

Decompiler internals: microcode
(c) Ilfak Guilfanov

Introduction

This presentation is about the Hex-Rays Decompiler. It is a de-facto standard tool used by the security
professionals. Its main features include:

• Interactive, fast, robust, and programmable decompiler
• Can handle x86, x64, ARM, ARM64, PowerPC
• Runs on top of the IDA Pro disassembler
• Has been evolving for more than 10 years
• Internals have not been published yet
• Namely, the intermediate language

The intermediate language is called microcode. I like the name because it reflects its nature very well:
each processor instruction is represented by several microinstructions in the microcode.

The decompiler performs a very straightforward sequence of steps:

1. Generate microcode
2. Transform microcode (optimize, resolve memrefs, analyze calls, etc)
3. Allocate local variables
4. Generate ctree (it is very similar to AST that is used in compilers)
5. Beautify ctree, make it more readable
6. Print ctree

We will focus on the first two steps, generating and transforming microcode.

Before we delve into details, let us justify the use of microcode. Why do we need an intermediate
language when building a decompiler? Below are the reasons:

• It helps to get rid of the complexity of processor instructions
• Also we get rid of processor idiosyncrasies. Below are examples, they all require special handling

one way or another:
• x86: segment registers, fpu stack
• ARM: thumb mode addresses
• PowerPC: multiple copies of CF register (and other condition registers)
• MIPS: delay slots
• Sparc: stack windows

• It makes the decompiler portable. We "just" need to replace the microcode generator. I'm using
quotes here because writing a microcode generator is still a complex task.

Overall writing a decompiler without an intermediate language looks like waste of time to me.

Is implementing an intermediate language difficult? Your call :) The devil is in details, as usual. While
designing simple arithmetic operations like add,sub,mul,etc is very simple, there are many other design

solutions that will affect the simplicity, usefulness, and expressiveness of the language. There are many
potential pitfalls, many of them not obvious at the start.

Examples of design choices:

• how should we model the memory? flat model? segments? i/o ports?
• will it be RISC or CISC or something else?
• will there be a stack?
• how many registers? any special registers?

Overall it can be compared to designing a new processor. The simpler we make it, the easier to implement
in software. However, it must be powerful enough to express real world code.

One thing is certain: it is a lot of fun, indeed!

There are many other intermediate languages: LLVM, REIL, Binary Ninja's ILs, RetDec's IL, etc.
However, we use our own language just because I started working on the microcode very long ago (in
1998 or earlier). In 1999 the microcode looked like this:

 mov.d EAX,, T0
 ldc.d #5,, T1
 mkcadd.d T0, T1, CF
 mkoadd.d T0, T1, CF
 add.d T0, T1, TT
 setz.d TT,, ZF
 sets.d TT,, ZF
 mov.d TT,, EAX

At that time the intermediate languages listed above did not exist.

Naturally, some design decisions turned out to be bad (and some of them are extremely difficult to fix).
For example, the notion of virtual stack registers. As many other researchers, I first implemented various
optimization rules that work on the processor registers. Processor registers are never aliasable and we can
reason about them without taking into account possible indirect accesses. The same logic applies to parts
of the memory that can not be addresses indirectly. The idea was “brilliant”: let us map these memory
regions to so called virtual registers. This way we do not need to modify the existing optimization rules,
and the accesses to non-aliasable memory will get optimized without any additional effort. While the idea
worked for a while, the shortcomings of this approach became more and more visible with time. For
example, it was unclear what to do with the objects that are only partially aliasable.

It required a lot of efforts but I'm happy to tell you that the upcoming version will not have virtual
registers anymore. While the decompiler engine became more complex, a big artificial concept
disappeared, and this is a good thing.

