blgc’:k hat

A =

ExplosiON: The Hidden Mines In
the Android ION Driver

Le Wu, Xuen Li, Tim Xia
Baidu Security

BBBBBBBBBBBBBBBBBBBBBB

Le Wu(@Nvamous)

® [ocus on Android/Linux bug hunting and exploit
® Found 200+ vulnerabilities in the last two years
® Topl in Android Chipset Security Program, Topl in MediaTek Mobile Security Program

Xuen Li(@Ixn524)

® Interested in Android, Linux Kernel and OSS security testing and exploitation
® Focus on PSA and OP-TEE currently

® Author of One Click Root Master, SuperRootMaster, etc...

Tim Xia
® Staff security researcher at Baidu Inc.

® [Focused on system and software security solutions
® Previous PacSec and HITB speaker

https://twitter.com/NVamous
https://twitter.com/lxe524

® Introduction to ION

® Using ION

® Diving into ExplosION

® Reflections on ExplosiION
® Future work

® A generalized memory pool manager

It's used to address the issue of fragmented memory management
Interfaces across different Android devices.

ION

ion heap
“system_cofnig”
based on kmalloc

Device constraints for memory ion heap “system”
based on vmalloc

Devices may handle scatter-
ion heap “carveout”

ather lists : R
0 based on preserved ion heap “dma
: : memory based on DMA
Devices only access physically centralized into
contiguous pages
: : : ion heap ion heap
Devices sit behlr.]c(llgrl]vllllvcl)ugnemory vendor customl1 vendor custom?2
management unit
...... Ion heap |0n heap

vendor custom3 vendor customN

® A common Android driver used for a decade

v" Although ION is replaced with dma-buf in Android 12, millions of devices still use ION

v" ION will survive for a long time due to fragmentation of Android

® Can be accessed by untrusted apps

v" No additional privileges needed to trigger the vulnerabilities in ION

v Perfect exploitation target, like the BINDER device

® A memory management component

Vulnerabilities in memory management components are proven to be dangerous!

LN !
DIRTY COW
® Multiple refactors from upstream
12 joNnvi o ION V2 2019 ION V3 202t DMA-BUF "
I | |
! ; ! Replace ION with DMA-

since Kernel 4.12 Android Common

Common Kernel 5.4 kernel android12-5.10

Why there are multiple

refactors? Why ION ends . .
up with a re¥nova| in Maybe there are security issues in it?

Android kernel?

So far, we have found 40+ vulnerabilities in ION, and
millions of devices are affected!

Before diving into ExplosION, let's have a look at the
using of legacy ION

Why legacy ION?

It shows us the most
complete design and
Implementation of ION.
Subsequent refactors are
all based onit.

® Allocate memory buffer from user space

User space Kernel space
: : ion_handle
: lon_client ;
client_fd = open(/dev/ion, RONLY); — ion_handle
struct rb_root handles ion_handle
ioctl(client_fd, ION_10C_ALLOC, struct lon_handle ion_buffer

: ! .
allocation_data *allocation_data) struct_ion_handle *buffer

ion_handle id @ <================—f-======-====————--- int id;

Struct ion_allocation_data { i
size tlen; :
size_t align; ‘
unsigned int heap_id_mask; E
unsigned int flags; i
int handle; // ion_handle id i

® Free memory buffer from user space

User space

joctl(client_fd, ION_I0C_FREE,struct
ion_handle data *handle_data)

Struct ion_handle_data {

}

int handle; // ion_handle id

Kernel space

lon_handle

struct_ion_handle *buffer;

int id;

jon_buffer

® Buffer sharing from user space

User space Kernel space
lon_hande jon_buffer
loctl(client_fd, ION_IOC_SHARE, struct -
ion_fd_data *fd_data) struct_ion_handle *buffer;
int id;
dma_buf Wemory buer
dma_buf _fd()
dma-buf fd S e e

void *priv;

Struct ion_fd_data {
int handle; // input:ion_handle fd
int fd;// output:dma-buf fd

® Import buffer from user space

User space

joctl(client_fd, ION_IOC_IMPORT,
struct ion_fd_data *fd_data)

ion_handleid = <«=-=-==—===========;

Struct ion_fd_data {
int handle; //output:ion_handle fd
int fd;// input:dma-buf fd

Kernel space

dma_buf

void *priv;

jon_handle

struct_ion_handle *buffer;

jon_buffer

® Allocate memory buffer from kernel space

struct ion_handle *ion_alloc(struct ion_client *client, size_t len,
size t align, unsigned int heap_id_mask,
unsigned int flags);

® Free memory buffer from kernel space

void ion_free(struct ion_client *client,
struct ion_handle *handle);

ion_buffer

® Map the memory buffer into kernel space

void *ion_map_kernel(struct ion_client *client, struct ion_handle *handle);

void *vaddr;

int kmap_cnt;

The Characteristics of ION:

A base driver used by vendor drivers
Customization of ION

Vendors’ modification to ION core

Buffer sharing feature of ION

Legacy ION Architecture

User process

User space : syscall

Kernel space

ry
.
.
““
.
.
.

User vaddr
A base driver used by vendor drivers
Customization of ION
Vendors’ modification to ION core
Buffer sharing feature of ION
4 4

allocate();
free();

Py
.
.
.
P ide
.
r)
.
.

