
Software Attacks on
Hardware Wallets

Introduction
• Security Analyst at Riscure, Netherlands
• Focused on SW and HW device security

• Smart cards

• TEE

• Secure devices

• etc.

What is hardware wallet?
A device:

• Connects to smartphone, PC

• Stores and operates private keys

• Mainly used for cryptocurrency private keys

• Totally secure

https://www.ledgerwallet.com/products/ledger-nano-s https://www.keepkey.com/wp-
content/uploads/2014/08/12121301/shapeshift-large.jpg

https://trezor.io/start/

What is hardware wallet?
• Connects to smartphone, PC

• Stores and operates private keys

• Mostly used for cryptocurrency private keys

• Totally secure?

https://www.ledgerwallet.com/products/ledger-nano-s https://www.keepkey.com/wp-
content/uploads/2014/08/12121301/shapeshift-large.jpg

https://trezor.io/start/

Why Ledger?
• New on the market

• Based on a certified Secure Element

• Proprietary TEE

• Multi-app support (Btc, Eth, …)

• Support for custom applications in TEE

What is TEE?

Why TEE?

Why TEE?

Who is the attacker?

• Malware wallet (TA – TA, TA - TEE)

• Attacker with physical access to initialized device

• Attacker with access to the device before user initialization

• Tampering before delivery

• Second-hand devices*

Why anti-tampering?

(Manufacturer’s blog)

What is the hardware?

• STM32 MCU
• Screen, buttons, USB…

• Communication with the SE

• ST32 SE
• BOLOS TEE

• Wallets (Trusted Apps)

• Secure Flash Memory

https://www.ledger.fr/2016/06/09/secure-hardware-and-open-source/

What is the BOLOS TEE?
• MPU ensures memory isolation

• Application has ~16 KB of Flash

 and ~1 KB of RAM

• Over 100 syscalls

SYSCALL void nvm_write(
 void WIDE *dst_adr PLENGTH(src_len),
 void WIDE *src_adr PLENGTH(src_len),
 unsigned int src_len);

User TA1

User TA2

User RAM
TEE RAM

0xFFFFFFFF

0x20000000

V1. Dereferencing the null pointer
• Dereferencing memory outside user region mutes the device

• Any pointer outside the user region in a syscall returns SW6404

• … except null pointer

• Calling sha256() syscall with any length returns a hash

• Repeat 8k times, get 8k hashes, compute 256*8000, dump 8kB data

 PTR LEN OUTPUT – HASH SHA256

0x00000000 0x00000001 6e340b9cffb37a989ca544e6bb780a2c78901d3fb33738768511a30617afa01d

0x00000000 0x00000002 2ee788372518190a6ab539cbb20331df1040f21846e3ba836c269aee907c894c

0x00000000 0x00000003 df236376becfe951a5a3dfa7c274ed26a75f1ccba7cf432772a9cc349017eaac

V3. Partial memory disclosure in cx_hash()
• cx_hash() syscall takes a pointer to the hash context

• Specs say the pointer must be to RAM

• Given different addresses there are different exceptions:

• SW6404 – Security condition not satisfied

• SW6402 – Condition of use not satisfied

SYSCALL int cx_hash(
 cx_hash_t *hash PLENGTH(scc__cx_hash_ctx_size__hash),
 int mode, unsigned char WIDE *in PLENGTH(len),
 unsigned int len,
 unsigned char *out PLENGTH(scc__cx_hash_size__hash));

V3. Partial memory disclosure in cx_hash()
• The hash context starts with header

• There are eight supported algorithms
• cx_md_t [0x00 … 0x08]

• Given any memory address:

struct cx_hash_header_s {
 cx_md_t algo;
 unsigned int counter;
};

Protected memory

?? ?? ?? ??

?? ?? ?? ?? Malicious
User App

syscall
cx_hash()

Is it in
[0x00 … 0x08]

V5. Debug app installation flag
• There are a number of installation parameters of an application

• Debug application can dump 0x4000 bytes of flash

• The memory region might include other applications

V5. Debug app installation flag

17

B
T

C

U
s
e

r
T

A
2

S
y
s
te

m
 A

p
p

d
b

g
 A

p
p

S
y
s
te

m
 A

p
p

d
b

g
 A

p
p

DEMO

V6. Flash is not cleared upon device reset
• The user application are not removed after device wipe

• … how about private keys?

• The wallet keys are meant to be derived from the seed at

runtime

V6. Flash is not cleared upon device reset

V6. Flash is not cleared upon device reset

Success!

uid counter init_flag hmacKey padding

00
ffb18dac0100000001 8b1fa7e86f6b9a3683b521fa71aa64b427471c5d 295ebe
89995bd1e198b6d6a655dcdc64289b8b537fe351cf41898992a108928c370f4d
294add1edd696fe8418f1200

00
ffb18dac0200000001 8b1fa7e86f6b9a3683b521fa71aa64b427471c5d 295ebe
89995bd1e198b6d6a655dcdc64289b8b537fe351cf41898992a108928c370f4d
294add1edd696fe8418f1200

V6. Flash is not cleared upon device reset

Conclusions?
• There are 7 exploitable vulnerabilities identified in the wallet

• An attacker with physical access could compromise the

isolation

• The private keys stored in any app were vulnerable

• Defense in depth helped runtime generated keys to be

protected

What do we learn?
• To be secure devices require both protected HW and SW

• TEE should not expect any assumptions are met

• All the syscall parameters need to be restricted and checked

• Large API is a big attack surface

• Lifecycle state of HW wallets is prone to issues by design

• Third party evaluation is a must for a secure solution

Q&A

Sergei Volokitin

volokitin@riscure.com