Design goals

The main design goal for the microcode was simplicity:

• No processor specific stuff
• One microinstruction does one thing
• Small number of instructions (only 45 in 1999, now 72)
• Simple instruction operands (register, number, memory)
• Consider only compiler generated code

And we discard things we do not care about:

• Instruction timing (anyway it is a lost battle)
• Instruction order (exceptions are a problem!)
• Order of memory accesses (later we added logic to preserve indirect memory accesses)
• Handcrafted code

Initially the microcode looks like RISC code:

• Memory loads and stores are done using dedicated microinstructions
• The desired operation is performed on registers
• Microinstructions have no side effects
• Each output register is initialized by a separate microinstruction

It is very verbose. Let us take this code for the x86 processor:

 004014FB mov eax, [ebx+4]
 004014FE mov dl, [eax+1]
 00401501 sub dl, 61h ; 'a'
 00401504 jz short loc_401517

This is the initial microcode, it looks like RISC code:

2. 0 mov ebx.4, eoff.4 ; 4014FB u=ebx.4 d=eoff.4
2. 1 mov ds.2, seg.2 ; 4014FB u=ds.2 d=seg.2
2. 2 add eoff.4, #4.4, eoff.4 ; 4014FB u=eoff.4 d=eoff.4
2. 3 ldx seg.2, eoff.4, et1.4 ; 4014FB u=eoff.4,seg.2,(STACK,GLBMEM) d=et1.4
2. 4 mov et1.4, eax.4 ; 4014FB u=et1.4 d=eax.4
2. 5 mov eax.4, eoff.4 ; 4014FE u=eax.4 d=eoff.4
2. 6 mov ds.2, seg.2 ; 4014FE u=ds.2 d=seg.2
2. 7 add eoff.4, #1.4, eoff.4 ; 4014FE u=eoff.4 d=eoff.4
2. 8 ldx seg.2, eoff.4, t1.1 ; 4014FE u=eoff.4,seg.2,(STACK,GLBMEM) d=t1.1
2. 9 mov t1.1, dl.1 ; 4014FE u=t1.1 d=dl.1
2.10 mov #0x61.1, t1.1 ; 401501 u= d=t1.1
2.11 setb dl.1, t1.1, cf.1 ; 401501 u=dl.1,t1.1 d=cf.1
2.12 seto dl.1, t1.1, of.1 ; 401501 u=dl.1,t1.1 d=of.1
2.13 sub dl.1, t1.1, dl.1 ; 401501 u=dl.1,t1.1 d=dl.1
2.14 setz dl.1, #0.1, zf.1 ; 401501 u=dl.1 d=zf.1
2.15 setp dl.1, #0.1, pf.1 ; 401501 u=dl.1 d=pf.1
2.16 sets dl.1, sf.1 ; 401501 u=dl.1 d=sf.1
2.17 mov cs.2, seg.2 ; 401504 u=cs.2 d=seg.2
2.18 mov #0x401517.4, eoff.4 ; 401504 u= d=eoff.4
2.19 jcnd zf.1, $loc_401517 ; 401504 u=zf.1

The 4 processor instructions got translated into 20 microinstructions. Each microinstruction does just one
thing. This approach simplifies analyzing and optimizing microcode. However, microcode can represent
more complex expressions. Let us see how it looks after the pre-optimization pass:

2. 0 ldx ds.2, (ebx.4+#4.4), eax.4 ; 4014FB u=ebx.4,ds.2,
 ;(STACK,GLBMEM) d=eax.4
2. 1 ldx ds.2, (eax.4+#1.4), dl.1 ; 4014FE u=eax.4,ds.2,
 ;(STACK,GLBMEM) d=dl.1
2. 2 setb dl.1, #0x61.1, cf.1 ; 401501 u=dl.1 d=cf.1
2. 3 seto dl.1, #0x61.1, of.1 ; 401501 u=dl.1 d=of.1
2. 4 sub dl.1, #0x61.1, dl.1 ; 401501 u=dl.1 d=dl.1
2. 5 setz dl.1, #0.1, zf.1 ; 401501 u=dl.1 d=zf.1
2. 6 setp dl.1, #0.1, pf.1 ; 401501 u=dl.1 d=pf.1
2. 7 sets dl.1, sf.1 ; 401501 u=dl.1 d=sf.1
2. 8 jcnd zf.1, $loc_401517 ; 401504 u=zf.1

As we see, only 9 microinstructions remain; some intermediate registers disappeared. Sub-instructions
(like eax.4+#1.4) appeared. Overall the code is still too noisy and verbose.

