
 

Outsmarting the Smart City 
 

Daniel Crowley, Mauro Paredes, Jennifer Savage 
August 2018 

 

Introduction 
Cities change with the needs and desires of their inhabitants. In an era when individuals are 
purchasing myriad Internet of Things devices for their Smart Homes, many people are taken by 
the promise of a Smart City that is connected in similar ways. Cities have responded by 
deploying Smart City technology where convenient, or to solve specific needs.  
 
Smart City Technology is everywhere once you know how to look for it. The devices are in 
boxes bolted to street posts, on top of buildings, and on city vehicles. Sometimes they are highly 
visible, such as internet connected parking meters that allow individuals to pay their parking with 
their cell phone. Sometimes they are less obvious, such as hidden sensors designed to detect 
flooding or radiation. Someday, people will look at cities without all these bells and whistles as 
being stuck in another time.  
 
This research examines the security of a cross-section of the devices currently in use today. 
Traditional reconnaissance and application testing techniques were used to reveal how deeply 
flawed many of these devices are.  
 

Example Uses of Smart City Technologies 
 
Disaster Management​ - Sensors exist to detect a wide array of natural disasters, which help 
citizens get to safety faster and notify first responders of potential problem areas. Some of the 
sensors available detect radiation, floods, earthquakes, wildfires, hurricanes, tsunamis, and 
tornadoes.  
 
Surveillance​ - Cameras embedded in street lights are less obvious than the traditional models 
and allow citizens to be followed visually as required, such as when a gunshot sound is 
detected. Information about phones and other bluetooth devices present in an area is gathered 
in strategic places. 
 
Resource Management​ - Smart meters on homes, such as water and electric, help reduce the 
amount of manual meter reading required and allow city utilities to cope with an expanding 



 

population without adding addition meter reader personnel. Smart water meters can detect the 
source of a leak based on where water use has spiked.  
 
Traffic Management​ - Smart city devices exist for traffic monitoring and control, including signal 
controllers for emergency vehicles, route planning, traffic optimization, and emergency 
warnings. Smart parking meters allow citizens to pay their toll using their cell phone, while also 
providing useful information about what meters are currently in use. Smart toll collection 
eliminates the need for toll booths. Vehicle to Infrastructure Communication hubs allows 
connected vehicles to be notified of traffic jams and accidents.  
 

City Reconnaissance  
Reconnaissance on cities can be performed with simple passive techniques and open source 
intelligence. Manufacturers of smart city devices do case studies on the implementation of their 
devices within cities as a way of advertising their capabilities. Smart cities are often proud of the 
technology they have deployed, so they advertise it. A search for news reports on a particular 
city’s smart city technologies will turn up a great deal of information. Many cities also make their 
contracts public, which will quite often provide detailed information about what has been 
deployed.  
 
The IANA (Internet Assigned Numbers Authority) ranges assigned to cities are searchable 
online, which can make it much simpler to find IP addresses to use when searching websites 
such as Shodan or Censys. Both Shodan and Censys act as search engines for networks and 
devices, making it simple to identify what is being run and where. 
  
Physical reconnaissance involves walking or driving around and looking for these devices. They 
are often simply mounted on poles on the side of the street, or placed on top of publicly 
accessible buildings such as parking garages.  
 
Source code for devices may be made available online through websites such as Github and 
OSADP, facilitating independent code audits. For devices that do not have open source 
software and firmware, updates are often downloadable and may be reversed to learn more 
about the inner workings of the device. 
 

Device Security  

Echelon i.LON 100 / i.LON SmartServer and Echelon i.LON 600 
 



 

Echelon describes the i.LON 100, now called the i.LON SmartServer, as “a versatile controller, 
router, and smart energy manager that connects control devices to IP-based applications such 
as building automation, enterprise energy management, demand response programs, and 
high-value remote asset management programs.” 

