
Subverting
INSERT PRODUCT NAME

Sysmon
Application of a Formalized Security Product Evasion

Methodology

Matt Graeber and Lee Christensen Black Hat USA 2018

Who are we?

Matt Graeber, Security Researcher @ SpecterOps

● I’m wearing this ridiculous thing because $4500 was
raised for the Muscular Dystrophy Association and
because I’m a man of my word!

Lee Christensen, Security Researcher/Operator @ SpecterOps

● Researcher, Red Teamer, Threat Hunter
● Likes shiny security things (red and blue)

Outline
1. Goals of an Evasive Adversary
2. Detection and Detection Subversion Methodologies
3. Rationale for Targeting Sysmon
4. Data Collector Subversion Strategies Applied to Sysmon
5. Conclusion

Goals of an Evasive Adversary
1. Blend in with “normal”
2. Exploit naive defender behaviors/methodology
3. Avoid human eyes

Subverting security solutions is simply an
engineering challenge of adversaries.

Adversary Detection Methodology
1. Attack Technique Identification
2. Data Source Identification
3. Data Collection
4. Event Transport
5. Event Enrichment and Analysis
6. Malignant/Benign Classification
7. Alerting/Response

At a micro level, security products perform one or more of these

Detection Subversion Methodology

Bypassing, evading, or tampering with

any steps of the detection methodology

Rationale for Targeting Sysmon
Our customers use it.

Some vendors take a dependency on it.

We are not picking on Sysmon.

Data Collector Subversion Strategies
Sysmon is a host-based data collection tool (step 2 of the detection methodology)

Analysis Strategies

1. Tool Familiarization and Scoping
2. Data Source Resilience Auditing
3. Footprint/Attack Surface Analysis
4. Data Collection Implementation Analysis
5. Configuration Analysis

1. Tool Familiarization and Scoping

Understand purpose, guarantees, and threat models

Install it, configure it, update it, use it

Tool Familiarization and Scoping
User-mode activity sensor

Standalone executable + Driver

● No centralized deployment/configuration management
● No analysis capabilities, some enrichment
● Not tamper resistant once admin

2. Data Source Resilience Auditing

What are the events and event fields?

What event fields are attacker-controlled?

What fields do defenders likely use?

Generic Rule Evasion Analysis
Identify what can be logged and attributes of the event can be influenced by an
attacker (prioritizing non-admin primitives).

Sysmon Supported Rule Types
● ProcessCreate
● FileCreateTime
● NetworkConnect
● ProcessTerminate
● DriverLoad
● ImageLoad
● CreateRemoteThread

● RawAccessRead
● ProcessAccess
● FileCreate
● RegistryEvent
● FileCreateStreamHash
● PipeEvent
● WmiEvent

ProcessCreate - Attacker-influenceable Attributes

Image User ProcessGuid

CommandLine ParentImage ProcessId

CurrentDirectory ParentCommandLine LogonGuid

Description UtcTime LogonId

FileVersion TerminalSessionId

Product IntegrityLevel

Company Hashes

ParentProcessId ParentProcessGuid

Also the highest likelihood in which a rule will be written!

ProcessCreate - Attacker-influenceable Attributes

https://gist.github.com/mattifestation/0102042160
c9a60b2b847378c0ef70b4

https://gist.github.com/mattifestation/0102042160c9a60b2b847378c0ef70b4
https://gist.github.com/mattifestation/0102042160c9a60b2b847378c0ef70b4

Configuration Auditing - Rationale
“Adversaries will be students of your configuration to learn how to bypass/blend
in.” Casey Smith and Matt Graeber, BlueHat Israel 2017

Configuration Auditing
● sysmon.exe -c
● a

● Parses binary ruleset from:
○ HKLM\SYSTEM\CurrentControlSet\Services\SysmonDrv\Parameters - Rules

3. Data Collection Implementation Analysis

What are the data sources?

How do defenders use the event fields?

Is collection comprehensive?

Bypassing Sysmon WmiEvents
Goal:

Identify a technique such that WMI persistence would never be logged.

Strategy:

Determine how WMI persistence logging is achieved.

Bypassing Sysmon WmiEvents

● SELECT * FROM __InstanceOperationEvent
WITHIN 5 WHERE TargetInstance ISA
'__EventConsumer' OR TargetInstance ISA
'__EventFilter' OR TargetInstance ISA
'__FilterToConsumerBinding'

● Only relevant to the root/subscription namespace

Bypassing Sysmon WmiEvents
Bypass #1

Persist in the root/default namespace.

