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Introduction

● Memory safety issues are the foremost security 
problems in today’s operating systems.

● A lot of defenses have been proposed to prevent bugs 
from exploitation. But, all of them is still having a hard 
time balancing between security and performance.

● Of those defenses, we focus on the two, CFI 
(Control-Flow Integrity) and UAF (Use-After-Free) 
Defense and aim to take both to the next level.



Overview (CFI)

● Problem statement
○ A strong security likely breaks compatibility.
○ A wrong compiler implementation can exhibit a severe bug.

● Pain points in the state-of-the-art
○ iOS kernel CFI:  Low security for function pointers in C.
○ Other proposals from academia:  High security, but breaking 

compatibility.

● Our new approach
○ PAL, to the rescue of the above pain points, (to appear at 

USENIX Security 2022), and targets C-based commodity OSes.

NOTE: We deal with ARM Pointer-Authentication based CFI.

https://arxiv.org/pdf/2112.07213.pdf


Overview (UAF Defense)

● Problem statement
○ All proposed defenses only care about user-space apps, not 

kernels.

● Pain points in the state-of-the-art
○ A strong security comes with an unbearable memory or 

performance overhead.

● Our new approach
○ ViK, to the rescue of the above pain point. (published at 

ASPLOS 2022)

https://haehyun.github.io/papers/vik-asplos22.pdf


ARM PA-based Kernel CFI
(PA: Pointer Authentication)



Background



CFI (Control-Flow Integrity)

int (*)(int) fptr = ...;
fptr(10);

Original CFI

Type-Based CFI

int func1(int a) {
…
}

int func2(int a) {
…
}

void func3(int a) {
…
}

Context:
+ function_entry

Allowed targets = 3, in Original CFI
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int (*)(int) fptr = ...;
fptr(10);

Original CFI

Type-Based CFI

int func1(int a) {
…
}

int func2(int a) {
…
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void func3(int a) {
…
}

Context:
+ function_entry

Allowed targets = 2, in Type-Based CFI

Context:
+ fptr_type



CFI (Control-Flow Integrity)

int (*)(int) fptr = ...;
fptr(10);

Original CFI

Type-Based CFI

int func1(int a) {
…
}

int func2(int a) {
…
}

void func3(int a) {
…
}

Context:
+ function_entry

1. Low allowed targets → Strong security
2. Context is a KEY to lower allowed targets

Context:
+ fptr_type



ARM PA (Pointer Authentication)

Code Memory Layout

Context: 0x1234
== (Hash(int(*)(int))

int func1(int a) { … }

Type-based CFI implementation without ARM PA

int (*)(int) fptr = func1;
                    fptr(10);

Compare if the context is matched1

2
Jump if matched

Downside:
- Every indirect call demands one more memory access to the stored context.



ARM PA (Pointer Authentication)

GEN:  pacia func1, hash(int(*)(int)) 

Type-based CFI implementation with ARM PA (Sign)

int (*)(int) fptr = func1;
....
....
fptr(10);

fptr = 0xabcd….c000

:: int func1(int a) {}

pacxx function_pointer, context, where xx is a key selector.
→ QARMA (function_pointer) with (context, xx_key) => pac + pointer



ARM PA (Pointer Authentication)

GEN:  pacia func1, hash(int(*)(int)) 

Type-based CFI implementation with ARM PA (Auth)

int (*)(int) fptr = func1;
....
....
fptr(10);

fptr = 0xabcd….c000

USE:  autia fptr, hash(int(*)(int)) fptr = 0x0000….c000

Context matched!

fptr(10);

:: int func1(int a) {}

autxx function_pointer, context, where xx is a key selector.
→ QARMA (function_pointer) with (context, xx_key) => pointer



ARM PA (Pointer Authentication)

GEN:  pacia func1, hash(void(*)(int)) 

Type-based CFI implementation with ARM PA (Auth)

int (*)(int) fptr = func1;
....
....
fptr(10);

fptr = 0xbcde….c000

USE:  autia fptr, hash(int(*)(int)) fptr = 0xcab9….c000

Context mismatched!

fptr(10); → Crash!