After further microcode transformations we have:

2. 1 ldx ds.2{3}, ([ds.2{3}:(ebx.4+#4.4)].4+#1.4), dl.1{5} ; 4014FE
 ; u=ebx.4,ds.2,(GLBLOW,sp+20..,GLBHIGH) d=dl.1
2. 2 sub dl.1{5}, #0x61.1, dl.1{6} ; 401501 u=dl.1 d=dl.1
2. 3 jz dl.1{6}, #0.1, @7 ; 401504 u=dl.1

(numbers in curly braces are value numbers)

The final microcode is:

 jz [ds.2:([ds.2:(ebx.4+#4.4)].4+#1.4)].1, #0x61.1, @7

I would not call this code "very simple" but it is ready to be translated to ctree. It maps to C in a natural
way. The output will look like this:

 if (argv[1][1] == 'a')
 ...

I have to admit that reading microcode is not easy (but hey, it was not designed for that! :) Seriously, we
will think of improving the readability.

We implemented the translation from processor instructions to microinstructions in plain C++. We do not
use automatic code generators or machine descriptions to generate them. Anyway there are too many
processor specific details to make them feasible.

Microcode details

Each microinstruction has 3 operands:

 opcode left, right, destination

where left/right/destination are the operands. Some of them may be missing for some instructions. Let
us quickly enumerate the microinstruction opcodes. The following groups exist:

• constants and moves
• changing operand size
• loading from memory and storing to memory
• comparisons
• arithmetic and bitwise operations
• shifts
• generating condition codes
• unconditional flow control
• conditional jumps
• floating point operations
• miscellaneous

Opcodes: constants and move

There are just 2 instructions in this group:

 ldc l, d // load constant
 mov l, d // move

They copy a value from (l)eft to (d)estination. The operand sizes of 'l' and 'd' must be the same.

Opcodes: changing operand size

Copy from (l) to (d)estination

 xds l, d // extend (signed)
 xdu l, d // extend (unsigned)
 low l, d // take low part
 high l, d // take high part

They too copy a value from (l)eft to (d)estination. However, the operand sizes of 'l' and 'd' must differ.
Since real world programs work with partial registers (like al, ah), we absolutely need low/high.

Opcodes: load and store

We have only 2 instructions that explicitly work with memory:

 stx l, sel, off // store value to memory
 ldx sel, off, d // load value from memory

where {sel, off} is a segment:offset pair. Usually seg is ds or cs; for processors with flat memory it is
ignored. off is the most interesting part, it is a memory address. Example:

 ldx ds.2, (ebx.4+#4.4), eax.4
 stx #0x2E.1, ds.2, eax.4

Opcodes: comparisons

The standard set of comparisons, nothing unexpected:

 sets l, d // sign bit
 setp l, r, d // unordered/parity
 setnz l, r, d // not equal
 setz l, r, d // equal
 setae l, r, d // above or equal
 setb l, r, d // below
 seta l, r, d // above
 setbe l, r, d // below or equal
 setg l, r, d // greater
 setge l, r, d // greater or equal
 setl l, r, d // less
 setle l, r, d // less or equal
 seto l, r, d // overflow of (l-r)

They compare (l)left against (r)right. The result is stored in (d)estination, a bit register like CF,ZF,SF,...

Opcodes: arithmetic and bitwise operations

This group of instructions won't cause any difficulties in understanding :)

 neg l, d // -l -> d
 lnot l, d // !l -> d
 bnot l, d // ~l -> d
 add l, r, d // l + r -> d
 sub l, r, d // l - r -> d
 mul l, r, d // l * r -> d
 udiv l, r, d // l / r -> d
 sdiv l, r, d // l / r -> d
 umod l, r, d // l % r -> d
 smod l, r, d // l % r -> d
 or l, r, d // bitwise or
 and l, r, d // bitwise and
 xor l, r, d // bitwise xor

Operand sizes must be the same. The result is stored in (d)estination.