ION core %

<

/ Interfaces for user space

~

Interfaces for kernel space

-

Default ION heaps

\

ion ioctl():
ALLOC;
FREE;
SHARE;

ION

/ion open();

ion close();

b

dma-buf ioctl();
dma-buf mmap();

ion ioctl():

/

kcusmm;

ion_alloc();

ion_free();

ion_map_kernel();

map_kernel();
unmap_kernel();

Kernel vaddr

ION customizatim

]
|
/

map_user(); :
Custom ION heaps T ! :
— —) 7 P
e N\ N ~
————— Memory
U buffer
custom ioctl():

e

Vendor
modification

Legacy ION Architecture

User vaddr
. A base driver used by vendor drivers
. Customization of ION
User process . Vendors' modification to ION core
. Buffer sharing feature of ION
: : : : : yy
User space : : : syscall E : ! :
v v v v v K
Kernel space [Driver 1] [Driver 2] [Driver N] | allocate() v
- ~ - _ i Kernel vaddr
. S e ! free(); i
e ' map_kernel();
3 S e ION customization "\ | unmap_kernel();
/ ION core A oo \ \: maFE)__user():O L
Interfaces for user space Interfaces for kernel space Default ION heaps Custom ION heaps L ! :
/ \ / \ /(P } /"\ ::' :‘
ion open(); J [/ : &

/
ion close(); ion_alloc(); [
IO N lon ioctl(): ion_free();
ALLOC; ion_map_kernel(); [J [
_

SHARE:; dma-buf mmap(); \.)”.\ J buffer
- J

ion ioctl(): % Vendor

)
/
\KCUSTOM; / \ / / custom ioctl(): / modification

Legacy ION Architecture

. A base driver used by vendor drivers
. Customization of ION

User process + Vendors’ modification to ION core

. Buffer sharing feature of ION

: syscall

User vaddr

Kernel vaddr

User space
v v v v v
Kernel space (Driver 1] [Driver 2] (Driver N| T iocaieg:
B S e : free(); I
e ' map_kernel();
/ |ON core : ‘.." Pt ION customization "\ | unmap_kernel(); i
N ” | map_user();
Interfaces for user space Interfaces for kernel space Default ION heaps Custom ION heaps :_________:__ ______ I
T N N (7 N /) ,.4
0000)|
ion close(); ion_alloc();)
I O N ion ioctl(): ion_free(); — o
ALLOC,; : - : Lt
FREE: dma-buf ioctl(); lon_map_kemel(); [J [J [} Memory
SHARE: dma-buf mmap(); || | — buffer
...... \ LN / \ ° J
ion ioctl(): /

\KCUSTOM;

/

custom ioctl(): /

e

Vendor
modification

Legacy ION Architecture

User process

User space : syscall

Kernel space

ry
.
.
““
.
.
.

User vaddr
A base driver used by vendor drivers
Customization of ION
Vendors’ modification to ION core
Buffer sharing feature of ION
4 4

allocate();
free();

Py
.
.
.
P ide
.
r)
.
.

ION core %

<

/ Interfaces for user space

~

Interfaces for kernel space

-

Default ION heaps

\

ion ioctl():
ALLOC;
FREE;
SHARE;

ION

/ion open();

ion close();

*

dma-buf ioctl();
dma-buf mmap();

ion ioctl():

/

\KCUSTOM;

ion_alloc();

ion_free();

ion_map_kernel();

map_kernel();
unmap_kernel();

Kernel vaddr

ION customizatim

]
|
/

map_user(); :
Custom ION heaps T ! :
— —) 7 P
e N\ N ~
————— Memory
U buffer
custom ioctl():

*

Vendor
modification

Legacy ION Architecture

User process

User space : syscall

Kernel space

ry
.
.
““
.
.
.

/ Interfaces for user space

/ion open();

ion close();

ion ioctl():
ALLOC;
FREE;
SHARE;

ION

~

b

dma-buf ioctl();
dma-buf mmap();

ion ioctl():

ION core

/

\:E:FUSTOM;

T ¥ oa

Interfaces for kernel space

-

ion_alloc();
ion_free();
ion_map_kernel();

\

Py
.
.
.
P ide
.
r)
.
.

Default ION heaps

J

J

(
|

]
|
/

User vaddr
A base driver used by vendor drivers
Customization of ION
Vendors’ modification to ION core
Buffer sharing feature of ION
4
i allocate(); ! v
! A ' Kernel vaddr
! free(); i
—— ' map_kernel(); i
ION customlzatlm: unmap_kernel();
i map_user();
Custom ION heaps :_________;___ ______ !
(—— —) A
""""" Memory
\ J J buffer E;j
Vendor
custom ioctl(): modification

@ A base driver used by vendor drivers

User vaddr
Are there issues in
User process the use of ION core
APIs?
User space : i : syscall ; E s :
v v v v v :
Kernel space (Driver 1] (Driver 2] ... |(Driver N " ailocatel v
- ~ - _ i Kernel vaddr
. S e ! free(); i
et ' map_kernel();
Y o e ION customization \ | unmap_kernel(); i
/ ION core | £oooar \ \: map?_user():o L
Interfaces for user space Interfaces for kernel space Default ION heaps Custom ION heaps :_________;___ ______ ! :
/f \ (} /’A :: 0’

td
s N\ N[L

N J L) buffer
IS I W o %
ion ioctl(): % Vendor

\
ion close(); ion_alloc(): J
I O N ion ioctl(): ion_free():; J
J
\KCUSTOM; / _) / custom ioctl(): / modification

ALLOC; ion_map_kernel();

FREE: dma-buf ioctl();

SHARE: dma-buf mmap();

