
Back To The Future: A Radical
Insecure Design of KVM on ARM

Baibhav Singh
Rahul Kashyap

B. Sing - SRA 1

• Samsung Research America
• Actively working on ARM system security
*The opinion present are my own and not necessarily
represent the opinion of my employer

Introduction B. Sing - SRA
2

• Found this issue while doing some hypervisors research

•On 25 Jan 2018, reported to Red Hat Product Security team
Secalert@redhat.com provided detail report with exploit code

•Multiple mail exchange to help them understand the problem

• Still is not fixed
• Decided to submit a BH paper (Thanks to Rahul, Michael Grace)

• Thanks to BH for providing the platform

Background B. Singh - SRA

3

mailto:Secalert@redhat.com

ARM v8-A Architecture

HVC HVC

HVC Handler

B. Singh - SRA
4

Exception Vector Table B. Sing - SRA
5

VBAR_EL2HVC

0x400

+

ARM Hypervisor executes in EL2

TYPE 1
• Bare Metal Hypervisor
• Host is considered as VM
• XEN is type 1 and runs in EL2

TYPE 2
• Hypervisor is extension of Host Kernel
• Host is not considered as VM
• KVM is type 2 and runs partial in EL2

ARM - Hypervisor B. Singh - SRA
6

Linux Start

EL==2

1. Updates

VBAR_EL2 to

Install STUB

Vector Table as

EL2 Exception
Vector Table

2. Switches back to

EL1 Normal Boot

Flow

YES

No

Linux and KVM B. Singh - SRA

7

Handler in case HVC originating

from 64 bit Kernel

VBAR_EL2

Stub Vector Table

Filename : linux\arch\arm64\kernel\hyp-

stub.s

B. Sing - SRA

8

Checks if register X0 == 0
Updates VBAR_EL2

Stub HVC Handler

Filename : linux\arch\arm64\kernel\hyp-stub.s

B. Singh - SRA
9

B. Singh - SRA
10

Linux Start STUB VECTOR
TABLE

CMD ==
HVC_SET_VECTO

R

KVM VECTOR
TABLE

VBAR_EL2

State Diagram 1

Filename : linux\arch\arm64\kernel\hyp-entry.s

Checks if HVC is from Host

Checks if register x0 < 3

Calls _kvm_handle_stub_hvc

KVM HVC Handler B. Singh - SRA
11

Checks register X0 == 2

Disables EL2 MMU

Back to Stub Vector
Filename :
linux\arch\arm64\kvm\hyp\hyp-entry.s

KVM HVC Handler B. Singh - SRA
12

B. Singh - SRA
13

Linux Start STUB VECTOR
TABLE

CMD ==
HVC_SET_VECTO

R

KVM VECTOR
TABLE

HVC == HOST
&& CMD ==

HVC_RESET_VEC
TOR

VBAR_EL2

Attackers Vector
Table

State Diagram 2

X0 =2 ; //HVC_RESET_VECTORS

KVM Vector TableStub Vector Table

1. Allocate physical continuous
memory

2. Embed shellcode at an offset
0x400 (Exception handler)

3. Set X0 = 0 //HVC_SET_VECTOR
4. Set X1 = physical address of

buffer

Attacker
Allocated Buffer

Disables
MMU

Installs

Installs

HVC

HVC

HVC EL2 Shellcode

Host EL1 EL2

Exploitation B. Singh - SRA
14

KVM Team Response
“You're on the host, and you can break KVM by inserting a rogue kernel module. Big deal. You can
also blast the page tables, corrupt file systems, and make sure the box is on fire”

KVM Threat Model Assumption : HOST.EL1 == EL2

Security hole in privilege isolation boundary

Host kernel compromise is End of the Game !

Real World : EL1 != EL2

For Attacker Beginning of a New Game.… J
Attacker can exploit this issue to gain more privilege and will migrate to EL2

• Launch attack from isolated and unreachable memory.
• Can configure EL2 to get code execution from various different places

• A generic way to bypass security implemented in the kernel (LKRG),by escaping to EL2

• Attack the secure monitoring running in hypervisor mode

• Gives attacker opportunity for Blue Pill for KVM on ARM

Juicy target for attacker to perform highly sophisticated and stealthy attack

B. Singh - SRA

15

Potentially bigger impact for mobile and IoT

•Most of them are ARM based

•Chances are high that it will boot in EL2

•Single Kernel Device (More Attack Surface)

Affected Architecture: ARM v7-A and ARM v8-A with hardware virtualization

Impact B. Singh - SRA

16

Mitigation

My two cents… You’re likely vulnerable to this attack.
Patch the system by making sure Linux starts in EL1

B. Singh - SRA
17

• https://static.docs.arm.com/ddi0487/ca/DDI0487C_a_armv8_arm.pd
f
• https://developer.arm.com/products/architecture/a-

profile/docs/100942/latest/hypervisor-software
• https://dl.acm.org/citation.cfm?id=2541946
• http://www.cs.columbia.edu/~cdall/pubs/atc17-dall.pdf
• http://www.cs.columbia.edu/~cdall/pubs/sosp2017-neve.pdf
• https://lwn.net/Articles/557132/
• http://lia.disi.unibo.it/Courses/som1516/materiale/VOSYS_BolognaK

VMARM_2_12_2015.pdf

Reference B. Singh - SRA
18

https://static.docs.arm.com/ddi0487/ca/DDI0487C_a_armv8_arm.pdf
https://developer.arm.com/products/architecture/a-profile/docs/100942/latest/hypervisor-software
https://dl.acm.org/citation.cfm?id=2541946
http://www.cs.columbia.edu/~cdall/pubs/atc17-dall.pdf
http://www.cs.columbia.edu/~cdall/pubs/sosp2017-neve.pdf
https://lwn.net/Articles/557132/
http://lia.disi.unibo.it/Courses/som1516/materiale/VOSYS_BolognaKVMARM_2_12_2015.pdf

