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Introduction

This presentation is about the Hex-Rays Decompiler. It is a de-facto standard tool used by the security 
professionals. Its main features include: 

• Interactive, fast, robust, and programmable decompiler 
• Can handle x86, x64, ARM, ARM64, PowerPC 
• Runs on top of the IDA Pro disassembler 
• Has been evolving for more than 10 years 
• Internals have not been published yet 
• Namely, the intermediate language 

The intermediate language is called microcode. I like the name because it reflects its nature very well: 
each processor instruction is represented by several microinstructions in the microcode. 

The decompiler performs a very straightforward sequence of steps: 

1. Generate microcode 
2. Transform microcode (optimize, resolve memrefs, analyze calls, etc) 
3. Allocate local variables 
4. Generate ctree (it is very similar to AST that is used in compilers) 
5. Beautify ctree, make it more readable 
6. Print ctree 

We will focus on the first two steps, generating and transforming microcode.

Before we delve into details, let us justify the use of microcode. Why do we need an intermediate 
language when building a decompiler? Below are the reasons: 

• It helps to get rid of the complexity of processor instructions 
• Also we get rid of processor idiosyncrasies. Below are examples, they all require special handling 

one way or another:
• x86: segment registers, fpu stack 
• ARM: thumb mode addresses 
• PowerPC: multiple copies of CF register (and other condition registers) 
• MIPS: delay slots 
• Sparc: stack windows 

• It makes the decompiler portable. We "just" need to replace the microcode generator. I'm using 
quotes here because writing a microcode generator is still a complex task. 

Overall writing a decompiler without an intermediate language looks like waste of time to me. 

Is implementing an intermediate language difficult? Your call :) The devil is in details, as usual. While 
designing simple arithmetic operations like add,sub,mul,etc is very simple, there are many other design 



solutions that will affect the simplicity, usefulness, and expressiveness of the language. There are many 
potential pitfalls, many of them not obvious at the start.

Examples of design choices: 

• how should we model the memory? flat model? segments? i/o ports? 
• will it be RISC or CISC or something else? 
• will there be a stack? 
• how many registers? any special registers?

Overall it can be compared to designing a new processor. The simpler we make it, the easier to implement
in software. However, it must be powerful enough to express real world code. 

One thing is certain: it is a lot of fun, indeed! 

There are many other intermediate languages: LLVM, REIL, Binary Ninja's ILs, RetDec's IL, etc. 
However, we use our own language just because I started working on the microcode very long ago (in 
1998 or earlier). In 1999 the microcode looked like this: 

        mov.d EAX,, T0
        ldc.d #5,, T1
        mkcadd.d T0, T1, CF
        mkoadd.d T0, T1, CF
        add.d T0, T1, TT
        setz.d TT,, ZF
        sets.d TT,, ZF
        mov.d TT,, EAX

At that time the intermediate languages listed above did not exist.

Naturally, some design decisions turned out to be bad (and some of them are extremely difficult to fix). 
For example, the notion of virtual stack registers. As many other researchers, I first implemented various 
optimization rules that work on the processor registers. Processor registers are never aliasable and we can 
reason about them without taking into account possible indirect accesses. The same logic applies to parts 
of the memory that can not be addresses indirectly. The idea was “brilliant”: let us map these memory 
regions to so called virtual registers. This way we do not need to modify the existing optimization rules, 
and the accesses to non-aliasable memory will get optimized without any additional effort. While the idea
worked for a while, the shortcomings of this approach became more and more visible with time. For 
example, it was unclear what to do with the objects that are only partially aliasable.

It required a lot of efforts but I'm happy to tell you that the upcoming version will not have virtual 
registers anymore. While the decompiler engine became more complex, a big artificial concept 
disappeared, and this is a good thing.