:: void func1(int) {}

If key and context are not matched between GEN and USE,
system crash arises!



Pain point-1:
A poor security (a low CFI precision)



Two aspects of Context

● A good context helps improving security while not 
sacrificing compatibility.

● Two aspects of context
○ Unique:  more unique, more secure
○ Invariant:  if invariant, likely no compatibility issue

● We have to find a good context considering these two 
aspects.



Type-based Kernel CFI

● PARTS (USENIX Security 19) proposes a type-based 
CFI using ARM PA for the first time.

● Android kCFI (kernel CFI) also uses a type-based CFI.

● Context evaluation
○ Unique? → Not that much.. (e.g., TROP (ACSAC 2018))
○ Invariant? → Yes!  i.e., no compatibility issue



iOS Kernel CFI (PA-based)

● iOS Kernel is made up of different languages, C++ and C 
and Objective-C.

● iOS Kernel CFI uses fine-grained contexts for C++ and 
Objective-C (i.e., strong security), but not for C.
○ This is why iOS Kernel CFI is not applicable to 

C-based OSes. (Linux)



iOS Kernel CFI (PA-based)

How iOS CFI deals with its C++ function pointers (VTable)

ClassA objA;

The context of a VTable entry
= Storage Address + Hash(function_name)

So powerful combination of dynamic and static context-!

(signed) func1

(signed) func2

VTable (at 0x800)

Signed with context = 0x800 + Hash(“func1”)

Signed with context = 0x808 + Hash(“func2”)



iOS Kernel CFI (PA-based)

How iOS CFI deals with its C++ function pointers (VTable)

ClassA objA; (signed) func1

(signed) func2

VTable (at 0x800)

Signed with context = 0x800 + Hash(“func1”)

Signed with context = 0x808 + Hash(“func2”)

ClassB objB;

compromised
(signed) bb1

(signed) bb2

VTable (at 0x800)

Replay attack! Fail.. due to 
function_name mismatch

Signed with context = 0x808 + Hash(“bb2”)



iOS Kernel CFI (PA-based)

How iOS CFI deals with its C++ function pointers (VTable)

ClassA objA; (signed) func1

(signed) func2

VTable (at 0x800)

Signed with context = 0x800 + Hash(“func1”)

Signed with context = 0x808 + Hash(“func2”)

ClassC objC;

compromised
(signed) func1

(signed) func2

VTable (at 0x600)

Replay attack! Fail.. due to the mismatch 
of VTable_addr

Signed with context = 0x608 + Hash(“func2”)



iOS Kernel CFI (PA-based)

How iOS CFI deals with its C++ function pointers (VTable)

ClassA objA;

Context evaluation:
● Hash(function_name):   unique (within a class) and invariant!  (perfect!)
● Storage address:  unique (within an address system) but not invariant!  (what 

problem could come up?)

(signed) func1

(signed) func2

VTable (at 0x800)

Signed with context = 0x800 + Hash(“func1”)

Signed with context = 0x808 + Hash(“func2”)



iOS Kernel CFI (PA-based)

Applying this technique to C function pointers

ClassA objA;

(signed) func1

(signed) func2

VTable

Struct ClassA {
    void (*func1)(int);
    void (*func2)(int);
    …..
    …..
}

C++ Class C Struct

C++ class and C struct look very similar,
so it seems that we can use it for C struct as well! 



iOS Kernel CFI (PA-based)

Problem in C function pointers

void func1() {
    struct obj *dst = …, * src = …;
    dst->fp = &target1;
    src->fp = &target2;
    ….
    memcpy(dst, src, …);
    ….
    dst->fp();
}

GEN: PAC(&target1, &dst->fp, key-0)
GEN: PAC(&target2, &src->fp, key-0)

Storage address as context!



iOS Kernel CFI (PA-based)