/ionopen(); \ / \ /[}[
|
-

@ A base driver used by vendor drivers

Vendor camera Vendor video Vendor A: Vendor B: Vendor C:
drivers drivers QSEECOM apu driver NPU driver
driver
[N A o 4
v\ \ | ﬁ /7 - -
~ -
AN \\ ! // -7 - =" -
~ \ | / - P d -
~ - -
S \ I / - -
~ \ I / - -~ — -
o~ ~ -~ - —

-

Vulnerability: From ION Core

@ A base driver used by vendor drivers

4 N

KVuInerabiIitieS from ION Core:\
* Analyze the design and

CVE-2021-0929
Implementation of ION core APIs N

for kernel space CVE-2021-39714

« Check if vendor drivers use ION « Misuse of ION Core APIs by
\ core APIs correctly / vendor driver:

& CVE-2022-20110 /

CVE-2021-0929

» Affected ION version:
ION V1,V2,V3

» Root cause:
ION core exposed an API to user space which it

shouldn’t be

» Impact:
An UAF issue would be introduced into vendor drivers

by ION core In a specific use scenario

CVE-2021-0929

An ION use scenario

User Process

Create dma-buf fd with ION

dma-buf fd | ============———ud

Vendor driver

Import dma-buf fd, and create an ion_handle:
ion_handle = ion_import_dma_buf fd(ion_client, dma-buf fd);

Map the memory buffer represented by ion_handle into kernel
space:
kernel vaddr=ion_map_kernel(ion_client, ion_handle);

(the kernel vaddr will be saved into ion_buffer->vaddr)

Reference the kernel vaddr;

CVE-2021-0929

static long dma_buf_ioctl(struct file *file,
unsigned int cmd, unsigned long arg)

{
dmabuf = file->private _data;
switch (cmd) {
case DMA_BUF_IOCTL_SYNC:
if (sync.flags & DMA_BUF_SYNC_END)
ret = dma_buf end cpu_access(dmabuf,
direction);

int dma_buf_end_cpu_access(struct dma_buf *dmabuf,
enum dma_data_direction direction)

{
int ret = 0;
WARN_ON(!dmabuf);
if (dmabuf->ops->end_cpu_access)
ret = dmabuf->ops->end_cpu_access(dmabuf, direction);
return ret;
}

static intion_dma_buf_end _cpu_access(struct dma_buf *dmabuf,

)

{
struct ion_buffer *buffer = dmabuf->priv;
mutex_lock(&buffer->lock);
ion_buffer_kmap_put(buffer);

}

void ion_heap_unmap_kernel(struct ion_heap *heap,
struct ion_buffer *buffer)

{
}

vunmap (buffer->vaddr);

buffer->vaddr gets
unmmaped in
kernel space!!!

CVE-2021-0929

UAF would happen in a race condition:

Thread A

(User space)

Create dma-buf fd with ION

dma-buf fd = ===

sync.flag = DMA _BUF_SYNC_END;
ioctl(dma-buf fd, DMA_BUF _IOCTL_SYNC,
&sync);

Thread B

(Vendor driver)

Import dma-buf fd, and create an ion_handle:
ion_handle = ion_import_dma_buf fd(ion_client, dma-buf fd);

Map the memory buffer represented by ion_handle into kernel
space:
kernel vaddr=ion_map_kernel(ion_client, ion_handle);

Reference the kernel_vaddr;

CVE-2022-20110

» Affected ION version:
A vendor’s devices with ION V1

» Root cause:
Misuse of ION core APIs by vendor driver

» Impact:
UAF

CVE-2022-20110

void *ion_map_kernel(struct ion_client *client, struct static void *ion_buffer_kmap_get(struct ion_buffer *buffer)
ion_handle *handle) {
{ void *vaddr;
struct ion_buffer *buffer;
void *vaddr; if (buffer->kmap_cnt) {
buffer->kmap_cnt++;
mutex_lock(&client->lock); return buffer->vaddr;
____________ }
buffer = handle->buffer; vaddr = buffer->heap->ops->map_kernel(buffer->heap,
...... buffer);

mutex_lock(&buffer->lock); -~ | | ...

vaddr = ion_handle_kmap_get(handle); buffer->vaddr = vaddr;
mutex_unlock(&buffer->lock); buffer->kmap_cnt++;
mutex_unlock(&client->lock); return vaddr,;

return vaddr;

buffer->vaddr and buffer-
>Kkmap_cnt are protected by
mutex locks!

CVE-2022-20110

Access Iinternal data instead of using the exported API:

static long ion_sys_cache_sync(struct ion_client *client,
struct ion_sys_cache_sync_param *param,
int from_kernel)

buffer->vaddr and buffer-
>kmap_cnt are not
protected by mutex locks!

unsigned long sync_va = 0;
struct ion_buffer *buffer;

if (buffer->kmap_cnt '= 0) {
sync_va = (unsigned long)buffer->vaddr;

} else {
sync_va = (unsigned long)ion_map_kernel(client, kernel_handle);
ion_need_unmap_flag = 1;

}

ret = cache_sync_by range(client, sync_type,
sync_va, ...); UAF

ion_unmap_kernel(client, kernel_handle);

CVE-2022-20110

UAF would happen in a race condition:

Thread A Thread B

(enter ion_sys_cache_sync) (enter ion_sys_cache_sync)

if (buffer->kmap_cnt != 0) {

} else {
sync_va =ion_map_kernel(client, kernel _handle);

}

__cache_sync_by range(client, sync_type,

if (buffer->kmap_cnt = 0) {
sync_va, sync_size, from_kernel);

sync_va = buffer->vaddr;
} else {

ion_unmap_kernel(client, kernel_handle);
(sync_va will be unmapped !!)