Design goals

The main design goal for the microcode was simplicity: 

• No processor specific stuff 
• One microinstruction does one thing 
• Small number of instructions (only 45 in 1999, now 72) 
• Simple instruction operands (register, number, memory) 
• Consider only compiler generated code 

And we discard things we do not care about: 



  
• Instruction timing (anyway it is a lost battle) 
• Instruction order (exceptions are a problem!) 
• Order of memory accesses (later we added logic to preserve indirect memory accesses) 
• Handcrafted code 

Initially the microcode looks like RISC code: 

• Memory loads and stores are done using dedicated microinstructions 
• The desired operation is performed on registers 
• Microinstructions have no side effects 
• Each output register is initialized by a separate microinstruction 

It is very verbose. Let us take this code for the x86 processor: 

        004014FB mov eax, [ebx+4]
        004014FE mov dl, [eax+1]
        00401501 sub dl, 61h ; 'a'
        00401504 jz  short loc_401517

This is the initial microcode, it looks like RISC code: 

2. 0 mov    ebx.4, eoff.4           ; 4014FB u=ebx.4      d=eoff.4
2. 1 mov    ds.2, seg.2             ; 4014FB u=ds.2       d=seg.2
2. 2 add    eoff.4, #4.4, eoff.4    ; 4014FB u=eoff.4     d=eoff.4
2. 3 ldx    seg.2, eoff.4, et1.4    ; 4014FB u=eoff.4,seg.2,(STACK,GLBMEM) d=et1.4
2. 4 mov    et1.4, eax.4            ; 4014FB u=et1.4      d=eax.4
2. 5 mov    eax.4, eoff.4           ; 4014FE u=eax.4      d=eoff.4
2. 6 mov    ds.2, seg.2             ; 4014FE u=ds.2       d=seg.2
2. 7 add    eoff.4, #1.4, eoff.4    ; 4014FE u=eoff.4     d=eoff.4
2. 8 ldx    seg.2, eoff.4, t1.1     ; 4014FE u=eoff.4,seg.2,(STACK,GLBMEM) d=t1.1
2. 9 mov    t1.1, dl.1              ; 4014FE u=t1.1       d=dl.1
2.10 mov    #0x61.1, t1.1           ; 401501 u=           d=t1.1
2.11 setb   dl.1, t1.1, cf.1        ; 401501 u=dl.1,t1.1  d=cf.1
2.12 seto   dl.1, t1.1, of.1        ; 401501 u=dl.1,t1.1  d=of.1
2.13 sub    dl.1, t1.1, dl.1        ; 401501 u=dl.1,t1.1  d=dl.1
2.14 setz   dl.1, #0.1, zf.1        ; 401501 u=dl.1       d=zf.1
2.15 setp   dl.1, #0.1, pf.1        ; 401501 u=dl.1       d=pf.1
2.16 sets   dl.1, sf.1              ; 401501 u=dl.1       d=sf.1
2.17 mov    cs.2, seg.2             ; 401504 u=cs.2       d=seg.2
2.18 mov    #0x401517.4, eoff.4     ; 401504 u=           d=eoff.4
2.19 jcnd   zf.1, $loc_401517       ; 401504 u=zf.1

The 4 processor instructions got translated into 20 microinstructions. Each microinstruction does just one 
thing. This approach simplifies analyzing and optimizing microcode. However, microcode can represent 
more complex expressions. Let us see how it looks after the pre-optimization pass: 

2. 0 ldx    ds.2, (ebx.4+#4.4), eax.4 ; 4014FB u=ebx.4,ds.2,
                                      ;(STACK,GLBMEM) d=eax.4
2. 1 ldx    ds.2, (eax.4+#1.4), dl.1 ; 4014FE u=eax.4,ds.2,
                                      ;(STACK,GLBMEM) d=dl.1
2. 2 setb   dl.1, #0x61.1, cf.1     ; 401501 u=dl.1       d=cf.1
2. 3 seto   dl.1, #0x61.1, of.1     ; 401501 u=dl.1       d=of.1
2. 4 sub    dl.1, #0x61.1, dl.1     ; 401501 u=dl.1       d=dl.1
2. 5 setz   dl.1, #0.1, zf.1        ; 401501 u=dl.1       d=zf.1
2. 6 setp   dl.1, #0.1, pf.1        ; 401501 u=dl.1       d=pf.1
2. 7 sets   dl.1, sf.1              ; 401501 u=dl.1       d=sf.1
2. 8 jcnd   zf.1, $loc_401517       ; 401504 u=zf.1



As we see, only 9 microinstructions remain; some intermediate registers disappeared. Sub-instructions 
(like eax.4+#1.4) appeared. Overall the code is still too noisy and verbose.