Cons: easy to fix

Bypassing Sysmon WmiEvents
Can we do better?

__EventFilter, __EventConsumer, and __FilterToConsumerBinding are built in to
every namespace!

Goal: Figure out how to implement __EventConsumer classes in arbitrary
namespaces.

Bypassing Sysmon WmiEvents
Goal: Figure out how to implement __EventConsumer classes in arbitrary
namespaces.

Strategy: Observe how they are implemented in root/subscription.

Bypassing Sysmon WmiEvents
scrcons.mof:

class ActiveScriptEventConsumer : __EventConsumer {
 [key] string Name;
 [not_null, write] string ScriptingEngine;
 [write] string ScriptText;
 [write] string ScriptFilename;
 [write] uint32 KillTimeout = 0; };

Instance of __Win32Provider as $SCRCONS_P {
 Name = "ActiveScriptEventConsumer";
 Clsid = "{266c72e7-62e8-11d1-ad89-00c04fd8fdff}";
 PerUserInitialization = TRUE;
 HostingModel = "SelfHost"; };

Instance of __EventConsumerProviderRegistration {
 Provider = $SCRCONS_P;
 ConsumerClassNames = {"ActiveScriptEventConsumer"}; };

Bypassing Sysmon WmiEvents

Bypassing Sysmon WmiEvents
Weaponization Strategy:

Enable ActiveScriptEventConsumer and CommandLineEventConsumer class
creation in any arbitrary namespace remotely.

https://gist.github.com/mattifestation/f38a79c7983208aa230030f61dfeb767

● New-ActiveScriptEventConsumerClass
● New-CommandLineEventConsumerClass

Class names can also be whatever you want. e.g. root/foo:DoNotDetectMeClass

https://gist.github.com/mattifestation/f38a79c7983208aa230030f61dfeb767

Bypassing Sysmon WmiEvents - Detections

 * Windows 10 Only

4. Footprint/Attack Surface Analysis

What things get added to the host?

How does the tool behave?

What does the tool depend on?

Sysmon Installation
Update requires uninstall + install

Behavior varies for 32-bit and 64-bit binaries

Added Components
● Files

○ C:\Windows\Sysmon.exe
○ C:\Windows\SysmonDrv.sys

● Services - Sysmon and SysmonDrv
● Registry Keys

○ HKLM\SYSTEM\CurrentControlSet\Services\Sysmon
○ HKLM\SYSTEM\CurrentControlSet\Services\SysmonDrv
○ HKLM\SYSTEM\CurrentControlSet\Services\SysmonDrv\Parameters

■ Only readable by admins because rules stored here

● ETW Provider
● Event Log

Installation - 32-bit Sysmon.exe on 64-bit system

64-bit installer extracted to %temp%

● DLL Hijacking
● Symlink redirection to exploit TOCTOU as well? (see James Forshaw’s work)

Event Log Installation
Event log manifest copied to unique file at %TEMP%\MAN####.tmp

● #### = Alpha numeric characters

Event Log Manifest Hijack
● Exhausting all MAN####.tmp options results in MAN1.tmp
● TOCOU - Strategy: use symlinks to hijack the manifest between when it was

written and when wevtutil.exe uses it

Driver Analysis
● Minifilter driver with an altitude of 385201
● Need SeDebugPrivilege to interact with driver

IOCTLs

● 0x83400000 - Signal driver that a handle to it was obtained?
● 0x83400004 - Retrieves raw event information from event queue

○ Could potentially exhaust the queue

● 0x83400008 - Signals that it should consume the new registry rules config
○ Changing registry manually results in no event

● 0x8340000C - Retrieves raw ProcessCreate data for a PID

5. Configuration Analysis

How is it commonly configured?

Generic Rule Evasion Analysis
1. Include rules log potential evil.
2. Exclude rules filter out “noise”
3. A single exclude rule overrides all include rules.
4. We, as the attacker, want to be the “noise.”
5. If not feasible:

a. Identify/develop generic bypasses
b. Avoid certain actions (difficult in practice)

Configuration-specific Evasion Case Study

https://github.com/SwiftOnSecurity/sysmon-config

Configuration-specific Evasion Case Study
Evasion scenario:

● An admin left their Sysmon config XML on disk.
● An elevated attacker recovered the config from registry.