Attack Scenario 
 
The Web and FTP passwords for the i.LON device family are default values out of the box, and 
don’t need to be changed, but when they are changed they must be changed individually. 
Changing the Web password doesn’t change the FTP password, and vice versa. If both 
passwords have been changed from their default values, however, the API for the i.LON 100 / 
i.LON SmartServer does not require authentication with the default configuration. This API, in 
older versions, allows the username and password for the FTP server to be retrieved. In newer 
versions, the FTP credentials cannot be retrieved from the device, but they can be changed 
through the API. 
 
Once authenticated to the FTP server, an attacker can replace the files on the device to change 
the way it functions, which could be used to gain persistent access to the device, add a new 
Web user to access the functionality provided by the Web server, and sabotage the device.  
The i.LON 600 has a secure default authentication configuration, but the i.LON family suffers 
from an authentication bypass bug. When a Web request is made, the path requested (e.g. 
/dir/file.txt for http://example.com/dir/file.txt) is compared character by character against the 
paths in the configuration file to see if the i.LON should ask for a username and password. 
However, if a single slash in a requested path is replaced with two or more slashes, this will 
prevent the i.LON from matching against the configured paths. Once the path is requested at 
the operating system level, the extra slashes will be removed and the file will be served 
normally. 
 
There’s an additional challenge to exploiting the i.LON 600, though. Even with an authentication 
bypass, the i.LON 600 runs in a restricted mode by default which prevents most changes from 
being made. In order to put it in the open mode that allows all settings to be changed, a person 
must physically be present at the device to push a button while it boots. While this prevents an 
attacker from altering the FTP credentials to be able to replace the binaries on the device, it 
does not prevent them from changing the IP address of the device, locking legitimate users out 
of the device until they reset the device while pushing a button on the device itself with a 
paperclip. 

Vulnerabilities 
 
Default Configuration Allows Authentication Bypass 
Affects​: i.LON 100 / SmartServer 



 

Issue​: The default ​WebParams.dat ​ file for the i.LON 100/i.LON SmartServer restricts access 
only to ​/forms/Echelon/* ​, but sensitive configuration items can be changed through use of 
the SOAP API at ​/WSDL/iLON100.WSDL ​, including the FTP username and password. 
Exploitation​: An attacker can invoke API calls directly without the need for authentication and 
change the FTP credentials for the device, then replace the system binaries with malicious 
versions. 
Recommended Fix​: Change the default ​WebParams.dat ​ file to enforce authentication on 
/WSDL/* ​ as well as ​/forms/Echelon/* 
 
Authentication Bypass 
Affects​: i.LON 100 / SmartServer, i.LON 600 
Issue​: Authentication is controlled by configuration directives in the WebParams.dat file. When 
specifying that a particular set of files or directories should be inaccessible without 
authentication, the path is placed in the configuration file as a string with optional wildcard 
character (*) to match zero or more characters. No path canonicalization is applied before 
comparing paths. 
Exploitation​: By issuing Web requests with superfluous slashes in the URI (e.g. 
/forms/////Echelon/SetupSecurity.htm ​) the path will not match the one configured to 
require authentication and will be accessible without any username or password: 
Recommended Fix​: Canonicalize received paths before matching them to ones specified in the 
configuration. 
 
Default Credentials 
Affects​: i.LON 100 / SmartServer, i.LON 600 
Issue​: i.LON 100 and i.LON 600 devices come with default credentials of ​ilon/ilon ​. No 
password change is required on initial setup. 
Exploitation​: Attackers can log in with publicly known credentials if credentials are not changed 
upon installation.  
Recommended Fix​: Require users to change the default credentials upon installation. 
 
Plaintext Passwords 
Affects​: i.LON 100 / SmartServer, i.LON 600 
Issue​: The passwords in the ​WebParams.dat ​ configuration file are in plaintext. 
Exploitation​: An attacker who has gained access to the i.LON device can retrieve the 
WebParams.dat ​ file and obtain the passwords for all users. 
Recommended Fix​: Store the passwords in hashed format. 
 