After further microcode transformations we have: 

2. 1 ldx    ds.2{3}, ([ds.2{3}:(ebx.4+#4.4)].4+#1.4), dl.1{5} ; 4014FE
                        ; u=ebx.4,ds.2,(GLBLOW,sp+20..,GLBHIGH) d=dl.1
2. 2 sub    dl.1{5}, #0x61.1, dl.1{6} ; 401501 u=dl.1       d=dl.1
2. 3 jz     dl.1{6}, #0.1, @7       ; 401504 u=dl.1

(numbers in curly braces are value numbers) 

The final microcode is: 

        jz [ds.2:([ds.2:(ebx.4+#4.4)].4+#1.4)].1, #0x61.1, @7

I would not call this code "very simple" but it is ready to be translated to ctree. It maps to C in a natural 
way. The output will look like this: 

        if ( argv[1][1] == 'a' )
          ...

I have to admit that reading microcode is not easy (but hey, it was not designed for that! :) Seriously, we 
will think of improving the readability. 

We implemented the translation from processor instructions to microinstructions in plain C++. We do not 
use automatic code generators or machine descriptions to generate them. Anyway there are too many 
processor specific details to make them feasible. 

Microcode details

Each microinstruction has 3 operands: 

        opcode left, right, destination

where left/right/destination are the operands. Some of them may be missing for some instructions. Let 
us quickly enumerate the microinstruction opcodes. The following groups exist: 

• constants and moves 
• changing operand size 
• loading from memory and storing to memory 
• comparisons 
• arithmetic and bitwise operations 
• shifts 
• generating condition codes 
• unconditional flow control 
• conditional jumps 
• floating point operations 
• miscellaneous 

Opcodes: constants and move

There are just 2 instructions in this group: 



  
        ldc  l,    d   // load constant
        mov  l,    d   // move

They copy a value from (l)eft to (d)estination. The operand sizes of 'l' and 'd' must be the same. 

Opcodes: changing operand size

Copy from (l) to (d)estination 

        xds  l,    d   // extend (signed)
        xdu  l,    d   // extend (unsigned)
        low  l,    d   // take low part
        high l,    d   // take high part

They too copy a value from (l)eft to (d)estination. However, the operand sizes of 'l' and 'd' must differ. 
Since real world programs work with partial registers (like al, ah), we absolutely need low/high. 

Opcodes: load and store

We have only 2 instructions that explicitly work with memory:

        stx  l, sel, off // store value to memory
        ldx  sel, off, d // load value from memory

where {sel, off} is a segment:offset pair. Usually seg is ds or cs; for processors with flat memory it is 
ignored. off is the most interesting part, it is a memory address. Example: 

        ldx ds.2, (ebx.4+#4.4), eax.4
        stx #0x2E.1, ds.2, eax.4

Opcodes: comparisons

The standard set of comparisons, nothing unexpected:

        sets  l,    d  // sign bit
        setp  l, r, d  // unordered/parity
        setnz l, r, d  // not equal
        setz  l, r, d  // equal
        setae l, r, d  // above or equal
        setb  l, r, d  // below
        seta  l, r, d  // above
        setbe l, r, d  // below or equal
        setg  l, r, d  // greater
        setge l, r, d  // greater or equal
        setl  l, r, d  // less
        setle l, r, d  // less or equal
        seto  l, r, d  // overflow of (l-r)

They compare (l)left against (r)right. The result is stored in (d)estination, a bit register like CF,ZF,SF,... 