__cache_sync_by range(client, sync_type, w

sync_va, sync_size,

from_kernel);

@ Customization of ION

User process

: syscall

allocate(); :
free(); I
map_kernel();
unmap_kernel();
map_user(); i

User space
__________ . 2
Kernel space (Driver 1] [Driver 2] [Driver N|
/ ION core % " ION customization
Interfaces for user space

Interfaces for kernel space Default ION heaps Custom ION heaps

K (-) A\
ion open(); [J [}
?on _close(); % ion_alloc(); [J . J
ION| | |5 on- et — -
FREE: dma-buf ioctl(); lon_map_kernel(); [J [J [} —————
SHARE: dma-buf mmap(); || | - <
...... _) \ ’ J

~

ion ioctl():

KKCUSTOM;

/

-

\

—

User vaddr

Kernel vaddr

s
P
L

Memory
buffer

custom ioctl(): /

e

Vendor
modification

@ Customization of ION

v' To handle all the various types of hardware memory allocation, ION provides interfaces for vendors to add their own

v

ION heaps(except common heaps)

void ion_device _add_ heap(struct ion_device *dev, struct ion_heap *heap);

struction_heap_ops {
int (*allocate)(struct ion_heap *heap,
struct ion_buffer *buffer, unsigned long len,
unsigned long align, unsigned long flags);

Struct ion_heap {

Struct ion_device *dev;

Emum ion_heap_type type; void (*free)(struct ion_buffer *buffer);

Struct ion_heap_ops *0pS; ==============- > void * (*map_kernel)(struct ion_heap *heap, struct ion_buffer *buffer);
Unsigned long flags; void (*unmap_kernel)(struct ion_heap *heap, struct ion_buffer *buffer);
Unsinged int id; int (*map_user)(struct ion_heap *mapper, struct ion_buffer *buffer,

struct vm_area_struct *vma);
int (*shrink)(struct ion_heap *heap, gfp_t gfp_mask, int nr_to_scan);

ION provides an ION_IOC_CUSTOM ioctl command which allows vendors to implement their own buffer operations

case ION_I0C_CUSTOM:
{
if ("dev->custom_ioctl)
return -ENOTTY;
ret = dev->custom_ioctl(client, data.custom.cmd,
data.custom.arg);
break;

@ Customization of ION

We found:

v" Most vendors would add their own ion heaps

v" Most vendors would add custom ioctl commands

Vendor A Vendor B 4 : ! :)
Customization Is
long msm_ion_custom_ioctl(struct ion_client *client, static long _ion_ioctl(struct ion_client *client,
unsigned int cmd, unsigned int cmd, unsigned long arg, int proven o be
unsigned long arg) from_kernel) Vulnerable in many
{ {
............ cases!
switch (cmd) { switch (cmd) { _ Y,
case ION_|I0C_CLEAN_CACHES: case ION_CMD_SYSTEM:
case ION_IOC INV_CACHES: (|| ...
case ION_IOC_CLEAN_INV_CACHES: case ION_CMD_MULTIMEDIA:
S
...... break
}

Dozens of vulnerabilities 1n the customization

lon_heap customization:
CVE-2021-0498,CVE-2021-0528,CVE-2021-0489,CVE-2021-0493,CVE-2021-0492,
CVE-2021-0490,CVE-2021-0496,CVE-2021-0526,CVE-2021-0420,CVE-2021-0525,
CVE-2021-0495,CVE-2021-0497,CVE-2021-0491,CVE-2021-0421,CVE-2021-0530,
CVE-2021-0494,CVE-2021-0424,CVE-2021-0527 ...

lon custom ioctl;
CVE-2022-20036,CVE-2021-0419,CVE-2021-0418,CVE-2021-0529,CVE-2021-0415,
CVE-2021-0417,CVE-2021-0416,CVE-2022-20017,CVE-2022-20037,CVE-2021-0425

All the vulnerabilities have
already been fixed by vendors!

@ Vendors’ modification to ION core

User process

User space

User vaddr

syscall 4

Kernel space

ION

ry
.
.
““
.
.
.

/ Interfaces for user space

ion ioctl():
ALLOC;
FREE;
SHARE;

/ion open();

ion close();

~

*

dma-buf ioctl();
dma-buf mmap();

ion ioctl():

ION core

/

\KCUSTOM;

"1 » PR
Interfaces for kernel space

Default ION heaps

4 N

ion_alloc();

ion_free();

ion_map_kernel();

]
|
/

ION customizatim

Custom ION heaps

(—— ——)
. J . J
4 N\ 4 N\
. J . J

custom ioctl():

allocate();
free();
map_kernel();
unmap_kernel();
map_user();

Kernel vaddr

e
R
L~

_/

*

Vendor
modification

@ Vendors’ modification to

|ION core

Vendor B

Add some debug code into the original ion_alloc():

Vendor A
Add new commands into the original ion_ioctl():
static long ion_ioctl(struct file *filp, unsigned int cmd,
unsigned long arg)
{
+ case ION_|OC_CLEAN_CACHES:
+ return client->dev->custom_ioctl(client,
+

ION_IOC_CLEAN_CACHES, arg);
+ case ION_IOC_INV_CACHES:
+ return client->dev->custom_ioctl(client,
+

ION_IOC _INV_CACHES, arg);
+ case ION_IOC_CLEAN_INV_CACHES:
+ return client->dev->custom_ioctl(client,
+

