed) senders.

@AntoniosAtlasis

What is the Difference between IP
fragmentation and IKEv2
fragmentation?

Oversized (i.e. near
the limit of an IP
datagram).

@AntoniosAtlasis

What is the Limit of IKEv2
Fragmentation?

● You can have IKEv2 65535
fragments

● With an Ethernet MTU (1480
bytes) you can have an IKE
AUTH packet bigger than 91
million (!) bytes – if you can
construct it.

● To make matter worst, you
can combine it with IP
fragmentation.

@AntoniosAtlasis

Any IKEv2 Official Length
Limitations?

● IETF RFC 7296:
– “All IKEv2 implementations MUST be

able to send, receive, and process IKE
messages that are up to 1280 octets
long, and they SHOULD be able to
send, receive, and process messages
that are up to 3000 octets long”.

● In practice:
– Several implementations allow IKEv2 packets much

bigger than these.

@AntoniosAtlasis

IKEv2 Fragmentation – Oversized
Example

● 926 bytes x 160 fragments + 250 = 148340 bytes >> 65535 bytes
● No protection or alert from underlying Operation system, since the

IP datagram itself never reaches the limit.
● It is on the specific implementation only.

@AntoniosAtlasis

Examples of IKEv2 Fragmentation
Related CVEs

@AntoniosAtlasis

What (else) Could Someone
Potentially Abuse?

● Each exchange may have:
– Several different types of payloads
– Many payloads of one type (not necessarily acceptable for all

types).
– Different sizes for some types of payloads

● Some of them can become extremely big (e.g. Notify or Certificate related
payloads).

– Some Payloads (eg SA) have have their internal, potentially
unlimited, chain.

● Many Proposals, each one having many Transforms, each one having some
Attributes.

● There is no pre-defined order, or strict number of
occurrences (even if e.g. having two SAs may not
make sense).
– Payloads may be repeated

@AntoniosAtlasis

Supported IKEv2 Payload Identifiers

● SA Security Association
● KE Key Exchange
● Nonce Nonce Payload
● CERTREQ Certificate Request Payload
● CERT Certificate Payload
● IDi Identification Payload (Initiator)
● IDr Identification Payload (Responder)
● TSi Traffic Selector (Initiator)
● TSr Traffic Selector (Responder)
● AUTH Authentication Payload
● Notify Notify Payload

@AntoniosAtlasis

Constructing Arbitrary Payload Chains

● In IKE_INIT

./yIKEs.py -i <iface> -d <IP address of destination> -recon

-ip <comma separated list of IKEv2 identifier payloads>

Example:

./yIKEs.py -i vboxet0 -d 192.168.56.101 -recon -ip
SA,KE,Notify.16380,Nonce,Notify.16388-1639

comma-separated list
of Identifier Payloads

Range of Notify
TypesNotify Types separated

with dots (.)

@AntoniosAtlasis

A special case: SA Payload

● For IKE_INIT
– Defining Transforms in a Proposal

-pr 1.12,3.12,2.5,4.2
– Many Transforms in a Proposal:

-pr 1.12-14,3.12,2.5,4.2
– Many Proposals

-pr 1.12-14,3.12,2.5,4.2/1.16,3.14,2.5,4.2
● For IKE_AUTH: Just use -pr2 (same syntax)

@AntoniosAtlasis

Types of Transforms
TYPES OF TRANSFORMS (EXAMPLES)

Encryption: 1 Integrity: 3

AES-CBC 12 HMAC-SHA1-96 2

AES-CTR 13 SHA2-256-128 12

Camellia-CBC 23 SHA2-256-128 14

PRF: 2 GroupDesc: 4

PRF_HMAC_SH
A2_256

5 1024MODPgr 2

PRF_HMAC_SH
A2_384

6 2048MODPgr 14

Extended Sequence Number: 5

No ESN 0

ESN 1

Example: 1.12 => AEC-CBC,
 3.14 => SHA2-256-128
 etc.