Unencrypted Communications 
Affects​: i.LON 100 / SmartServer, i.LON 600 
Issue​: Multiple services do not use encryption to protect communications. Web servers are run 
unencrypted by default, and configuration and firmware updates are delivered via FTP. 
Exploitation​: An attacker with the ability to observe a user authenticating to the device can 
capture credentials being sent in plaintext over the network. 



 

Recommended Fix​: Move to encrypted protocols to protect sensitive data in transit. 
 

Battelle Vehicle to Infrastructure Hub 
 
The Batelle V2I Hub software allows connected vehicles to interface with transportation 
infrastructure. It facilitates translation of data from multiple protocols and sources used in 
transportation, allowing them to process messages that are key to connected vehicle 
applications such as red light violation warnings. Through the use of Traveler Information 
Messages (TIM), the system can also develop and send infrastructure information about 
advisory speeds, attributes of physical elements, such as bridge heights, and other data that 
can be used by applications, such as curve speed warnings and over-height warnings. 

Attack Scenarios 
 
In V2I Hub v2.5.1, which has been deprecated along with the rest of v2.x in response to our 
discoveries, there is a hard-coded administrator account which cannot be removed without 
modifying the code. While it’s unlikely this will be changed in any real-world deployment, if it is, 
there is still an API. This API requires a key, and if the default has been changed, it’s possible to 
request the API key directly through the web server, without authentication. In one of the API 
endpoints, there is a SQL injection flaw, which can be used to retrieve credentials for the rest of 
the application. 
 
In V2I Hub v3.0, there is a SQL injection flaw in the login process, which allows attackers to 
retrieve credentials from the database directly, without authentication.  

Vulnerabilities  

V2I Hub v2.5.1 
 
Sensitive Functionality Available Without Authentication 
Issue​: A PHP script available from the web server shuts down the system immediately by 
running the halt command as root. 
Exploitation​: An attacker can simply visit ​http://V2I_HUB/UI/powerdown.php ​ to shut 
down the system on which V2I Hub is running. 
Recommended Fix​: Enforce authentication on ​powerdown.php 
 
Hard-Coded Administrative Account 
Issue​: An administrative account is hard-coded into V2I Hub that cannot be disabled without 
altering the source code. 



 

Exploitation​: An attacker can log in as an admin on any installation of V2I Hub with the 
username ​_battelle ​ and password ​B@ttelle ​. 
Recommended Fix​: Remove the hard-coded account. 
 
Default API Key 
Issue​: There is no requirement to change the default API key used by V2I Hub upon installation. 
Exploitation​: Attackers can use all available API functions on V2I Hub installations where the 
default API key has not been changed. 
Recommended Fix​: Generate a random API key on first use. 
 
API Key File Web Accessible 
Issue​: The API key file is accessible from the Web server. 
Exploitation​: Attackers can visit ​http://V2I_HUB/api/apikey.txt ​ to obtain the current 
API key for a V2I Hub installation, even if it has been changed. 
Recommended Fix​: Move the API key outside the web root. 
 
API Auth Bypass 
Issue​: The API key is checked directly against a user-supplied value in PHP’s ​$_GET ​ global 
variable array, using PHP’s ​strcmp() ​ function followed by a comparison with ​0 ​ using the 
equality operator ​== ​. The ​strcmp() ​ function exhibits some unexpected behavior when it is 
used to compare a string and an array: It returns ​NULL ​. The ​== ​ operator returns true when 
comparing ​0 ​ and ​NULL ​. Moreover, when the name of a GET variable is followed by open and 
close square brackets, such as ​key[] ​, PHP interprets it as an array. 
Exploitation​: An attacker can execute API functions without the correct API key by adding ​[] ​ to 
the end of ​key ​ in the URL when accessing API functions. An example can be seen at 
http://V2I_HUB/api/PluginStatusActions.php?action=list&key[]=any_valu

e_works_here&jtStartIndex=0&jtPageSize=20&jtSorting=name+ASC 

Recommended Fix​: Use PHP’s strict equality operator, ​=== ​, instead of ​strcmp() ​. 
 
