
#BHASIA @BlackHatEvents

ExplosION: The Hidden Mines in

the Android ION Driver

Le Wu, Xuen Li, Tim Xia

Baidu Security

Le Wu(@Nvamous)
 Focus on Android/Linux bug hunting and exploit

 Found 200+ vulnerabilities in the last two years

 Top1 in Android Chipset Security Program, Top1 in MediaTek Mobile Security Program

Xuen Li(@lxn524)

Tim Xia

 Staff security researcher at Baidu Inc.

 Focused on system and software security solutions

 Previous PacSec and HITB speaker

 Interested in Android, Linux Kernel and OSS security testing and exploitation

 Focus on PSA and OP-TEE currently

 Author of One Click Root Master, SuperRootMaster, etc…

About us

https://twitter.com/NVamous
https://twitter.com/lxe524

Agenda

 Introduction to ION

 Using ION

 Diving into ExplosION

 Reflections on ExplosION

 Future work

A generalized memory pool manager

It’s used to address the issue of fragmented memory management
interfaces across different Android devices.

centralized into

Introduction——What is ION?

Devices may handle scatter-

gather lists

Devices only access physically

contiguous pages

Devices sit behind an I/O memory

management unit(IOMMU)

……

Device constraints for memory

ION
ion heap “system”

based on vmalloc

ion heap

“system_cofnig”

based on kmalloc

ion heap “carveout”

based on preserved

memory

ion heap “dma”

based on DMA

ion heap

vendor custom1

ion heap

vendor custom2

…

…

ion heap

vendor custom3

ion heap

vendor customN

 A common Android driver used for a decade

 Although ION is replaced with dma-buf in Android 12, millions of devices still use ION

 ION will survive for a long time due to fragmentation of Android

 No additional privileges needed to trigger the vulnerabilities in ION

 Can be accessed by untrusted apps

 Perfect exploitation target, like the BINDER device

Introduction——Why ION?

Multiple refactors from upstream

 A memory management component

Vulnerabilities in memory management components are proven to be dangerous!

Why there are multiple

refactors? Why ION ends

up with a removal in

Android kernel?

Maybe there are security issues in it?

Introduction——Why ION?

Legacy ION
Refactor ION

since Kernel 4.12

Replace ION with DMA-

BUF heaps since

Android Common

kernel android12-5.10

Modular ION Heaps for

GKI since Android

Common Kernel 5.4

ION V1 ION V2 ION V3 DMA-BUF
2012 2017 2019 2021 now

So far, we have found 40+ vulnerabilities in ION, and

millions of devices are affected!

ExplosION

Before diving into ExplosION, let’s have a look at the

using of legacy ION

Why legacy ION?

It shows us the most

complete design and

implementation of ION.

Subsequent refactors are

all based on it.

Allocate memory buffer from user space

Kernel spaceUser space

client_fd = open(/dev/ion, RONLY);

ioctl(client_fd, ION_IOC_ALLOC, struct

allocation_data *allocation_data)

Struct ion_allocation_data {

size_t len;

size_t align;

unsigned int heap_id_mask;

unsigned int flags;

int handle; // ion_handle id

}

ion_handle id

ion_client

struct rb_root handles
……

ion_handle

ion_handle

ion_handle

ion_buffer

Memory buffer

struct_ion_handle *buffer;

int id;

ion_handle

Using ION

Free memory buffer from user space

ioctl(client_fd, ION_IOC_FREE,struct

ion_handle_data *handle_data)

Struct ion_handle_data {

int handle; // ion_handle id

}

Kernel spaceUser space

ion_buffer

Memory buffer

struct_ion_handle *buffer;

int id;

ion_handle

Using ION

Buffer sharing from user space

ioctl(client_fd, ION_IOC_SHARE, struct

ion_fd_data *fd_data)

Struct ion_fd_data {

int handle; // input:ion_handle fd

int fd;// output:dma-buf fd

}

dma-buf fd
dma_buf_fd()

mmap(dma-buf fd,……)

Using ION

Kernel spaceUser space

ion_buffer

Memory buffer

struct_ion_handle *buffer;

int id;

ion_handle

void *priv;

dma_buf

Memory buffer

 Import buffer from user space

ioctl(client_fd, ION_IOC_IMPORT,

struct ion_fd_data *fd_data)

