
Compression Oracle
Attacks on VPN Networks

- Nafeez

Nafeez

AppSec research, static analysis tools, writing code

Maker @ assetwatch.io - Simple & Transparent Attack
Surface Discovery

 @sketpic_fx

http://assetwatch.io

Overview
Compression Side Channel and Encryption

History of attacks

VPNs and how they use compression

Voracle attack

How to find if your "VPN" is vulnerable

Way forward

Data Compression
LZ77

Replace redundant patterns

102 Characters

Everything looked dark and bleak, everything looked gloomy,

and everything was under a blanket of mist

89 Characters

Everything looked dark and bleak, (-34,18)gloomy,

and (-54,11)was under a blanket of mist

Data Compression
Huffman Coding

Replace frequent bytes with shorter codes

https://en.wikipedia.org/wiki/Huffman_coding

Data Compression

DEFLATE - LZ77 + Huffman Coding

ZLIB, GZIP are well known DEFLATE libraries

Compression Side Channel

First known research in 2002

The Side Channel

Length of encrypted payloads

Plain Text Data

Compress

Encrypt

Encrypted Data +
Data Length

Plain Text Data

Compress

Encrypt

Add Attacker
Controlled Bytes

Encrypted Data +
Data Length

Plain Text Data

Compress

Encrypt

Add Attacker
Controlled Bytes

Observe Encrypted
Traffic

Encrypted Data +
Data Length

Compression Oracle Attack

Chosen Plain Text Attack

Brute force the secret byte by byte

Force a compression using the chosen byte and the existing
bytes in the secret

secret=637193-some-app-data;

Compress

Encrypt

Data Length

secret=1

Encrypted Length = 30

secret=637193-some-app-data;secret=1

secret=637193-some-app-data;

Compress

Encrypt

Data Length

secret=1

Encrypted Length = 30

secret=637193-some-app-data;secret=1

Application Data

Attacker injected
bytes

Whole data before
compression /

encryption

secret=637193-some-app-data;

Compress

Encrypt

Data Length

secret=1

Encrypted Length = 30

secret=637193-some-app-data;secret=1
Compressible Compressible

secret=637193-some-app-data;

Compress

Encrypt

Data Length

secret=2

Encrypted Length = 30

secret=637193-some-app-data;secret=2

secret=637193-some-app-data;

Compress

Encrypt

Data Length

secret=3

Encrypted Length = 30

secret=637193-some-app-data;secret=3

secret=637193-some-app-data;

Compress

Encrypt

Data Length

secret=4

Encrypted Length = 30

secret=637193-some-app-data;secret=4

secret=637193-some-app-data;

Compress

Encrypt

Data Length

secret=5

Encrypted Length = 30

secret=637193-some-app-data;secret=5

secret=637193-some-app-data;

Compress

Encrypt

Data Length

secret=6

Encrypted Length = 29

secret=637193-some-app-data;secret=6

More Compression, Smaller Length

Compression increased
by 1 byte

How can we convert this
into a real world attack on

browsers?

Plain Text Data

Compress

Encrypt

Add Attacker
Controlled Bytes

Observe Encrypted
Traffic

Encrypted Data +
Data Length

Add Attacker
Controlled Bytes

Observe Encrypted
Traffic

Browser Sends Cross-
Domain requests with

Cookies attached

Attacker can send
simple HTTP POST

requests cross-domain
with his own data

MITM. People do this
all the time

EkoParty 2012

Back in 2012
Juliano Rizzo, Thai Duong

CRIME, 2012

www.ekoparty.org/archive/2012/CRIME_ekoparty2012.pdf

http://www.ekoparty.org/archive/2012/CRIME_ekoparty2012.pdf

TIME Attack 2013

Tal Be'ery, Amichai Shulman

Timing side channel purely via browsers, using TCP window
sizes.

Extending CRIME to HTTP Responses

BREACH Attack 2013

BreachAttack.com

Angelo Prado, Neal Harris, Yoel Gluck

So far

CRIME style attacks have been mostly targeted on HTTPS

Researchers have possibly explored all possible side
channels to efficiently leak sensitive data

There are more - HEIST, Practical Developments to BREACH

So, whats new today?

VPN Tunnels

TLS VPNs are pretty
common these days

What do most of these
SaaS VPNs have in

common?

OpenVPN

High level overview

Authentication & Key Negotiation (Control Channel)

Data Channel Compression

Data Channel Encryption

Compress everything

UDP

TCP

Bi-Directional

OpenVPN Compression
Algorithms

LZO

LZ4

-LZ77 Family-

We have a compress then
encrypt on all of data channel

VORACLE Attack

Under a VPN, HTTP
WebApps are still

insecure !