Reflected XSS 
Issue​: User-supplied input is placed in the context of the HTTP response without sanitization, 
and can be used to manipulate the way the browser interprets the resulting response and insert 
arbitrary scripting into the page. This can be used to launch a number of attacks, including 
session hijacking and phishing attacks. 
Exploitation​: An attacker who can trick a user who is logged into V2I Hub into visiting a website 
under their control can execute arbitrary Javascript in the browser of that user, taking any 
actions available to the user and accessing all information available to the user. 
Recommended Fix​: When accepting input from users, input should be subject to strict validation 
on the server side using either whitelisting or a “known good input” filter. Whitelisting involves 
creating a list of acceptable characters that can be part of an input. For instance, US zip codes 
should only ever include numbers and dashes, and should be of the format 12345 or 
12345-6789. A “known good input” filter restricts input to a set of possible good inputs. For 
instance, if valid parameter values can only ever be “blue” or “red”, “mauve” should never be 



 

accepted. This strategy is more secure than whitelisting, but in most cases is impractical due to 
the number of possible valid inputs. 
 
SQL Injection 
Issue​: When including user input in the context of code, it is important to make a clear 
distinction that the user input is to be interpreted as data. Without a clear distinction, specially 
crafted input may cause part of the data to be treated as code, allowing users to execute 
arbitrary code. Several locations were found where user data was concatenated into SQL 
queries. 
Exploitation​: Freely available tools such as SQLmap can be used to discover and exploit SQL 
injection flaws such as the ones found in V2I Hub. The following is an example of one way that 
data may be extracted from the database using SQL injection flaws that can be observed in a 
web browser (this displays the database version, name, and logged in database username in 
the page): 
http://V2I_HUB/status/pluginStatus.php?id="-1"or+exists(select+count(

*),concat(((select+concat(0x53714c69,mid((concat(concat_ws(0x04,versi

on(),database(),user()),0x01030307)),1,64)))),floor(rand(0)*2))from+i

nformation_schema.tables+group+by+2)&name=ivpcore.MessageProfiler-- 

Recommended Fix​: Parameterize all SQL queries. Do not concatenate any user input into SQL 
queries, even in seemingly harmless clauses such as ​ORDER BY ​ and ​SORT BY ​ clauses. 
 

V2I Hub v3.0 
SQL Injection 
Issue​: When including user input in the context of code, it is important to make a clear 
distinction that the user input is to be interpreted as data. Without a clear distinction, specially 
crafted input may cause part of the data to be treated as code, allowing users to execute 
arbitrary code. The log in functionality of V2I Hub v3.0 was found to be vulnerable to SQL 
injection in the username.  
Exploitation​: An attacker can manipulate the login query to return unrelated data from the 
database one bit at a time. This includes the username and password of all users in the 
database. 
Recommended Fix​: Parameterize all SQL queries. Do not concatenate any user input into SQL 
queries, even in seemingly harmless clauses such as ​ORDER BY ​ and ​SORT BY ​ clauses. 
 

Libelium Meshlium  
 
Libelium describes the Meshlium as, a “IoT Gateway to connect any sensor 
to any Cloud Platform”. Advertised uses for the platform include cell phone detection, radiation 
monitoring, flood prevention, and agricultural automation. 



 

Attack Scenario 
 
Exploiting the Meshlium involves sending a shell injection payload to one of a series of 
endpoints that do not check authentication and which feed user input into shell commands in an 
unsanitized way. This allows any shell command to be executed as the “www-data” user, which 
controls the web server. This user is also given passwordless sudo access, meaning that it can 
execute any command as root, a user with complete control over the entire system. Attackers 
can now take a variety of actions, including attacking other systems accessible by the 
Meshlium, inserting fake sensor data to disrupt systems that rely upon correct sensor data, or 
selectively removing sensor data to prevent important events from being detected. 
 