Opcodes: arithmetic and bitwise operations

This group of instructions won't cause any difficulties in understanding :)

        neg  l,    d   // -l    -> d
        lnot l,    d   // !l    -> d
        bnot l,    d   // ~l    -> d
        add  l, r, d   // l + r -> d
        sub  l, r, d   // l - r -> d
        mul  l, r, d   // l * r -> d
        udiv l, r, d   // l / r -> d
        sdiv l, r, d   // l / r -> d
        umod l, r, d   // l % r -> d
        smod l, r, d   // l % r -> d
        or   l, r, d   // bitwise or
        and  l, r, d   // bitwise and
        xor  l, r, d   // bitwise xor

Operand sizes must be the same. The result is stored in (d)estination. 

Opcodes: shifts (and rotations?)

        shl  l, r, d   // shift logical left
        shr  l, r, d   // shift logical right
        sar  l, r, d   // shift arithmetic right

Shift (l)eft by the amount specified in (r)ight. The result is stored into (d)estination. Initially our 
microcode had rotation operations but they turned out to be useless because they can not be nicely 
represented in C. 

Opcodes: condition codes

We need these instructions to precisely track carry and overflow bits. Normally these instructions get 
eliminated during microcode transformations. 

        cfadd l, r, d   // carry    of (l+r)
        ofadd l, r, d   // overflow of (l+r)
        cfshl l, r, d   // carry    of (l<>r)

Perform the operation on (l)left and (r)ight. Generate carry or overflow bits. Store CF or OF into 
(d)estination. 

Opcodes: unconditional flow control

        ijmp {sel, off}    // indirect jmp
        goto  l            // unconditional jmp
        call  l      d     // direct call
        icall {sel, off} d // indirect call
        ret                // return

Initially calls have only the callee address. The decompiler retrieves the callee prototype from the 
database or tries to guess it. After that the 'd' operand contains all information about the call, including the
function prototype and actual arguments. Example (the 'd' operand is enclosed in the angle brackets): 

        call $___org_fprintf <...:
                â€œFILE *â€  ﾝ &($stdout).4,
                "const char *" &($aArIllegalSwitc).4,
                _DWORD xds.4([ds.2:([ds.2:(ebx.4+#4.4)].4+#1.4)].1)>.0



  
Opcodes: conditional jumps

Again, a very familiar set of instructions, many processors have them exactly like this:

        jcnd  l,    d   // any arbitrary condition
        jnz   l, r, d   // ZF=0          Not Equal
        jz    l, r, d   // ZF=1          Equal
        jae   l, r, d   // CF=0          Above or Equal
        jb    l, r, d   // CF=1          Below
        ja    l, r, d   // CF=0 & ZF=0   Above
        jbe   l, r, d   // CF=1 | ZF=1   Below or Equal
        jg    l, r, d   // SF=OF & ZF=0  Greater
        jge   l, r, d   // SF=OF         Greater or Equal
        jl    l, r, d   // SF!=OF        Less
        jle   l, r, d   // SF!=OF | ZF=1 Less or Equal
        jtbl  l, cases  // Table jump

Compare (l)eft against (r)right and jump to (d)estination if the condition holds. jtbl is used to represent 
'switch' idioms. 

Opcodes: floating point operations

        f2i   l,    d   // int(l) => d; convert fp -> int, any size
        f2u   l,    d   // uint(l)=> d; convert fp -> uint,any size
        i2f   l,    d   // fp(l)  => d; convert int -> fp, any size
        i2f   l,    d   // fp(l)  => d; convert uint-> fp, any size
        f2f   l,    d   // l      => d; change fp precision
        fneg  l,    d   // -l     => d; change sign
        fadd  l, r, d   // l + r  => d; add
        fsub  l, r, d   // l - r  => d; subtract
        fmul  l, r, d   // l * r  => d; multiply
        fdiv  l, r, d   // l / r  => d; divide

Basically we have conversions and a few arithmetic operations. There is little we can do with these 
operations, they are not really optimizable. Other fp operations (like sqrt) use helper functions. 

Opcodes: miscellaneous

        nop            // no operation
        und        d   // undefine
        ext  l, r, d   // external insn
        push l
        pop        d

Some operations can not be expressed in microcode. If possible, we use intrinsic calls for them (e.g. 
sqrtpd). If no intrinsic call exists, we use ext for them and only try to keep track of data dependencies 
(e.g. we know that aam uses ah and modifies ax). und is used when a register is spoiled in a way that we 
can not predict or describe (e.g. ZF after mul). 