Things are safe, if the underlying app
layer already uses an encryption channel.

Things might go bad, if the VPN tunnel is
helping you encrypt already non-

encrypted data

Lets see how this attack works on an
HTTP website using an encrypted VPN

VPN Server and Client has Compression enabled by
default

Requirements

Attacker can observe VPN traffic

VPN User visits attacker.com

http://attacker.com

Attack Setup

VPN User

Attack Setup

VPN User

Browser

Attack Setup

VPN User

Browser

HTTP WebApp

Attack Setup

VPN User

Browser

HTTP WebApp

Trusted VPN with Compression

Attack Setup

VPN User

Browser

HTTP WebApp

Trusted VPN with Compression

Attack Setup

VPN User

Browser

HTTP WebApp

Trusted VPN with Compression

Attacker

Attack Setup

VPN User

Browser

HTTP WebApp

Trusted VPN with Compression

Attackerattacker.com

Attack Setup

VPN User

Browser

HTTP WebApp

Trusted VPN with Compression

Attackerattacker.com

Passive
MITM

Attack Setup

VPN User

Browser

HTTP WebApp

Trusted VPN with Compression

Attackerattacker.com

Passive
MITM

Injected Ads, 
Malicous Blogs, 

etc.

Attack Setup

VPN User

Browser

HTTP WebApp

Trusted VPN with Compression

Attackerattacker.com

Passive
MITM

Injected Ads, 
Malicous Blogs, 

etc.

Can Observe VPN
Data packet Lengths

Attack Setup

VPN User

Browser

HTTP WebApp

Trusted VPN with Compression

Attackerattacker.com

Passive
MITM

Injected Ads, 
Malicous Blogs, 

etc.

Can Observe VPN
Data packet Lengths

Can Send Cross
Domain requests to
the HTTP WebApp

Attacker can now conduct Compression Oracle attacks on
HTTP requests and responses

https://github.com/OpenVPN/openvpn3

Browser

VPN Client

VPN Server OpenVPN Server

WebApp http://insecure.skepticfx.com

Mozilla Firefox

Steal sessionId cookie from a cross-domain websiteAttack Goal

Demo

http://insecure.skepticfx.com

Voracle

https://github.com/skepticfx/voracle

https://github.com/skepticfx/voracle

Attack Challenges

No Server Name Indication(SNI) or TLS certificates. 

VPN traffic is too chatty. Everything goes through it

Hard to determine attacker's own traffic

Browser needs to send HTTP
requests in single TCP Data Packet

Also

Google Chrome splits HTTP
packets into Header and Body

So we can't get the compression
window in the same request

Mozilla Firefox sends them all
in a single TCP data packet

Now we get the compression
window in the same request

Detecting Voracle in your
VPN

If your VPN provider is using OpenVPN -
take a look at your client configuration.

OpenVPN Client
Configuration (*.OVPN)

Or you can test this dynamically by
triggering compression and observing the

length

DIY Voracle Detection

Fire up Wireshark

Connect to your VPN under test

Send a few Curl requests with compression

Observe VPN Payload Length

curl -s -o /dev/null -X POST http://website.com
-d "--some-data-- Secret=37346282;
--blah-- Secret=1 Secret=1"

Length = x

Curl and Observe Length

http://website.com

curl -s -o /dev/null -X POST http://website.com
-d "--some-data-- Secret=37346282;
--blah-- Secret=2 Secret=2"

Length = x

Curl and Observe Length

http://website.com

curl -s -o /dev/null -X POST http://website.com
-d "--some-data-- Secret=37346282;
--blah-- Secret=3 Secret=3"

Length = x-1

Curl and Observe Length

More Compression, Smaller Length

http://website.com

Fix?

Fixing Compression is an
interesting problem

Remember when SPDY
was vulnerable to

CRIME?

HPACK in HTTP/2
selectively disables header
compression for sensitive

fields

https://http2.github.io/http2-spec/compression.html

cf-nocompress

https://blog.cloudflare.com/a-solution-to-compression-oracles-on-the-web/

For VPNs, Disable
compression entirely for
all plain text transactions

Turning compression
off by default is

opinionated

OpenVPN chose to warn the implementors
more explicitly to turn off data Compression.

https://github.com/OpenVPN/openvpn/commit/a59fd147

 turned off
compression entirely

Its time, everything
moves to HTTPS

Takeaway

EndUsers & Website owners - If you are using VPN to
access plain text websites over the internet, its time to move
them to HTTPs.

VPN Providers - Explicitly state what your VPN protects
against. If you are claiming your VPN tunnel protects against
plain text web apps, ensure you do not compress them.

Thank you!

@skeptic_fx

nafeez@assetwatch.io

mailto:nafeez@assetwatch.io