Opcodes: shifts (and rotations?)

 shl l, r, d // shift logical left
 shr l, r, d // shift logical right
 sar l, r, d // shift arithmetic right

Shift (l)eft by the amount specified in (r)ight. The result is stored into (d)estination. Initially our
microcode had rotation operations but they turned out to be useless because they can not be nicely
represented in C.

Opcodes: condition codes

We need these instructions to precisely track carry and overflow bits. Normally these instructions get
eliminated during microcode transformations.

 cfadd l, r, d // carry of (l+r)
 ofadd l, r, d // overflow of (l+r)
 cfshl l, r, d // carry of (l<>r)

Perform the operation on (l)left and (r)ight. Generate carry or overflow bits. Store CF or OF into
(d)estination.

Opcodes: unconditional flow control

 ijmp {sel, off} // indirect jmp
 goto l // unconditional jmp
 call l d // direct call
 icall {sel, off} d // indirect call
 ret // return

Initially calls have only the callee address. The decompiler retrieves the callee prototype from the
database or tries to guess it. After that the 'd' operand contains all information about the call, including the
function prototype and actual arguments. Example (the 'd' operand is enclosed in the angle brackets):

 call $___org_fprintf <...:
 â€œFILE *â€ ﾝ &($stdout).4,
 "const char *" &($aArIllegalSwitc).4,
 _DWORD xds.4([ds.2:([ds.2:(ebx.4+#4.4)].4+#1.4)].1)>.0

Opcodes: conditional jumps

Again, a very familiar set of instructions, many processors have them exactly like this:

 jcnd l, d // any arbitrary condition
 jnz l, r, d // ZF=0 Not Equal
 jz l, r, d // ZF=1 Equal
 jae l, r, d // CF=0 Above or Equal
 jb l, r, d // CF=1 Below
 ja l, r, d // CF=0 & ZF=0 Above
 jbe l, r, d // CF=1 | ZF=1 Below or Equal
 jg l, r, d // SF=OF & ZF=0 Greater
 jge l, r, d // SF=OF Greater or Equal
 jl l, r, d // SF!=OF Less
 jle l, r, d // SF!=OF | ZF=1 Less or Equal
 jtbl l, cases // Table jump

Compare (l)eft against (r)right and jump to (d)estination if the condition holds. jtbl is used to represent
'switch' idioms.

Opcodes: floating point operations

 f2i l, d // int(l) => d; convert fp -> int, any size
 f2u l, d // uint(l)=> d; convert fp -> uint,any size
 i2f l, d // fp(l) => d; convert int -> fp, any size
 i2f l, d // fp(l) => d; convert uint-> fp, any size
 f2f l, d // l => d; change fp precision
 fneg l, d // -l => d; change sign
 fadd l, r, d // l + r => d; add
 fsub l, r, d // l - r => d; subtract
 fmul l, r, d // l * r => d; multiply
 fdiv l, r, d // l / r => d; divide

Basically we have conversions and a few arithmetic operations. There is little we can do with these
operations, they are not really optimizable. Other fp operations (like sqrt) use helper functions.

Opcodes: miscellaneous

 nop // no operation
 und d // undefine
 ext l, r, d // external insn
 push l
 pop d

Some operations can not be expressed in microcode. If possible, we use intrinsic calls for them (e.g.
sqrtpd). If no intrinsic call exists, we use ext for them and only try to keep track of data dependencies
(e.g. we know that aam uses ah and modifies ax). und is used when a register is spoiled in a way that we
can not predict or describe (e.g. ZF after mul).

This completes enumerating of 72 instructions that are currently defined in the microcode. Probably we
should extend microcode, for example, to include the ternary operator and pre/post increment/decrement
operators. However, we are not in hurry to do so because it is not obvious if benefits overweight the
added complexity.