Vulnerabilities 
 
Shell Injection 
Issue​: Shell injection is a type of security flaw that is present when improperly sanitized user 
input is used to construct a shell command which is then executed. Several scripts were found 
to be in place on Meshlium devices that execute shell commands that include unsanitized user 
input without authentication, specifically: 
 
/ManagerSystem/plugins/f_instaler/updates/server.php 

/ManagerSystem/plugins/e_system/f0_backup/php/upload.php 

/ManagerSystem/presets/MeshliumRF3GAp/defaults/etc/.fr-td0JMI/Manager

System/upload.php 

/ManagerSystem/upload.php 

 
Exploitation​: Attackers can use various shell metacharacters to change the nature of shell 
commands being executed. For instance, backticks can be used to execute arbitrary commands 
as shown in the proof of concept exploit below: 
 
<!-- start of exploit --> 

<form 

action="http://MESHLIUM_IP/ManagerSystem/plugins/f_instaler/updates/s

erver.php" method=”post”> 

<input type="hidden" id="type" name="link" value="downloadUpdate" /> 

<input type="hidden" id="link" name="link" value="`touch 

/tmp/vulnerable`" /> 

<input type="submit" value="Launch proof of concept exploit" /> 

</form> 

<!-- end of exploit --> 

 



 

To use the exploit above, replace ​MESHLIUM_IP ​ with the IP address of a running Meshlium 
system, and save it as an HTML file. Open the file and press the button shown. This will create 
a file on the Meshlium at ​/tmp/vulnerable ​. 
 
Recommended Fix​: Avoid including user input in shell commands. If user input must be included 
in shell commands, use whitelisting to allow only known safe characters such as letters and 
numbers 

Implications 
 
Due to the severity of the vulnerabilities discovered, any threat actor capable of communicating 
directly with one of these vulnerable devices is capable of using them in the same way as 
legitimate administrators can. It’s also possible to use these devices to pivot into any network 
the device is connected to, which may allow access to other smart city devices or sensitive 
systems. 
 
Cities should be aware of the risk that the intended functionality of a device could be subverted 
if the device is vulnerable. Safety mechanisms such as cameras or backup sensors should be 
used to verify sensor readings used for critical decisions such as evacuations. Considerations 
also should be made for situations where a vulnerable system is reporting normal readings 
when it should not be, or situations where there are abnormal readings when everything is 
normal. 
 
The privacy concerns raised by the use of smart city technologies are heightened with the risk 
of their attack by malicious threat actors. Many smart city devices collect, or at least have 
access to sensitive data. Given data from license plate readers, for instance, a car can be 
tracked throughout a city. 
 

Conclusion 
Smart city technology solves a number of problems, but it comes with the potential for security 
and privacy problems. When security is not well considered in the design, creation, deployment, 
and maintenance of smart city devices, city infrastructure carries a heightened risk of the 
devices having vulnerabilities that may be taken advantage of.  
 
With a greater reliance on smart city devices, there comes a greater risk that the abilities 
granted by these devices may be abused. The same capabilities intended to be used by city 
administrators to enrich a city may be useful for other purposes in the hands of a threat actor. 
There is a risk that citizens will fear that their city’s infrastructure is insecure. 
 



 

If cities intend to continue on the current path of connecting their infrastructure and making 
decisions regarding important things based on these connected devices, there should be more 
in-depth testing of the security of the devices. The public should be assured that these devices 
have been tested, the test information should be made publicly available after disclosure and 
patching, and recommendations should be made regarding reducing the privacy invasions 
inherent to mass data collection by these devices. Smart City device vendors should be 
expected to take security into consideration throughout the development lifecycle and obtain 
in-depth independent security testing of their devices prior to sale. Cities should be advised to 
not purchase devices that have not received this testing. 
 
 
 