Problem in C function pointers (Cont)

void func1() {
    struct obj *dst = …, * src = …;
    dst->fp = &target1;
    src->fp = &target2;
    ….
    memcpy(dst, src, …);
    ….
    dst->fp();
}

GEN: PAC(&target1, &dst->fp, key-0)
GEN: PAC(&target2, &src->fp, key-0)

After memcpy(),
dst->fp = src->fp = PAC(&target1, &src->fp, key-0)



iOS Kernel CFI (PA-based)

Problem in C function pointers (Cont)

void func1() {
    struct obj *dst = …, * src = …;
    dst->fp = &target1;
    src->fp = &target2;
    ….
    memcpy(dst, src, …);
    ….
    dst->fp();
}

GEN: PAC(&target1, &dst->fp, key-0)
GEN: PAC(&target2, &src->fp, key-0)

USE:  AUT(&target2, &dst->fp, key-0)

Context mismatch-!

A dynamic context (not invariant) would break
compatibility in memory-related functions-!

After memcpy(),
dst->fp = src->fp = PAC(&target1, &src->fp, key-0)



iOS Kernel CFI (PA-based)

Problem in C function pointers (Cont)

void func1() {
    struct obj *o1 = …, * o2 = …;
    o1->fp = &target1;
    o2->fp = &target2;
    ….
    memcpy(o2, o1, …);
    ….
    o2->fp();
}

USE:  AUT(&target2, &o2->fp, key-0)

BUT.. it’s infeasible to identify its object type correctly..

memcpy(void *dst, void *src, ..) {
    // Solution:
    // Re-sign–
    //      o2->fp = PAC(&target1, &o2->fp, key-0)  
}

A naive solution? Re-signing-!



iOS Kernel CFI (PA-based)

Wrap-up and Takeaways

● Use of static context solely (i.e., type-based CFI) is not 
secure.

● A decent combination of dynamic (invariant) and static 
context promises a better security.

● But, use of dynamic context is likely prone to 
compatibility issues, especially in C-based OSes.



Solution-1:
Multi-Layer Context Generation



Multi-Layer Context Generation

● Two static contexts
○ typesig
○ objtype

● Two dynamic contexts
○ objbind: plays a crucial role in our system! 
○ retbind (not discussed today)

A new combination of static and dynamic contexts



Multi-Layer Context Generation

(static) typesig:  base-line context (same to type-based CFI)

struct irqaction {
    irq_handler_t handler;
    const char *name;
}

void func1() {
    struct irqaction *o = …;
    o->name = “o1”;
    o->handler = &target;
}

ContextLayer

typesig irqhandler_t



Multi-Layer Context Generation

(static) objtype

struct irqaction {
    irq_handler_t handler;
    const char *name;
}

void func1() {
    struct irqaction *o = …;
    o->name = “o1”;
    o->handler = &target;
}

ContextLayer

typesig irqhandler_t

objtype struct.irqaction



Multi-Layer Context Generation

(dynamic) objbind:  blends a specific field value

struct irqaction {
    irq_handler_t handler;
    const char *name;
}

void func1() {
    struct irqaction *o = …;
    o->name = “o1”;
    o->handler = &target;
}

ContextLayer

typesig irqhandler_t

objtype struct.irqaction

objbind o->name (“o1”)

GEN:  PAC(&target, context, key-0)



Objbind

What’s behind objbind

● We found there are common OS design patterns 
beneficial to bring out a good context for CFI. 

● OS design patterns we found
○ A lot of structs has a field that is unique as well as 

invariant.



Objbind

What’s behind objbind: unique 

struct irqaction {
    irq_handler_t handler;
    const char *name;
}

void func1() {
    struct irqaction *o = …;
    o->name = “o1”;
    o->handler = &target;
}

void func2() {
    struct irqaction *o = …;
    o->name = “o2”;
    o->handler = &target2;
}

void func3() {
    struct irqaction *o = …;
    o->name = “o3”;
    o->handler = &target3;
}

This field likely differently initialized for different codes.

It certainly helps enhance the security level of CFI!