ION_IOC_CLEAN_INV_CACHES, arg);

+
+ #endif

+

+
+

struct ion_handle *ion_alloc(struct ion_client *client, size_t len,

size_t align, unsigned int heap_id_mask,
unsigned int flags)

+ #ifdef CONFIG_MTK_ION

ilon_history _count_kick(true, len);

handle->dbg.user_ts = end;
do_div(handle->dbg.user_ts, 1000000);
memcpy(buffer->alloc_dbg, client->dbg _name,

ION_MM_DBG_NAME_LEN);

https://android.googlesource.com/kernel/msm/+/eeeb940746de65640d81c386f91aeef39c936a5b^!/#F3

@ Vendors’ modification to ION core

4)

New vulnerabilities
can be introduced

N /

® \ulnerable modifications

® Code merge conflicts could happen
4)

Known vulnerabilities are not
fixed or new vulnerabilities
get introduced

N /

* Missing patch
« Wrong patch

@ Vendors’ modification to ION core

4 N

* Analyze the modifications
made by vendors

* |nvestigate known issues of
ION and check if they are fixed

\ downstream /

/Vulnerabilities Introduced by \
Modification

CVE-2021-0422

* Vulnerabilities due to the missing patch

CVE-2021-39801
CVE-2022-20109
* Vulnerabilities due to the wrong patch

CVE-2022-20118
CVE-2021-0610

CVE-2021-0422

> Affected ION version:
A vendor’s devices with ION V1

» Root cause:
Vulnerable modifications to ION core

» Impact:
lllegal memory access

CVE-2021-0422

struct ion_handle *ion_import_dma_buf fd(struct ion_client
*client, int fd)

{

struct dma_buf *dmabuf;
struct ion_handle *handle;

dmabuf = dma_buf_get(fd); “handle” could be an error
...... code
handle = ion_import_dma_buf(client, dmabuf);

dma_buf_put(dmabuf);

...... — —
handle->dbg.fd = fd; | hal_wdle is not checked,_
handle->dbg.user_ts = sched_clock(); tnvahd memory alccess will
do_div(handle->dbg.user_ts, 1000000); happen!

return handle;

CVE-2021-39801

> Affected ION version:
ION V1

» Root cause:
The patch of a known issue(wrong behavior of the
ION API) Is missing

» Impact:
UAF

CVE-2021-39801

A known issue in ION_|OC_FREE:

case ION_|IOC_ FREE:

{ static void ion_handle_destroy(struct kref *kref)
struct ion_handle *handle; {
mutex_lock(&client->lock); struct ion_handle *handle = container_of(kref, struct
handle = ion_handle_get_by id_nolock(client, ion_handle, ref);
data.handle.handle); = -eeeee
______ o kfree(handle);
ion_free_nolock(client, handle); \/ }
ion_handle_put_nolock(handle);
mutex_unlock(&client->lock);
break;
}
Cvifi‘loe”(eﬁ@{'ata-ha”d'e = lon_handle_lid, ion_handle object in the kernel
ioctl(client_fd, ION_IOC_FREE, could be released at any time
f‘ha”d'e—data)? from user space!

CVE-2021-39801

UAF scenario:

case ION_|OC_ALLOC:

{

struct ion_handle *handle;
handle = ion_alloc(client, data.allocation.len,
data.allocation.align,

data.allocation.heap id_mask,

data.allocation.flags);
if (IS_ERR(handle))
return PTR_ERR(handle);
data.allocation.handle = handle->id;
cleanup_handle = handle;

break;

if (copy_to_user((void __user *)arg, &data, 10C_SIZE(cmd))) {

if (cleanup_handle)
ion_free(client, cleanup_handle); UAF

return -EFAULT,

Are there any
other places that
would trigger the

UAF?

CVE-2021-39801

The issue Is assigned CVE-id: CVE-2017-0564 in 2017.
Patch for the Issue:

ANDROID: ion: Protect kref from userspace manipulation

This separates the kref for ion handles into two components.
Userspace requests through the ioctl will hold at most one
reference to the internally used kref. All additional requests
will increment a separate counter, and the original reference is
only put once that counter hits 0. This protects the kernel from
a poorly behaving userspace.

But some Android common kernel branches & Upstream kernel
branches & some vendors’ kernel branches missed the patch!

https://android.googlesource.com/kernel/msm/+/8531a798d4e8886fa9af90d76d326b336a1ef7a2^!/#F0

CVE-2022-20118

> Affected ION version:
A vendor’s devices with ION V1

» Root cause:
Wrong patch for a known mutex lock using issue

» Impact:
UAF

CVE-2022-20118

A known UAF issue in the ION_IOC_SHARE .