This completes enumerating of 72 instructions that are currently defined in the microcode. Probably we 
should extend microcode, for example, to include the ternary operator and pre/post increment/decrement 
operators. However, we are not in hurry to do so because it is not obvious if benefits overweight the 
added complexity. 



Operand types

As everyone else, initially we had only constant integer numbers and registers. All textbooks use these 2 
operand types, this is why :) Second, registers and plain numbers are the easiest things to handle. 

Life was simple and easy in the good old days! Alas, the reality is more diverse. In order to be able to 
represent real software, we quickly added: 

• stack variables 
• global variables 
• address of an operand 
• list of cases (for switches) 
• result of another instruction 
• helper functions 
• call arguments 
• string and floating point constants 

Let us inspect them. 

Register operands

Our microcode engine provides unlimited number of microregisters (unlimited at least in theory). 
Processor registers are mapped to microregisters. Usually there are more microregisters than the 
processor registers. We allocate them as needed when generating microcode. The microregister names 
follow the processor register names (for simplicity), with some exceptions. For example: 

        AL is mapped into al.1 (mreg number 8)
        AH is mapped into ah.1 (mreg number 9)
        EAX is mapped into eax.4 (mreg numbers 8-11)
        RSI is mapped into rsi.8

Microregisters are considered to be little endian even for big engian platforms. This is logical because the 
endianness is an attribute of the memory, not the processor itself. 



  

Stack as viewed by the decompiler

The function stack frame is modeled the following way: 

 

The yellow part is mapped to microregisters. The red part is aliasable. 

The "output stkargs" region is a notion that does not exist in IDA. The lowest part of the frame for IDA 
are the "local variables" region, offsets below would have negative values. 

However, we need more precise modelling of the frame in the decompiler because we want to track and 
reason about the outgoing stack arguments. This is why the stack offsets in IDA and the decompiler are 
different. In the decompiler the stack offsets are never negative. 

More operand types!

When compilers need to manipulate 64-bit values in a 32-bit platform, they usually use a standard pair of 
registers like edx:eax. My initial idea was to map EAX and EDX registers into contiguous registers: 

        EAX maps to 8-11
        EDX maps to 12-15
        EDX:EAX naturally maps to 8-15

Unfortunately (or fortunately?) compilers get better and nowadays may use any registers as a pair; or 
even pair a stack location with a register: sp+4:esi. Therefore we ended up with a new operand type: an 
operand pair. It consists of low and high halves. They can be located anywhere (stack, registers, 
memory). Examples: 



        :(edx.4:eax.4).8 holds a 64-bit value; edx is the high part, eax is the low 
part
        :(rsi.8:rdi.8).16 holds a 128-bit value

Scattered operands

The nightmare has just begun, in fact. Modern compilers use very intricate rules to pass structs and unions
by value to and from the called functions. This is dictated by ABI (example: 
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf) 

A register like RDI may contain multiple structure fields. Some structure fields may be passed on the 
stack, some in the floating registers, some in general registers (unaligned wrt register start). We had no 
other choice but to add scattered operands that can represent all the above. 

For example, a function that returns a struct in rax: 

        struct div_t { int quot; int rem; };
        div_t div(int numer, int denom);

Assembler code: 

        mov     edi, esi
        mov     esi, 1000
        call    _div
        movsxd  rdx, eax
        sar     rax, 20h
        add     [rbx], rdx
        imul    eax, 1000
        cdqe
        add     rax, [rbx+8]

and the output is: 

        v2 = div(a2, 1000);
        *a1 += v2.quot;
        result = a1[1] + 1000 * v2.rem;

Our decompiler managed to represent things nicely! Similar or more complex situations exist for all 64-
bit processors. Support for scattered operands is not complete yet but we continue to improve it. 