Objbind

What’s behind objbind:  invariant 

struct irqaction {
    irq_handler_t handler;
    const char *name;
}

void func1() {
    struct irqaction *o = …;
    o->name = “o1”;
    o->handler = &target;
    ….
}

Invariant:  const value-! 

This field is initialized at the time of its object creation,
and is likely not changed until its object is freed. 

(1) Easy to maintain and
(2) Likely no compatibility issue



Objbind

+ memcpy-compatible 

void func1() {
    struct irqaction *dst = …, * src = …;
    dst->name = “dst”;  src->name = “src”;
    dst->handler = &target1;
    src->handler = &target2;
    ….
    memcpy(dst, src, …);
    ….
    dst->handler();
}

GEN: PAC(&target1, dst->name, key-0)

GEN: PAC(&target2, src->name, key-0)

Objbind as context!



Objbind

+ memcpy-compatible 

void func1() {
    struct irqaction *dst = …, * src = …;
    dst->name = “dst”;  src->name = “src”;
    dst->handler = &target1;
    src->handler = &target2;
    ….
    memcpy(dst, src, …);
    ….
    dst->handler();
}

GEN: PAC(&target1, dst->name, key-0)

After memcpy(),
dst->handler = PAC(&target2, src->name, key-0)

GEN: PAC(&target2, src->name, key-0)



Objbind

+ memcpy-compatible 

void func1() {
    struct irqaction *dst = …, * src = …;
    dst->name = “dst”;  src->name = “src”;
    dst->handler = &target1;
    src->handler = &target2;
    ….
    memcpy(dst, src, …);
    ….
    dst->handler();
}

GEN: PAC(&target1, dst->name, key-0)

After memcpy(),
dst->handler = PAC(&target2, src->name, key-0)

USE:  AUT(&target2, src->name, key-0)

GEN: PAC(&target2, src->name, key-0)

Still matched!

No memcpy-compatible issue arises!



Multi-Layer Context Generation

Wrap-up and Takeaways

● A CFI scheme can make use of design patterns in C-based 
OSes, to enhance CFI security without compatibility 
issues.

● Our paper includes more features integral to make up a 
PA-based Kernel CFI. Check out the full paper!
○ Context analyzer:  identifying the best objbind field automatically
○ Kernel infrastructure:  key management, preemptive hijacking 

prevention, brute-force attack mitigation

https://arxiv.org/pdf/2112.07213.pdf


Pain point-2:
A complicated compiler behavior



A complicated compiler behavior

Pipeline of producing PA-enabled kernel

Kernel
Codes

Front-End IR Layer ARM64
Back-End

The final 
kernel binary

PA passad-hoc
pass or plugin

Main flow

Modern compiler 
framework
(GCC or LLVM) 



A complicated compiler behavior

The gap between expectations and reality

Kernel
Codes

Front-End IR Layer
ARM64
Back-End

The final 
kernel binary

PA 
pass

void func1() {
  o->fp = &func2;
}



A complicated compiler behavior

The gap between expectations and reality

Kernel
Codes

Front-End IR Layer
ARM64
Back-End

The final 
kernel binary

PA 
pass

x = GET_ADDR(func2)
STORE(x, o->fp)

void func1() {
  o->fp = &func2;
}



A complicated compiler behavior

The gap between expectations and reality

Kernel
Codes

Front-End IR Layer
ARM64
Back-End

The final 
kernel binary

PA 
pass

x = GET_ADDR(func2)
STORE(x, o->fp)

void func1() {
  o->fp = &func2;
}

x = GET_ADDR(func2)
x = SIGN(x, context)
STORE(x, o->fp)



A complicated compiler behavior

The gap between expectations and reality

Kernel
Codes

Front-End IR Layer
ARM64
Back-End

The final 
kernel binary

PA 
pass

x = GET_ADDR(func2)
x = SIGN(x, context)
STORE(x, o->fp)

adrp x1, func2
pacia x1, x2
str x1, [x3]

Looks perfect!