Wrong behavior
version of
ION_10C_FREE

case ION_IOC_SHARE: case ION_IOC_ FREE:
case ION_IOC_MAP: {
{ struct ion_handle *handle;
struct ion_handle *handle; mutex_lock(&client->lock);
handle = ion_handle_get by id(client, data.handle.handle); handle = ion_handle_get by id nolock(client,
if (IS_ERR(handle)) data.handle.handle);
return PTR_ERR(handle); if (IS_ERR(handle)) {
data.fd.fd = ion_share_dma_buf fd(client, handle); mutex_unlock(&client->lock);
ion_handle_put(handle); return PTR_ERR(handle);
if (data.fd.fd < 0) }
ret = data.fd.fd; ion_free_nolock(client, handle);
break; ion_handle_put_nolock(handle);
} mutex_unlock(&client->lock);
break;

CVE-2022-20118

A known UAF issue in the ION_IOC_SHARE:

Thread A

(Process ION_IOC_SHARE /ION_IOC_MAP)

handle = ion_handle_get by id(client,
data.handle.handle);

data.fd.fd = ion_share _dma_buf fd(client, handle); ‘

Thread B

(user space)

handle data.handle = ion_handle_id;

joctl(client_fd, ION_IOC_FREE, &handle_data);
joctl(client_fd, ION_IOC_FREE, &handle_data);
(the ion_handle object in the kernel will be released
after the two ION_|IOC_FREE)

CVE-2022-20118
The patch to fix the issue in 2018:

staging: android: ion: fix ION_I10C_{MAP,SHARE} use-after-free:

case ION_IOC_SHARE: case ION_IOC FREE:
case ION_IOC_MAP: {
{ struct ion_handle *handle;
struct ion_handle *handle; mutex_lock(&client->lock);
mutex_lock(&client->lock); handle = ion_handle_get by id_nolock(client,
handle = ion_handle_get_by id_nolock(client, data.handle.handle); data.handle.handle);
if (IS_ERR(handle)) { if IS_ERR(handle)) {
mutex_unlock(&client->lock); mutex_unlock(&client->lock);
return PTR_ERR(handle); return PTR_ERR(handle);
} }
data.fd.fd = ion_share_dma_buf fd_nolock(client, handle); ion_free_nolock(client, handle);
ion_handle_put_nolock(handle); ion_handle_put_nolock(handle);
mutex_unlock(&client->lock); mutex_unlock(&client->lock);
if (data.fd.fd < 0) break;
ret = data.fd.fd; }
break;

https://android.googlesource.com/kernel/msm/+/3fedc0cd376b34ad48b5917e64de2a0bba44deb5

CVE-2022-20118

A variant vulnerability similar to the known issue:

In a vendor’s ION deriver:

case ION_IOC_SHARE:

case ION_IOC_MAP: struct ion_handle *ion_handle get by id nolock(struct ion_client
{ *client,
struct ion_handle *handle; int id)
{
handle = ion_handle _get by id nolock(client, struct ion_handle *handle;
data.handle.handle); handle = idr_find(&client->idr, id);
if (IS_ERR(handle)) if (handle)
return PTR_ERR(handle); ion_handle_get(handle);
data.fd.fd = ion_share _dma_buf fd(client, handle); return handle ? handle : ERR_PTR(-EINVAL);
ion_handle_put(handle); }

if (data.fd.fd < 0)
ret = data.fd.fd;

break; case ION_IOC FREE:
} (correct behavior version)

CVE-2022-20118

UAF still happens in function ion_handle _get by id nolock:

Thread A Thread B

(Enter function ion_handle_get_by_id_nolock) (User space)

handle = idr_find(&client->idr, id);

handle_data.handle = ion_handle_id;

joctl(client_fd, ION_IOC_FREE, &handle_data); (the
lon_handle object in the kernel will be released after the
ION_10C_FREE)

if (handle)
ion_handle_get(handle)

@ Buffer sharing

User vaddr

User process

User space : syscall !

Kernel space

ry
.
.
““
.
.
.

/ Interfaces for user space

/ion open();

ion close();

ion ioctl():
ALLOC;
FREE;
SHARE;

ION

~

b

dma-buf ioctl();
dma-buf mmap();

ion ioctl():

ION core

/

\KCUSTOM;

% »
Interfaces for kernel space

Pyl
.
s
Py
.
s
.
.
s
.

-

ion_alloc();
ion_free();

ion_map_kernel();

Default ION heaps

J

J

\
|

]
|
/

ION customizatim

Custom ION heaps

(—— ——)
. J . J
4 N\ 4 N\
. J . J

N

! allocate();

: free();

. map_kernel();

. unmap_kernel();
E map_user();

Kernel vaddr

e
R
L~

Memory
buffer

custom ioctl():

e

Vendor
modification

Buffer sharing feature of ION can introduce vulnerabillities:

> {(Android ION Hazard)

Two kinds of vulnerabilities introduced by ION buffering sharing

« System crash due to hardware protection

Sensitive information leakage

https://dl.acm.org/doi/10.1145/2976749.2978320

Buffer sharing feature of ION can introduce vulnerabillities:

» {An iOS hacker tries Android)

[« Double fetch vulnerabilities introduced by Buffer Sharing]

/ Kernel space

User space

.

https://googleprojectzero.blogspot.com/2020/12/an-ios-hacker-tries-android.html

Double fetch vulnerabilities introduced by Buffer Sharing

We found other double fetch vulnerabilities in a vendor’s apu driver:

CVE-2021-0897 s ION the only
CVE-2021-0895 Cor;gggi?ftetrhat

CVE-2021-0903 sharing feature?

FF4:33@ @

&0 1 @ X

HYAR

1/ $ getprop ro.build.fingerprint
Redmi/atom/atom:10/QP1A.190711.020/V12.0.5.0.QJHCNXM: user/release-k
eys:/ $ getenforce

getenforce: Couldn't get enforcing status: Permission denied

(e I 11:/ $ id '
G t rO Ot . uid=10223(u0_a223) gid=10223(u0_a223) groups=10223(u0_a223),3003(in

et),9997(everybody),20223(u0_a223_cache),50223(all_a223) context=u:
r:untrusted_app_25:s0:c512,c768
:/ $ ~/explode

[AR

* * *
*
* * *

* % % % ExplosION * * * *
* * *

* * *
*

Exploited by Le Wu of Baidu Security

iid
#
#
id
id
id
i3
id
id
i
iid

RS S

R R g s s s

Trigger .