Microcode transformations

The initial preoptimization step uses a very simple constant and register propagation algorithm. It is very
fast and gets rid of most temporary registers and reduces the microcode size by two. After this step we 
use a more sophisticated propagation algorithm. It also works on the basic block level. It is much slower 
than the preoptimization step, but it can 

• handle partial registers (propagate eax into an expression that uses ah) 
• move an entire instruction inside another 
• work with operands other that registers (stack and global memory, pairs, and scattered operands) 

At the next step we build the control flow graph and perform data flow analysis to find where each 
operand is used or defined. The use/def information is used to: 

• delete dead code (if the instruction result is not used, then we delete the instruction) 
• propagate operands and instructions across block boundaries 

https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf


  
• generate assertions for future optimizations (we know that eax is zero at the target of jz eax if 

there are no other predecessors; so we generate mov 0, eax). These assertions can be propagated 
and lead to more simplifications. 

We implemented (in plain C++) hundreds of very small optimization rules. For example: 

        (x-y)+y   => x
        x- ~y     => x+y+1
        x*m-x*n   => x*(m-n)
        (x<<n)-x  => (2**n-1)*x
        -(x-y)    => y-x
        (~x) < 0  => x >= 0
        (-x)*n    => x*-n

These rules are simple and sound. They apply to all cases without exceptions. And they do not depend on 
the compiler. This is one of the reasons why our decompiler does not require the exact version of a 
compiler that was used to build the input file: almost all our rules are generic. Naturally, compiler specific
stuff exists but we try to handle it with configuration parameters. For more details please see the 
"Compiler" dialog and IDA and the hexrays.cfg configuration file. 

There are more complex rules than the above. For example, this rule recognizes 64-bit subtractions: 

        CMB18 (combination rule #18):
          sub xlow.4, ylow.4, rlow.4
          sub xhigh.4, (xdu.4((xlow.4 <u ylow.4))+yhigh.4), rhigh.4
        =>
          sub x.8, y.8, r.8

        if yhigh is zero, then it can be optimized away

        a special case when xh is zero:

          sub    xl, yl, rl
          neg    (xdu(lnot(xl >=u yl))+yh), rh

We have a swarm of rules like this. They work together like little ants and the outcome is bigger than a 
simple sum of parts. 

Unfortunately we do not have a language to describe these rules, so we manually implemented these rules
in C++. However, our pattern recognition does not naively check if the previous or next instruction is the 
expected one. We use data dependencies to find the instructions that form the pattern. For example, the 
CMB43 rule looks for the low instruction by searching forward for an instruction that accesses x: 

      CMB43:
        mul #(1<<N).4, xl.4, yl.4
        low (x.8 >>a #M.1), yh.4, M == 32-N

        =>

        mul x.8, #(1<<N).8, y.8

It will successfully find low in the following sequence:

        mul #8.4, eax.4, ecx.4
          add #124.4, esi.4, esi.4
        low (rax.8 >>a #29.1), ebx.4, M == 32-N



The add instruction does not modify rax and will be simply skipped. 

There are also rules that work across multiple blocks: 

BLK1 jl xh, yh, SUCCESS
BLK2 jg xh, yh, @FAILED
BLK3 jb xl, yl, SUCCESS
BLK4 ... (FAILED)

BLK5 ... (SUCCESS)

where:
xh means high half of x
xl means low half of x
yh means high half of y
yl means low half of y 

The 64bit 3-way check rule transforms this structure into simple: 

jl x, y, SUCCESS
FAILED: ...

SUCCESS: ...

Another example: signed division by power2. Signed division is sometimes replaced by a shift: 

BLK1 jcnd !SF(x), BLK3
BLK2 add x, (1<<N)-1, x
BLK3 sar x, N, r

There is a simple rule that transforms it back: 

sdiv x, (1<<N), r

Microcode hooks

I'm happy to tell you that it is possible to write plugins for the decompiler. Plugins can invoke the 
decompiler engine and use the results, or improve the decompiler output. It is also possible to use the 
microcode to find the possible register values at any given point, compare blocks of code, etc. 

It is possible to hook to the optimization engine and add your own transformation rules. Please check the 
Decompiler SDK: it has many examples. 