A complicated compiler behavior

The gap between expectations and reality

Kernel
Codes

Front-End IR Layer
ARM64
Back-End

The final 
kernel binary

PA 
pass

x = GET_ADDR(func2)
x = SIGN(x, context)
STORE(x, o->fp)

adrp x1, func2
… (??)
pacia x1, x2
… (??)
str x1, [x3]

other
pass

Unpredictable
binaries produced..



A complicated compiler behavior

When it turns out problematic

● We assume attackers who can corrupt memory but not registers.
● The aim of attackers is to make an arbitrarily signed pointer using the signing code.

(L1) adrp x1, func2
(L2) pacia x1, x2
(L3) str x1, [x3]

A secure sequence
(expectation)

The raw pointer (x1) never spills onto memory,
and it’s guaranteed that a pointer stored on memory is signed.



A complicated compiler behavior

When it turns out problematic

● We assume attackers who can corrupt memory but not registers.
● The aim of attackers is to make an arbitrarily signed pointer using the signing code.

(L1) adrp x1, func2
(L2) str x1, [sp]
(L3) …. 
(L4) ldr x1, [sp]
(L5) pacia x1, x2
(L6) str x1, [x3]

An insecure sequence
(reality)

(L1) loads the raw address of func2 into x1.
(L2) stores x1 onto the stack memory.
(L3) …. imagines a stack vulnerability here ….
        attackers put an arbitrary pointer in the stack memory.
(L4) loads the attacker-chosen pointer
(L5) signs the attacker-chosen pointer



A complicated compiler behavior

Wrap-up and Takeaways

● Modern compiler frameworks are so complicated that 
you cannot expect what you did still remains as secure 
in the final binary. (even if you did great)

● The insecure sequences attributed to the compiler issue 
could be exploited to disarm CFI defenses as entirely.



Solution-2:
Static Validator



Static Validator

● It checks if the final kernel binary respects a set of security rules, 
thereby ensuring all sequences of PA instructions in kernel are 
secure.

● It performs a binary-level static analysis on a whole-kernel binary. 
(intra-procedural)

● We ran static validator on three kernel binaries.
○ iOS kernel binary
○ Linux kernel binary compiled by PARTS (academic paper)
○ Linux kernel binary compiled by our PA pass



Static Validator

1. Complete protection (P1)
○ All indirect branches have to be authenticated before use.

2. No time-of-check-time-of-use (TOCTOU) (P2)
○ Raw pointers after PA instructions are never stored back in memory.

3. No signing oracle (P3)
○ There must be no gadget that signs an attacker-chosen pointer.

4. No unchecked control-flow change (P4) (Not discussed)
○ All direct modifications of program counter register must be validated.

Four principles that kernel must respect



Static Validator

Found violation of P1 (Complete protection)

bgmac_chip_reset(x0, …) {
…
    L1:  mov   x19, x0
    L2:  ldr      x21, [x19, x8]
    — no authentication –
    L3:  blr      x21
…
}

● From:  PARTS
● Violation:  an indirect branch happens without authentication at L3
● Consequence:  attackers can make an arbitrary control-flow transition

bgmac_chip_reset(x0, …) {
…
    L1:  mov   x19, x0
    L2:  ldr      x21, [x19, x8]
    L3:  autib x21, x9
    L3:  blr      x21
…
}

Expectation Reality



Static Validator

Found violation of P2 (No TOCTOU)

sort(.., .., void (*swap_func)()) {
…
    L1:  autib   x2, x0    // x2: swap_func
    L2:  stp       x1, x2, [x29, 144]
…
    L3:  ldr       x2, [x29, 144]
    L4:  blr       x2
}

Expectation

● From:  PAL during development
● Violation:  a raw pointer is spilled onto the memory
● Consequence:  attackers can make an arbitrary control-flow transition

sort(.., .., void (*swap_func)()) {
…
    L1:  autib   x2, x0 
    L2:  blr       x2
…
}

Reality



Static Validator

Found violation of P3 (No signing oracle)