Bypass KASLSR
kaslr_slide:0x1732800000
SELinux disabled
Credential altered

Pwn!

uid=0(root) gid=0(root) groups=0(root),3003(inet),9997(everybody),2
0223(u0_a223_cache),50223(all_a223) context=u:r:untrusted_app_25:s0
:¢c512,c768

1/ # getenforce

Permissive

S|

» ION Evolution——Refactors from Upstream

2012

2017

ION V1

Legacy ION

Have been used since
around 2012

Still widely used in devices
of which kernel<4.12

Bug fixes & small refactors
happen from time to time

ION V2

Refactor ION
since Kernel 4.12

2019

ION V3

Modular ION Heaps for
GKI since Android
Common Kernel 5.4

2021

DMA-BUF now

Replace ION with DMA-
BUF heaps since
Android Common
kernel android12-5.10

» ION Evolution——Refactors from Upstream

2012 ION V1 2017 ON V2 2019 ION V3 2021 DMA-BUF now

Replace ION with DMA-
BUF heaps since
Android Common
kernel android12-5.10

Refactor ION Modu!ar ION Hegps for
GKI since Android
Common Kernel 5.4

Legacy ION

since Kernel 4.12

» Removal of lon clients and handles:
|IOC_ION_ALLOC ioctl directly outputs
dma-buf fds.

» Addition of cache-coherency ioctls:
Kernel 4.12 replaced ION_IOC_SYNC with
the DMA_BUF_IOCTL_SYNC ioctl

ION core become more

brief,which means more
secure!

» ION Evolution——Refactors from Upstream

2012 2017 2019 2021 - no
ION V1 ION V2 | ION V3 . DMA-BUF oW
: | I
l ; ; Replace ION with DMA-
. I Modular ION Heaps for I :
Legacy ION Refactor ION GKI since Android Bl hizstos Sliee

since Kernel 4.12 Android Common

Common Kernel 5.4 kernel android12-5.10

» The ION core driver can be part of the GKI
image, enabling all device-independent
performance optimizations and bug fixes to

No more vendor reach all devices.
. . » The ION core driver in the common kernel can
modifications! handle heap registration and manage the

interface to userspace and kernel clients. The
vendor heap modules are required only to
implement the custom heap operations.

» ION Evolution——Refactors from Upstream

2012 ION V1 2017 ON V2 2019 ION V3 2021 DMA-BUF now

Modular ION Heaps for Replace ION with DMA-

GKI since Android BUF heaps since

Android Common
Common Kernel 5.4 kernel android12-5.10

Refactor ION
since Kernel 4.12

Legacy ION

» Replace the ION with DMA-BUF

Advantages of DMA-BUF
heaps:

v' Security
v ABI stability
v' Standardization

» Suggestions for vendors

® Apply the refactors right now! All the affected vendors had worked
| diligently with us to remediate the

ExploslION and had already made the
® Patch quickly and carefully! patches available.

® Understand the ION APIs before using them!

® Do customization carefully!

A base driver

Are there
[D'\r’]';'ISSUF] 4 Customization vulnerabilities
In It?

Buffer sharing

® Thanks to Chengfu Bao, %:[Ai%, Shufan Yang, Lin Wu

Thank you!

Details of other ION vulnerabilities

CVE-2021-39714

> Affected ION version:
ION V1,V2

> Root cause:
Reference count overflow in ION core

» Impact:
Potential UAF would be introduced into vendor drivers
by ION

CVE-2021-39714

void *ion_map_kernel(struct ion_client *client, struct
ion_handle *handle)

{ _ void *vaddr;
struct ion_buffer *buffer; . Integer overflow can
o _ if (buffer->kmap_cnt) { happen !!!
void *vaddr; :
buffer->kmap_cnt++;

mutex_lock(&client->lock); return buffer->vaddr:

static void *ion_buffer_kmap_get(struct ion_buffer *buffer)

............ |

buffer = handle->buffer; _
if (lhandle->buffer->heap->ops->map_kernel) { ~heap b:f?ggr = buffer->heap->ops->map_kernel(buffer-

" O

mutex_lock(&buffer->lock); Eﬂgg::z\é?nd;r _cr\:i erdr
vaddr = ion_handle_kmap get(handle); return vaddrP_ ’
mutex_unlock(&buffer->lock); ’
mutex_unlock(&client->lock);
return vaddr;

CVE-2021-39714

void ion_unmap_kernel(struct ion_client *client, struct static void ion_buffer_kmap_put(struct ion_buffer *buffer)
ion_handle *handle) {
{ buffer->kmap_cnt--;
struct ion_buffer *buffer,; if (Ibuffer->kmap_cnt) {
mutex_lock(&client->lock); e buffer->heap->ops->unmap_kernel(buffer->heap,
buffer = handle->buffer; buffer);
mutex_lock(&buffer->lock); buffer->vaddr = NULL;
ion_handle_kmap_put(handle); }
mutex_unlock(&buffer->lock); }

mutex_unlock(&client->lock);

CVE-2021-39714

Thread A

call ion_map_kernel() constantly to let ion_buffer-
>kmap_cnt become Oxffffffff

Thread B

vaddr = ion_map_kernel();
ion_buffer->kmap_cnt become 0;