Plan of Attack:

1. Identify attacker-influenceable exclude rules for each rule type
2. Form a composition of evasions
3. Where rules cannot be outright evaded, identify:

a. Alternative, generic bypass/evasion techniques
b. Annotate actions that should be avoided.

ProcessCreate
Exclude Rule Evasion Candidates:

<CommandLine condition="contains">AcroRd32.exe" /CR </CommandLine>
<CommandLine condition="contains">AcroRd32.exe" --channel= </CommandLine>

Action:

● Include “AcroRd32.exe” strings in command-line invocations

Rationale:

● So long as the command line string contains this string anywhere, our
malicious program will evade all ProcessCreate actions.

FileCreateTime
Exclude Rule Evasion Candidates:

<Image condition="image">OneDrive.exe</Image>
<Image condition="contains">setup</Image>
<Image condition="end with">redist.exe</Image>

Action:

● Drop to directory containing “setup” or name EXE “OneDrive.exe” or
“redist.exe”

Rationale:

● All of these are attacker-controllable. The “contains” rules are likely ideal from
an evasion perspective as they are more composable.

NetworkConnect
Exclude Rule Evasion Candidates:

<Image condition="image">OneDrive.exe</Image>

Action:

● Name malicious EXE “OneDrive.exe”

Rationale:

● This exclude rule is attacker-controllable. The downside is that the “image”
attribute is not the most ideal for composability. One upside is that this
exclude rule also resides in the FileCreateTime ruleset.

ProcessTerminate
Avoidance Rule:

<Image condition="begin with">C:\Users</Image>

Action:

● Avoid dropping your code to “C:\Users”.

Rationale:

● Since no exclude rules are present, we must resort to tradecraft avoidance.

DriverLoad
Exclude Rule Evasion Candidates:

<Signature condition="contains">microsoft</Signature>

<Signature condition="contains">windows</Signature>

<Signature condition="begin with">Intel </Signature>

Action:

● Our tradecraft is likely to avoid loading drivers anyway
● Signature rules vulnerable to cert cloning attack. Test-signing required to

load.

Rationale:

● An attacker controls the Subject field of the certificate that they use to sign
their code.

CreateRemoteThread
Exclude Rule Evasion Candidates:

● None are ideal

Action:

● Employ generic evasion:
QueueUserApc

Rationale:

● Exclude rules would require that
you be running elevated. If
process injection is required, use
QueueUserApc

Bonus: Evasion research opportunities abusing
the StartModule rule...

FileCreate
Action:

● Avoid dropping code with common executable file types.
● Rule is evaded if you change the extension after dropping the file.

Rationale:

● No ideal exclude rules are present, so we must resort to tradecraft avoidance.

RegistryEvent
Exclude Rule Evasion Candidates:

<Image condition="end with">Office\root\integration\integrator.exe </Image>

Action:

● Have the full path end in this string.

Possible Conflict:

● Previous evasion candidates were selected where the filename was
“OneDrive.exe”. We will need to manage this conflict - e.g. an IPC mechanism

WmiEvent
Action:

● A generic evasion for WmiEvents exists. Avoid using the root/subscription
namespace. Use root/default or ideally, a namespace created by the attacker.

● Ideally opt for ActiveScriptEventConsumer.

Rationale:

● root/subscription persistence is detected. CommandLineEventConsumer
spawns a more detectable child process of wmiprvse.exe.

Overall Rule Composition
Evasion Candidates:

<CommandLine condition="contains">AcroRd32.exe" /CR </CommandLine>
<Image condition="contains">setup</Image>
<Image condition="image">OneDrive.exe</Image>
<Image condition="end with">Office\root\integration\integrator.exe </Image>

Resulting Evasive Invocation (e.g. PowerShell in disguise):

C:\setup\Office\root\integration\integrator.exe
-version 2 "& {iex(gc
C:\setup\Office\root\integration\integrator.txt);
$null = 'AcroRd32.exe" /CR '}"

Sysmon Conclusions
● Effective, semi-robust tool to supplement detection data sources
● Has some weaknesses, but easily fixable
● Not a security solution - needs log forwarding and proactive detection

engineering team
● Collection rules leave us wanting
● No tampering protections against administrators

Conclusions
● Attackers will continue to subvert products
● Vendors

○ Are you doing subversion research into your product?
○ Tampering, evasion, bypassing

● Defenders
○ Are you asking vendors the extent of their threat model?
○ Are you aware of the resilience of your security products?

Thank you!