Operand types

As everyone else, initially we had only constant integer numbers and registers. All textbooks use these 2
operand types, this is why :) Second, registers and plain numbers are the easiest things to handle.

Life was simple and easy in the good old days! Alas, the reality is more diverse. In order to be able to
represent real software, we quickly added:

• stack variables
• global variables
• address of an operand
• list of cases (for switches)
• result of another instruction
• helper functions
• call arguments
• string and floating point constants

Let us inspect them.

Register operands

Our microcode engine provides unlimited number of microregisters (unlimited at least in theory).
Processor registers are mapped to microregisters. Usually there are more microregisters than the
processor registers. We allocate them as needed when generating microcode. The microregister names
follow the processor register names (for simplicity), with some exceptions. For example:

 AL is mapped into al.1 (mreg number 8)
 AH is mapped into ah.1 (mreg number 9)
 EAX is mapped into eax.4 (mreg numbers 8-11)
 RSI is mapped into rsi.8

Microregisters are considered to be little endian even for big engian platforms. This is logical because the
endianness is an attribute of the memory, not the processor itself.

Stack as viewed by the decompiler

The function stack frame is modeled the following way:

The yellow part is mapped to microregisters. The red part is aliasable.

The "output stkargs" region is a notion that does not exist in IDA. The lowest part of the frame for IDA
are the "local variables" region, offsets below would have negative values.

However, we need more precise modelling of the frame in the decompiler because we want to track and
reason about the outgoing stack arguments. This is why the stack offsets in IDA and the decompiler are
different. In the decompiler the stack offsets are never negative.

More operand types!

When compilers need to manipulate 64-bit values in a 32-bit platform, they usually use a standard pair of
registers like edx:eax. My initial idea was to map EAX and EDX registers into contiguous registers:

 EAX maps to 8-11
 EDX maps to 12-15
 EDX:EAX naturally maps to 8-15

Unfortunately (or fortunately?) compilers get better and nowadays may use any registers as a pair; or
even pair a stack location with a register: sp+4:esi. Therefore we ended up with a new operand type: an
operand pair. It consists of low and high halves. They can be located anywhere (stack, registers,
memory). Examples:

 :(edx.4:eax.4).8 holds a 64-bit value; edx is the high part, eax is the low
part
 :(rsi.8:rdi.8).16 holds a 128-bit value

Scattered operands

The nightmare has just begun, in fact. Modern compilers use very intricate rules to pass structs and unions
by value to and from the called functions. This is dictated by ABI (example:
https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf)

A register like RDI may contain multiple structure fields. Some structure fields may be passed on the
stack, some in the floating registers, some in general registers (unaligned wrt register start). We had no
other choice but to add scattered operands that can represent all the above.

For example, a function that returns a struct in rax:

 struct div_t { int quot; int rem; };
 div_t div(int numer, int denom);

Assembler code:

 mov edi, esi
 mov esi, 1000
 call _div
 movsxd rdx, eax
 sar rax, 20h
 add [rbx], rdx
 imul eax, 1000
 cdqe
 add rax, [rbx+8]

and the output is:

 v2 = div(a2, 1000);
 *a1 += v2.quot;
 result = a1[1] + 1000 * v2.rem;

Our decompiler managed to represent things nicely! Similar or more complex situations exist for all 64-
bit processors. Support for scattered operands is not complete yet but we continue to improve it.

Microcode transformations

The initial preoptimization step uses a very simple constant and register propagation algorithm. It is very
fast and gets rid of most temporary registers and reduces the microcode size by two. After this step we
use a more sophisticated propagation algorithm. It also works on the basic block level. It is much slower
than the preoptimization step, but it can

• handle partial registers (propagate eax into an expression that uses ah)
• move an entire instruction inside another
• work with operands other that registers (stack and global memory, pairs, and scattered operands)

At the next step we build the control flow graph and perform data flow analysis to find where each
operand is used or defined. The use/def information is used to:

• delete dead code (if the instruction result is not used, then we delete the instruction)
• propagate operands and instructions across block boundaries

https://software.intel.com/sites/default/files/article/402129/mpx-linux64-abi.pdf

• generate assertions for future optimizations (we know that eax is zero at the target of jz eax if

there are no other predecessors; so we generate mov 0, eax). These assertions can be propagated
and lead to more simplifications.