For a complete list, check:
https://www.iana.org/assignments/ikev2-parameters/ikev2-parameters.xhtml#ikev2-parameters-3

https://www.iana.org/assignments/ikev2-parameters/ikev2-parameters.xhtml#ikev2-parameters-3

@AntoniosAtlasis

Potentially Malformed Payload
Chains

2 SAs in one IKE_INIT => “Invalid Syntax” for
StrongSwan
Same for KE, Nonce for StrongSwan

● This is not the case for Windows 2019 Servers

=> happily respond to messages with several SA, KE, and Nonce payloads (> 140).

@AntoniosAtlasis

In Summary

● IKEv2 has been simplified significantly, which leaves less
room for potential exploitation.

● However, the chains that can be constructed using the
various payloads and literally endless combinations still
leave room for potential abuse.

● RFCs do not always help in the prevention of such attacks
because:
– They do not enforce strict measures and behaviours in rather unnecessary

for real world cases, hence leaving this to vendors’ understanding of the
various attacking scenarios.

– Some times they “contradict” each other.

@AntoniosAtlasis

Now you can perform your own
assessments using yIKEs:

● yIKEs is released today as open-source at
https://github.com/aatlasis

https://github.com/aatlasis

@AntoniosAtlasis

Some Final Thoughts

● RFCs still written following the “Robustness
principle” philosophy:

"Be conservative in what you send, be liberal in what you
accept from others"

==> Good for interoperability purposes, but for
security?

==> same story is repeated in several protocols
(e.g. see IPv6)

● There have been efforts for a change in IETF
community.

● Time for a change?

@AntoniosAtlasis

The Way is Shown by:

@AntoniosAtlasis

Questions?

@AntoniosAtlasis

References

● Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T. Kivinen, "Internet Key
Exchange Protocol Version 2 (IKEv2)", STD 79, RFC 7296, DOI
10.17487/RFC7296, October 2014, <https://tools.ietf.org/html/rfc7296>.

● Smyslov, V., "Internet Key Exchange Protocol Version 2 (IKEv2) Message
Fragmentation", RFC 7383, DOI 10.17487/RFC7383, November 2014,
<https://www.rfc-editor.org/info/rfc7383>.

● Nir, Y. and V. Smyslov, "Protecting Internet Key Exchange Protocol
Version 2 (IKEv2) Implementations from Distributed Denial-of-Service
Attacks", RFC 8019, DOI 10.17487/RFC8019, November 2016,
<https://www.rfc-editor.org/info/rfc8019>.

● Kivinen, T., "Minimal Internet Key Exchange Version 2 (IKEv2) Initiator
Implementation", RFC 7815, DOI 10.17487/RFC7815, March 2016, <
https://www.rfc-editor.org/info/rfc7815>.

https://www.rfc-editor.org/info/rfc7815

yIKEs
An open-source tool for

IKEv2 security assessment

@AntoniosAtlasis

yIKEs - Introduction

● Basic parameters:

-i <INTERFACE> The interface to use

-d <IP> The IPv4 address of the target.

-p <port> The UDP port of the target (default: 500).

-sp <port> The source UDP port (default 500).

-stimeout The time to sniff when in listen mode, in
seconds (default: 10).

@AntoniosAtlasis

yIKEs – Modes of Operation

-recon Send an INIT packet only and print results of the
Respone only => Initiator.

-listen Listen for INIT packets, print results
and respond with AUTH => Responder.

-recon -listen Send INIT packet, listens for INIT
response, send AUTH packet => Initiator.

(AUTH as responder not supported yet).

-half-init Initiates a half-open INIT attack; responds
to cookies; it also responds with fake AUTH.

@AntoniosAtlasis

Constructing Arbitrary
Payload Chains (2)

● In IKE_AUTH

./yIKEs.py -i <iface> -d <IP address> -recon -listen

-ip2 <comma separated list of IKEv2 identifier payloads>

Example:
./yIKEs.py -i vboxnet0 -d 192.168.56.101 -recon -ip2
IDi,Notify.16384,IDr,AUTH,TSi,TSr

Different comma-separated
list of Identifier Payloads

Automatically Encrypted and put in “Encrypted” Payload

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