UNDEFINED(.., .., x2) {
…
    L1:  mov     x19, x2    
    L2:  ldr        x21, [x19, 240]
    L3:  pacia   x21, x8
…
}

● From:  iOS Kernel
● Violation:  signs a pointer that comes from memory
● Consequence:  attackers can make an arbitrary signed pointer

Expectation

UNDEFINED(...) {
…
    L1:  adrp   x21, 0xffff….ab00 
    L2:  pacia    x22, x8
…
}

Reality



Static Validator

Found violation of P3 (No signing oracle) (ADVANCED)

usb_stor_CB_transport(...) {
…
    L1:  adrp     x22, 0xffff….ab00    
    L2:  bl          usb_stor_msg_common
    L3:  pacia   x22, x23
…
}

usb_stor_CB_transport(...) {
…
    L1:  adrp     x22, 0xffff….ab00    
    L2:  pacia   x22, x23
…
}

Expectation Reality

Why is it problematic??



Static Validator

Found violation of P3 (No signing oracle) (ADVANCED)

usb_stor_CB_transport(...) {
…
    L1:  adrp     x22, 0xffff….ab00    
    L2:  bl          usb_stor_msg_common
    L3:  pacia   x22, x23
…
}

Reality

usb_stor_msg_common(...) {
    L1:  stp       x22, x21, [sp, 48]    
…
    L2:  ldp      x22, x21, [sp, 48]
    L3:  ret
}

● From:  PARTS
● Violation:  signs a pointer that comes from memory
● Consequence:  attackers can make an arbitrary signed pointer



Static Validator

We confirmed
● 15 violations in PARTS-applied linux kernel binary
● 5 violations in iOS kernel binary
● 7 violations in PAL-applied linux kernel binary (during dev)

NOTE
● Violation does not mean Exploitable. There are many variables 

involved in exploitability. (e.g., the context of inter-procedural 
stuffs)

Results



Static Validator

Wrap-up and Takeaways

● Don’t trust the compiler you’re relying on. Instead, you 
should trust a binary-level validator that runs at the end 
of the kernel-build procedure.



UAF Defense
(UAF: Use-After-Free)



Exploiting UAF

Step-1:  creating a dangling pointer
Step-2:  allocating an object to overlap with the freed victim object
Step-3:  dereferencing the dangling pointer

To defend against UAF attacks, it suffices to stop the attack at any of 
these three steps.



Pain point:
No one cares about Kernel UAF 
defenses- Why?



No one cares about kernel UAF

WHY?

● Size:  OS kernel is huge in size
● Low-level:  in most cases, OS kernel is placed at the bottom of 

entire software stack



Existing approaches

1. Pointer invalidation
a. prevent the creation of dangling pointer. (Step-1)

2. Safe memory allocation
a. prevent the reallocation of freed object (Step-2)

3. Access validation
a. check if a pointer dereferencing is valid (Step-3)



Existing approaches

Pointer invalidation (No dangling pointer)

func(...) {
    shared_ptr<Obj> p1(new Obj());
    shared_ptr<Obj> p2;
     …
    p2 = p1;
}   // end

C++ Smart Pointer (similar to Rc/Arc in Rust)

Objp1

Reference count: 1



Existing approaches

Pointer invalidation (No dangling pointer)

func(...) {
    shared_ptr<Obj> p1(new Obj());
    shared_ptr<Obj> p2;
     …
    p2 = p1;
}   // end

C++ Smart Pointer (similar to Rc/Arc in Rust)

Objp1

p2

Reference count: 2



Existing approaches

Pointer invalidation (No dangling pointer)

func(...) {
    shared_ptr<Obj> p1(new Obj());
    shared_ptr<Obj> p2;
     …
    p2 = p1;
}   // end

C++ Smart Pointer (similar to Rc/Arc in Rust)

Objp1

p2

Reference count: 0,  Deallocate Obj!

● If we perfectly manage a reference count for an object, no dangling pointer will occur.
● Problem? → Developers have to explicitly turn all pointers into smart pointers, which is 

unrealistic.