We implemented (in plain C++) hundreds of very small optimization rules. For example:

 (x-y)+y => x
 x- ~y => x+y+1
 x*m-x*n => x*(m-n)
 (x<<n)-x => (2**n-1)*x
 -(x-y) => y-x
 (~x) < 0 => x >= 0
 (-x)*n => x*-n

These rules are simple and sound. They apply to all cases without exceptions. And they do not depend on
the compiler. This is one of the reasons why our decompiler does not require the exact version of a
compiler that was used to build the input file: almost all our rules are generic. Naturally, compiler specific
stuff exists but we try to handle it with configuration parameters. For more details please see the
"Compiler" dialog and IDA and the hexrays.cfg configuration file.

There are more complex rules than the above. For example, this rule recognizes 64-bit subtractions:

 CMB18 (combination rule #18):
 sub xlow.4, ylow.4, rlow.4
 sub xhigh.4, (xdu.4((xlow.4 <u ylow.4))+yhigh.4), rhigh.4
 =>
 sub x.8, y.8, r.8

 if yhigh is zero, then it can be optimized away

 a special case when xh is zero:

 sub xl, yl, rl
 neg (xdu(lnot(xl >=u yl))+yh), rh

We have a swarm of rules like this. They work together like little ants and the outcome is bigger than a
simple sum of parts.

Unfortunately we do not have a language to describe these rules, so we manually implemented these rules
in C++. However, our pattern recognition does not naively check if the previous or next instruction is the
expected one. We use data dependencies to find the instructions that form the pattern. For example, the
CMB43 rule looks for the low instruction by searching forward for an instruction that accesses x:

 CMB43:
 mul #(1<<N).4, xl.4, yl.4
 low (x.8 >>a #M.1), yh.4, M == 32-N

 =>

 mul x.8, #(1<<N).8, y.8

It will successfully find low in the following sequence:

 mul #8.4, eax.4, ecx.4
 add #124.4, esi.4, esi.4
 low (rax.8 >>a #29.1), ebx.4, M == 32-N

The add instruction does not modify rax and will be simply skipped.

There are also rules that work across multiple blocks:

BLK1 jl xh, yh, SUCCESS
BLK2 jg xh, yh, @FAILED
BLK3 jb xl, yl, SUCCESS
BLK4 ... (FAILED)

BLK5 ... (SUCCESS)

where:
xh means high half of x
xl means low half of x
yh means high half of y
yl means low half of y

The 64bit 3-way check rule transforms this structure into simple:

jl x, y, SUCCESS
FAILED: ...

SUCCESS: ...

Another example: signed division by power2. Signed division is sometimes replaced by a shift:

BLK1 jcnd !SF(x), BLK3
BLK2 add x, (1<<N)-1, x
BLK3 sar x, N, r

There is a simple rule that transforms it back:

sdiv x, (1<<N), r

Microcode hooks

I'm happy to tell you that it is possible to write plugins for the decompiler. Plugins can invoke the
decompiler engine and use the results, or improve the decompiler output. It is also possible to use the
microcode to find the possible register values at any given point, compare blocks of code, etc.

It is possible to hook to the optimization engine and add your own transformation rules. Please check the
Decompiler SDK: it has many examples.

While it is possible to add new rules, currently it is not possible to disable an existing rule However, since
almost all of them are sound and do not use heuristics, it is not a problem. In fact the processor specific
parts of the decompiler internally use these hooks as well.

For example, the ARM decompiler has the following rule:

 ijmp cs, initial_lr => ret

so that a construct like BX LR will be converted into RET. However, we have to prove that the value of
LR at the "BX LR" instruction is equal to the initial value of LR at the entry point. How do we find if we
jump to the initial_lr? We need to use data flow analysis.