While it is possible to add new rules, currently it is not possible to disable an existing rule However, since
almost all of them are sound and do not use heuristics, it is not a problem. In fact the processor specific 
parts of the decompiler internally use these hooks as well. 

For example, the ARM decompiler has the following rule: 

        ijmp cs, initial_lr => ret

so that a construct like BX LR will be converted into RET. However, we have to prove that the value of 
LR at the "BX LR" instruction is equal to the initial value of LR at the entry point. How do we find if we 
jump to the initial_lr? We need to use data flow analysis. 



  
Data flow analysis

Virtually all transformation rules are based on data flow analysis. Very rarely we check the previous or 
the next instruction for pattern matching. Instead, we calculate the use/def lists for the instruction and 
search for the instructions that access them. We keep track of what is used and what is defined by every 
microinstruction (in red). These lists are calculated when necessary: 

 mov    %argv.4, ebx.4    ; 4014E9 u=arg+4.4    d=ebx.4
 mov    %argc.4, edi.4    ; 4014EC u=arg+0.4    d=edi.4
 mov    &($dword_41D128).4, ST18_4.4 ; 4014EF u=      d=ST18_4.4
 goto   @12               ; 4014F6 u= d=

where u stands for use and d stands for define. 

Similar blocks are maintained for each block. Instead of calculating them on request we keep them 
precalculated: 

; 1WAY-BLOCK 6 INBOUNDS: 5 OUTBOUNDS: 58 [START=401515 END=401517]
; USE: ebx.4,ds.2,(GLBLOW,GLBHIGH)
; DEF: eax.4,(cf.1,zf.1,sf.1,of.1,pf.1,edx.4,ecx.4,fps.2,fl.1,
;             c0.1,c2.1,c3.1,df.1,if.1,ST00_12.12,GLBLOW,GLBHIGH)
; DNU: eax.4

For each block we keep both must and may access lists. The values in parenthesis are part of the may 
list. For example, an indirect memory access may read any memory. This is why GLBLOW and 
GLBHIGH are present in the may list: 

add [ds.2:(ebx.4+#4.4)].4, #2.4, ST18_4.4 ; u=ebx.4,ds.2,(GLBLOW,GLBHIGH) d=ST18_4.4

Based on use-def lists of each block the decompiler can build global use-def chains and answer questions 
like: 

• Is a defined value used anywhere? If yes, where exactly? Just one location? If yes, what about 
moving the definition there? If the value is used nowhere, what about deleting it? 

• Where does a value come from? If only from one location, can we propagate (or even move) it? 
• What are the values are the used but never defined? These are the candidates for input arguments 
• What are the values that are defined but never used but reach the last block? These are the 

candidates for the return values. 

Here is an example how we use the data flow analysis. Image we have code like this: 

BLK1 mov #5.4, esi.4

BLK2 Do some stuff
     that does not modify esi.4

BLK3 call func(esi.4)

We calculate the use-def chains for all blocks. They clearly show that esi is defined only in block #1: 

BLK1 mov #5.4, esi.4                    use:
                                        def: esi.4{3}

BLK2 Do some stuff                      use: ...
     that does not modify esi.4         def: ...



BLK3 call func(esi.4)                   use: esi.4{1}
                                        def: ...

Therefore it can be propagated: 

BLK3 call func(#5.4)

Publishing microcode

The microcode API for C++ is available now, it is shipped together with the decompiler (see the 
plugins/hexrays subdirectory). The Python API is not available yet, we will add it later. Please check out 
the sample plugins that show how to use the new API. 

Our decompiler verifies the microcode for consistency after every transformation. Thanks to this very 
strict approach we receive very few microcode related bug reports. Second, we have quite extensive test 
suites that constantly grow. A hundred or so of processors cores run tests endlessly, this also helps us to 
discover and fix bugs before they cause inconveniences to anyone. 

However, there is still a chance of a bug leaking to the release. So, found a bug? Please send us the 
database with the description how to reproduce it. We solve most problems within one day or even faster. 

Any technical feedback or challenges? We love that, bring them on! :) 
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