Existing approaches

Pointer invalidation (No dangling pointer)

func(...) {
    Obj *p1 = new Obj();
    Obj *p2 = p1;
     …
}   // end

CRCount (NDSS 2019)

Objp1

p2

Reference count: 2

Compiler
Pass

+ analyze source code
+ instrumentation for automatic 
management of reference count

Solution? 
→ an automatic reference count management using a compiler instrumentation



Existing approaches

Pointer invalidation (No dangling pointer)

unsigned long u1 = 0;

func(...) {
    Obj *p1 = new Obj();
    …
    u1 = (unsigned long)p1;
     …
}  

CRCount (NDSS 2019)

How to deal with it?
incrementing a count or not?

Problem? 
→ There are cases in which an automatic management does not work well, and such 
cases are commonly found in OS kernel due to its huge size.



Existing approaches

Safe memory allocation (No reallocation)

func(...) {
    Obj *p1 = malloc();
    free(p1);
    …
    Obj *p2 = malloc();
     …
}  

FFmalloc (USENIX Security 2021)
Obj1 (freed)

Obj2 (allocated)

empty

empty

empty

…

…

Virtual Memory (64-bit)

Physical Memory (small)

User-space app

Never allows the reallocation of a freed object!
It works out in practice for user apps, thanks to the large size of virtual memory.



Existing approaches

Safe memory allocation (No reallocation)

func(...) {
    Obj *p1 = kmalloc();
    kfree(p1);
    …
    Obj *p2 = kmalloc();
     …
}  

Obj1 (freed)

Obj2 (allocated)

empty

Kernel Virtual Memory 
(~MB)

Physical Memory (~MB)

Kernel code

An allocation in kernel directly takes up a part of physical memory,
bring on out-of-memory issues in a short time. 

Obj1 (freed)

Obj2 (allocated)

empty
1:1
mapping



Existing approaches

Access validation

func(...) {
    Obj *p1 = malloc();
    …
    p1->val = 10;
}  

p1 = 0xabcd110022003300

Object address (Key) ID (Value)

0x110022003300 0xabcd

… …

Random ID
: 0xabcd

Pointer-side ID (stored in place)

Object-side ID (stored in a separate table)

NOTE: this is a simplified illustration of mapping table

Compare if a pointer-side is equivalent to an object-side ID



Existing approaches

Access validation

func(...) {
    Obj *p1 = malloc();
    free(p1);
    Obj *p2 = malloc();
    …
    p1->val = 10;
}  

p1 = 0xabcd110022003300

Object address (Key) ID (Value)

0x110022003300 0x1234

… …

Pointer-side ID (stored in place)

Object-side ID (stored in a separate table)

NOTE: this is a simplified illustration of mapping table

In case of invalid access-
ID mismatch!



Existing approaches

Access validation

func(...) {
    Obj *p1 = malloc();
    free(p1);
    Obj *p2 = malloc();
    …
    p1->val = 10;
}  

p1 = 0xabcd110022003300

Object address (Key) ID (Value)

0x110022003300 0x1234

… …

Pointer-side ID (stored in place)

Object-side ID (stored in a separate table)

NOTE: this is a simplified illustration of mapping table

Problem?
→ a pointer dereference demands N additional memory accesses (N = 2 or 3),
bring on substantial performance downgrade.



Existing approaches

Wrap-up and Takeaways

● Pointer invalidation
○ It’s infeasible to implement a perfect static analysis for a huge kernel.

● Secure memory allocation
○ Readily reach out-of-memory, when applied to kernels

● Access validation
○ Bring on a large performance downgrade



Solution:
Object ID inspection
through base identifier



Goal

● Optimizing Access Validation Approach
○ AS-IS:  three more memory loads are required to obtain an object-side ID.

○ TO-BE:  Just one memory load is needed to obtain an object-side ID.



The first attempt

func(...) {
    Obj *p1 = kmalloc();
    …
    p1->val = 10;
}  

Random ID
: 0xabcd

p1 = 0xabcd110022003300

ID of Obj1 = 0xabcd

Obj1
(at 0x110022003300)

The first attempt we did
Memory Layout

Place an object-side ID
at the start of the object!