Integer overflow

vaddr2 =ion_map_kernel();
lon_buffer->kmap_cnt become 1,

ion_unmap_kernel();
vaddr2 will be unmapped

Access the vaddr2;

CVE-2022-20109

> Affected ION version:
ION V1

» Root cause:
The patch of a known issue is missing, resulting in a
reference count issue of ion_handle

» Impact:
UAF

CVE-2022-20109

The latest legacy ION _I0C_ALLOC:

case ION_IOC_ALLOC:

{
struct ion_handle *handle;
handle = __ion_alloc(client, data.allocation.len,
data.allocation.align,
data.allocation.heap_id_mask, Reference count of J
data.allocation.flags, true); lon_handle becomes 2
cleanup_handle = handle;
pass_to_user(handle);
break;
}

if (copy _to_user((void __user *)arg, &data, I0C_SIZE(cmd))) {
if (cleanup_handle) {
mutex_lock(&client->lock);
user_ion_free nolock(client, cleanup _handle);

Reference count of
ion_handle becomes 1

lon_handle_put_nolock(cleanup_handle); Reference count of lon_handle
mutex_unlock(&client->lock); becomes 0,ion_handle will be
...... released!

CVE-2022-20109

ION_IOC_ALLOC of a vendor’s devices is like this:

case ION_IOC_ALLOC:
{

struct ion_handle *handle;
handle = ion_alloc(client, data.allocation.len,

ga:a.a::oca:!or\-ﬂhgn, y y Reference count of
ata.allocation.neap_id_mask, lon_handle becomes 1
data.allocation.flags); —

pass_to_user(handle);
data.allocation.handle = handle->id;

cleanup_handle = handle;
...... Reference count of

if (copy_to_user((void __user *)arg, &data, |0C_SIZE(cmd))) { Ion_handle becqmes
if (cleanup_handle) { 0,ion_handle will be
mutex_lock(&client->lock); released!

user_ion_free nolock(client, cleanup handle);

ion_handIe_put_nolock(cleanup_handle);

CVE-2022-20109

The root cause of the UAF: Missed a patch which is released in 2016

ion: Fix use after free during ION_IOC_ALLOC

If a user happens to call ION_|IOC_FREE during an ION_I0OC_ALLOC
on the just allocated id, and the copy_to_user fails, the cleanup
code will attempt to free an already freed handle.

This adds a wrapper for ion_alloc that adds an ion_handle_get to
avoid this.

https://android.googlesource.com/kernel/msm/+/c30d45ac0d79ef6214748c3e1742a2bca9583047

CVE-2021-0610

» Affected ION version:
ION V1

» Root cause:
The patch of a known issue(ion_handle kref overflow) Is
missing

» Impact:

case ION_IOC _IMPORT:

{

CVE-2021-0610

A known issue 3 years ago:

struct ion_handle *handle; / {

handle = ion_import_dma_buf fd(client, data.fd.fd);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
} else {
data.handle.handle = handle->id;
handle = pass_to_user(handle);
if IS_ERR(handle)) {
ret = PTR_ERR(handle);
data.handle.handle = 0;

break:

struct ion_handle *ion_import_dma_buf(struct ion_client *client,

struct dma_buf *dmabuf)

struct ion_buffer *buffer;
struct ion_handle *handle;
int ret;
buffer = dmabuf->priv;
mutex_lock(&client->lock);
[* if a handle exists for this buffer just take a reference to it */
handle = ion_handle_lookup(client, buffer);
if (11S_ERR(handle)) {
ion_handle_get(handle);
mutex_unlock(&client->lod kref overflow ! |
goto end;

CVE-2021-0610

The patch to fix it:

staging: android: ion: check for kref overflow

This patch is against 4.9. It does not apply to master due to a
large

rework of ion in 4.12 which removed the affected functions
altogther.

4¢23cbff073f3b9b ("staging: android: ion: Remove import
interface")

Userspace can cause the kref to handles to increment
arbitrarily high. Ensure it does not overflow.

\

+/* Must hold the client lock */
+static struct ion_handle *ion_handle_get check overflow(

+ struct ion_handle *handle)
+

+ if (atomic_read(&handle->ref.refcount) + 1 == 0)

+ return ERR_PTR(-EOVERFLOW);

+ ion_handle_get(handle);

+ return handle;

+}

+

static bool ion_handle_validate(struct ion_client *client,
@@ -1110,7 +1121,7 @@
[* if a handle exists for this buffer just take a reference to it */
handle = ion_handle_lookup(client, buffer);
if IS_ERR(handle)) {
- ion_handle_get(handle);
+ handle = ion_handle_get_check_overflow(handle);
mutex_unlock(&client->lock);
goto end;

CVE-2021-0610

The issue still exists in a vendor’'s devices because of the wrong patch:

struct ion_handle *ion_import_dma_buf(struct ion_client *client,

struct dma_buf *dmabuf) static struct ion_handle *ion_handle_get_check_overflow(
{

struct ion_buffer *buffer; struct ion_handle *handle)

struct ion_handle *handle; {

0)

if (atomic_read(&handle->ref.refcount.refs) + 1 ==

buffer = dmabuf->priv; return ERR_PTR(-EOVERFLOW);

ion_handle get(handle);

mutex_lock(&client->lock); return handle:

[* if a handle exists for this buffer just take a reference to i*/ }
handle = ion_handle_lookup(client, buffer);

if IS_ERR(handle)) {

ion_handle_get_check overflow(handle);

mutex_unlock(&client->lock); [

goto end;

Kref overflow can still
happen!!!

