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• Samsung Research America 
• Actively working on ARM system security
*The opinion present are my own and not necessarily 
represent the opinion of my employer
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• Found this issue while doing some hypervisors research

•On 25 Jan 2018, reported to Red Hat Product Security team 
Secalert@redhat.com provided detail report with exploit code

•Multiple mail exchange to help them understand the problem  

• Still is not fixed
• Decided to submit a BH paper (Thanks to Rahul, Michael Grace) 

• Thanks to BH for providing the platform
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ARM v8-A Architecture 

HVC HVC

HVC Handler
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ARM Hypervisor executes  in EL2

TYPE 1
• Bare Metal Hypervisor 
• Host is considered as VM
• XEN is type 1 and runs in EL2

TYPE 2 
• Hypervisor is extension of Host Kernel
• Host  is not considered as VM 
• KVM is type 2 and runs partial in EL2

ARM - Hypervisor B. Singh - SRA
6



Linux Start

EL==2

1. Updates 

VBAR_EL2 to 

Install STUB 

Vector Table as 

EL2 Exception 
Vector Table

2. Switches back to 

EL1 Normal Boot 

Flow

YES

No
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Handler in case HVC originating  

from 64 bit Kernel

VBAR_EL2

Stub Vector Table

Filename : linux\arch\arm64\kernel\hyp-

stub.s
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Checks if register X0 == 0
Updates VBAR_EL2

Stub HVC Handler

Filename : linux\arch\arm64\kernel\hyp-stub.s
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Linux Start STUB VECTOR 
TABLE 

CMD == 
HVC_SET_VECTO

R

KVM VECTOR 
TABLE

VBAR_EL2

State Diagram  1



Filename : linux\arch\arm64\kernel\hyp-entry.s

Checks if HVC is from Host

Checks if register x0  < 3

Calls _kvm_handle_stub_hvc

KVM HVC Handler B. Singh - SRA
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Checks register X0 == 2

Disables EL2 MMU

Back to Stub Vector 
Filename : 
linux\arch\arm64\kvm\hyp\hyp-entry.s

KVM HVC Handler B. Singh - SRA
12



B. Singh - SRA
13

Linux Start STUB VECTOR 
TABLE 

CMD == 
HVC_SET_VECTO

R

KVM VECTOR 
TABLE

HVC == HOST
&& CMD == 

HVC_RESET_VEC
TOR

VBAR_EL2

Attackers Vector 
Table

State Diagram  2



X0 =2 ; //HVC_RESET_VECTORS

KVM Vector TableStub Vector Table

1. Allocate physical continuous 
memory

2. Embed shellcode at an offset 
0x400   (Exception handler)

3. Set X0 =  0  //HVC_SET_VECTOR
4. Set X1 = physical address of 

buffer

Attacker 
Allocated Buffer

Disables 
MMU

Installs

Installs

HVC

HVC

HVC EL2 Shellcode

Host EL1 EL2
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KVM Team Response
“You're on the host, and you can break KVM by inserting a rogue kernel module. Big deal. You can 
also blast the page tables, corrupt file systems, and make sure the box is on fire”  

KVM Threat Model Assumption : HOST.EL1 == EL2

Security hole in privilege isolation boundary

Host kernel compromise is End of the Game !

Real World : EL1 != EL2  

For Attacker Beginning of a New Game.… J
Attacker can exploit this issue to gain more privilege and will migrate to EL2

• Launch attack from isolated and unreachable memory.
• Can configure EL2 to get code execution from various different places

• A generic way to bypass security implemented in the kernel (LKRG),by escaping to EL2

• Attack the secure monitoring running in hypervisor mode 

• Gives attacker opportunity for Blue Pill for KVM on ARM

Juicy target for attacker to perform highly sophisticated and stealthy attack
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Potentially bigger impact for mobile and IoT

•Most of them are ARM based 

•Chances are high that it will boot in EL2 

•Single Kernel Device (More Attack Surface)

Affected Architecture:  ARM v7-A and ARM v8-A  with hardware virtualization

Impact B. Singh - SRA
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Mitigation

My two cents… You’re likely vulnerable to this attack. 
Patch the system by making sure Linux starts in EL1 
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• https://static.docs.arm.com/ddi0487/ca/DDI0487C_a_armv8_arm.pd
f
• https://developer.arm.com/products/architecture/a-

profile/docs/100942/latest/hypervisor-software
• https://dl.acm.org/citation.cfm?id=2541946
• http://www.cs.columbia.edu/~cdall/pubs/atc17-dall.pdf
• http://www.cs.columbia.edu/~cdall/pubs/sosp2017-neve.pdf
• https://lwn.net/Articles/557132/
• http://lia.disi.unibo.it/Courses/som1516/materiale/VOSYS_BolognaK

VMARM_2_12_2015.pdf
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