The first attempt

func(...) {
    Obj *p1 = kmalloc();
    …
    p1->val = 10;
}  

p1 = 0xabcd110022003300

ID of Obj1 = 0xabcd

Obj1
(at 0x110022003300)

The first attempt we did
Memory Layout

Only one memory access here!
Any problem?

The address of
an object-side ID
= (p1 - 8) 

ID Lookup Algorithm



The first attempt (Problem)

func(...) {
    Obj *p1 = kmalloc();
    int *p2 = &p1->val;
    …
    *p2 = 10;
}  

p1 = 0xabcd110022003300

p2 = 0xabcd110022003320

ID of Obj1 = 0xabcd

Obj1
(at 0x110022003300)

ID lookup for the middle of a pointer
Memory Layout

Result in an incorrect ID lookup-!
Solution?

The address of
an object-side ID
= (p2 - 8) 

ID Lookup Algorithm



Base Identifier

Base Identifier

Base Identifier:  an auxiliary data that helps the ID lookup process.
                                  takes k bit, where k is typically 6. (i.e., 10 bit for random id)

Random ID PointerAS-IS

16 bit

Base
Identifer

Random 
ID

Pointer

k bit 16-k bit

TO-BE



Base Identifier

How it works under two assumptions

Assumption-1:    Every object is limited up to 4kb in size. (2^M bytes, M = 12)
Assumption-2:    Every object is aligned with 64 bytes. (2^N bytes, N = 6)
Base Identifier:  (M - N) bit,  6 bit,  is used to express a slot index.

slot-0 slot-1 slot-2 … … … … … … … slot-62 slot-63

4 kb

64 bytes Memory Layout



Base Identifier

How it works under two assumptions

slot-0 slot-1 … … ID Obj1 … … … … slot-62 slot-63

func(...) {
    Obj *p1 = kmalloc();
    int *p2 = &p1->val;
    …
    *p2 = 10;
}  

128 bytes

slot-4 slot-6

0x4
(slot idx)

ID 0x110022003300
p1

BI

Force it 64-byte aligned!



Base Identifier

How it works under two assumptions

slot-0 slot-1 … … ID Obj1 … … … … slot-62 slot-63

func(...) {
    Obj *p1 = kmalloc();
    int *p2 = &p1->val;
    …
    *p2 = 10;
}  

128 bytes

slot-4 slot-6

0x4
(slot idx)

ID 0x110022003320
p2

BI



Base Identifier

How it works under two assumptions

slot-0 slot-1 … … ID Obj1 … … … … slot-62 slot-63

func(...) {
    Obj *p1 = kmalloc();
    int *p2 = &p1->val;
    …
    *p2 = 10;
}  

128 bytes

slot-4 slot-6

0x4
(slot idx)

ID 0x110022003320
p2

ID Lookup Algorithm 
1:  (-----------) 0x110022003320
2:  (masking) 0x110022003000 (slot-0)
3:  (slot idx  ) 0x110022003000
                     + (0x40 * 0x4)
4:  (id addr  ) 0x110022003100



Evaluation

Evaluation

● We also design several static analyses to eliminate inspections 

for UAF-safe pointers.  (Not discussed in this talk.  Check out 

the full paper for detail)

● LMBench result (i.e., syscall latency)

○ Ubuntu kernel (x86_64):  + 20.71%

○ Android kernel (arm64):  + 19.86 %

https://haehyun.github.io/papers/vik-asplos22.pdf


Evaluation

Evaluation

● We also developed a performance-first variant using ARM TBI, 

for ARM boards only.

○ Performance:  + 1–2 % overhead

○ Security:  lowered as being not able to inspect the middle 

pointer.

○ (Not discussed today in detail as well)



Base Identifier

Wrap-up and Takeaways

● It’s possible to build an efficient UAF protection for 

kernels as entirely, and we are the first one who’s 

demonstrated it!