Data flow analysis

Virtually all transformation rules are based on data flow analysis. Very rarely we check the previous or
the next instruction for pattern matching. Instead, we calculate the use/def lists for the instruction and
search for the instructions that access them. We keep track of what is used and what is defined by every
microinstruction (in red). These lists are calculated when necessary:

 mov %argv.4, ebx.4 ; 4014E9 u=arg+4.4 d=ebx.4
 mov %argc.4, edi.4 ; 4014EC u=arg+0.4 d=edi.4
 mov &($dword_41D128).4, ST18_4.4 ; 4014EF u= d=ST18_4.4
 goto @12 ; 4014F6 u= d=

where u stands for use and d stands for define.

Similar blocks are maintained for each block. Instead of calculating them on request we keep them
precalculated:

; 1WAY-BLOCK 6 INBOUNDS: 5 OUTBOUNDS: 58 [START=401515 END=401517]
; USE: ebx.4,ds.2,(GLBLOW,GLBHIGH)
; DEF: eax.4,(cf.1,zf.1,sf.1,of.1,pf.1,edx.4,ecx.4,fps.2,fl.1,
; c0.1,c2.1,c3.1,df.1,if.1,ST00_12.12,GLBLOW,GLBHIGH)
; DNU: eax.4

For each block we keep both must and may access lists. The values in parenthesis are part of the may
list. For example, an indirect memory access may read any memory. This is why GLBLOW and
GLBHIGH are present in the may list:

add [ds.2:(ebx.4+#4.4)].4, #2.4, ST18_4.4 ; u=ebx.4,ds.2,(GLBLOW,GLBHIGH) d=ST18_4.4

Based on use-def lists of each block the decompiler can build global use-def chains and answer questions
like:

• Is a defined value used anywhere? If yes, where exactly? Just one location? If yes, what about
moving the definition there? If the value is used nowhere, what about deleting it?

• Where does a value come from? If only from one location, can we propagate (or even move) it?
• What are the values are the used but never defined? These are the candidates for input arguments
• What are the values that are defined but never used but reach the last block? These are the

candidates for the return values.

Here is an example how we use the data flow analysis. Image we have code like this:

BLK1 mov #5.4, esi.4

BLK2 Do some stuff
 that does not modify esi.4

BLK3 call func(esi.4)

We calculate the use-def chains for all blocks. They clearly show that esi is defined only in block #1:

BLK1 mov #5.4, esi.4 use:
 def: esi.4{3}

BLK2 Do some stuff use: ...
 that does not modify esi.4 def: ...

BLK3 call func(esi.4) use: esi.4{1}
 def: ...

Therefore it can be propagated:

BLK3 call func(#5.4)

Publishing microcode

The microcode API for C++ is available now, it is shipped together with the decompiler (see the
plugins/hexrays subdirectory). The Python API is not available yet, we will add it later. Please check out
the sample plugins that show how to use the new API.

Our decompiler verifies the microcode for consistency after every transformation. Thanks to this very
strict approach we receive very few microcode related bug reports. Second, we have quite extensive test
suites that constantly grow. A hundred or so of processors cores run tests endlessly, this also helps us to
discover and fix bugs before they cause inconveniences to anyone.

However, there is still a chance of a bug leaking to the release. So, found a bug? Please send us the
database with the description how to reproduce it. We solve most problems within one day or even faster.

Any technical feedback or challenges? We love that, bring them on! :)

	Introduction
	Design goals
	Microcode details
	Opcodes: constants and move
	Opcodes: changing operand size
	Opcodes: load and store
	Opcodes: comparisons
	Opcodes: arithmetic and bitwise operations
	Opcodes: shifts (and rotations?)
	Opcodes: condition codes
	Opcodes: unconditional flow control
	Opcodes: conditional jumps
	Opcodes: floating point operations
	Opcodes: miscellaneous

	Operand types
	Register operands
	Stack as viewed by the decompiler
	More operand types!
	Scattered operands
	Microcode transformations
	Microcode hooks
	Data flow analysis
	Publishing microcode