Struct ion_fd_data {

int handle; //output:ion_handle fd

int fd;// input:dma-buf fd

}

ion_handle id

Using ION

Kernel spaceUser space

ion_buffer

Memory buffer

struct_ion_handle *buffer;

int id;

ion_handle

void *priv;

dma_buf

Allocate memory buffer from kernel space

Free memory buffer from kernel space

Map the memory buffer into kernel space

struct ion_handle *ion_alloc(struct ion_client *client, size_t len,

size_t align, unsigned int heap_id_mask,

unsigned int flags);

void ion_free(struct ion_client *client,

struct ion_handle *handle);

void *ion_map_kernel(struct ion_client *client, struct ion_handle *handle);

Using ION

ion_buffer

void *vaddr;

int kmap_cnt;

The Characteristics of ION:

Diving into ExplosION

ExplosION

A base driver used by vendor drivers

Customization of ION

Vendors’ modification to ION core

Buffer sharing feature of ION

Legacy ION Architecture

Driver 1

User space

Kernel space

User process

…

ion open();

ion close();

ion ioctl():

ALLOC;

FREE;

SHARE;

…

dma-buf ioctl();

dma-buf mmap();

……

ion ioctl():

CUSTOM;

Driver NDriver 2

Interfaces for user space Interfaces for kernel space

ion_alloc();

ion_free();

ion_map_kernel();

……

ION core
Default ION heaps Custom ION heaps

ION customization

allocate();

free();

map_kernel();

unmap_kernel();

map_user();

……

custom ioctl():

syscall

ION Memory

buffer

Vendor

modification

… …

• A base driver used by vendor drivers

• Customization of ION

• Vendors’ modification to ION core

• Buffer sharing feature of ION

Kernel vaddr

User vaddr

Legacy ION Architecture

Driver 1

User space

Kernel space

User process

…

ion open();

ion close();

ion ioctl():

ALLOC;

FREE;

SHARE;

…

dma-buf ioctl();

dma-buf mmap();

……

ion ioctl():

CUSTOM;

Driver NDriver 2

Interfaces for user space Interfaces for kernel space

ion_alloc();

ion_free();

ion_map_kernel();

……

ION core
Default ION heaps Custom ION heaps

ION customization

allocate();

free();

map_kernel();

unmap_kernel();

map_user();

……

custom ioctl():

syscall

ION Memory

buffer

Vendor

modification

… …

• A base driver used by vendor drivers

• Customization of ION

• Vendors’ modification to ION core

• Buffer sharing feature of ION

Kernel vaddr

User vaddr

Legacy ION Architecture

Driver 1

User space

Kernel space

User process

…

ion open();

ion close();

ion ioctl():

ALLOC;

FREE;

SHARE;

…

dma-buf ioctl();

dma-buf mmap();

……

ion ioctl():

CUSTOM;

Driver NDriver 2

Interfaces for user space Interfaces for kernel space

ion_alloc();

ion_free();

ion_map_kernel();

……

ION core
Default ION heaps Custom ION heaps

ION customization

allocate();

free();

map_kernel();

unmap_kernel();

map_user();

……

custom ioctl():

syscall

ION Memory

buffer

Vendor

modification

… …

• A base driver used by vendor drivers

• Customization of ION

• Vendors’ modification to ION core

• Buffer sharing feature of ION

Kernel vaddr

User vaddr

Legacy ION Architecture

Driver 1

User space

Kernel space

User process

…

ion open();

ion close();

ion ioctl():

ALLOC;

FREE;

SHARE;

…

dma-buf ioctl();

dma-buf mmap();

……

ion ioctl():

CUSTOM;

Driver NDriver 2

Interfaces for user space Interfaces for kernel space

ion_alloc();

ion_free();

ion_map_kernel();

……

ION core
Default ION heaps Custom ION heaps

ION customization

allocate();

free();

map_kernel();

unmap_kernel();

map_user();

……

custom ioctl():

syscall

ION Memory

buffer

Vendor

modification

… …

• A base driver used by vendor drivers

• Customization of ION

• Vendors’ modification to ION core

• Buffer sharing feature of ION

Kernel vaddr

User vaddr

Legacy ION Architecture

Driver 1

User space

Kernel space

User process

…

ion open();

ion close();

ion ioctl():

ALLOC;

FREE;

SHARE;

…

dma-buf ioctl();

dma-buf mmap();

……

ion ioctl():

CUSTOM;

Driver NDriver 2

Interfaces for user space Interfaces for kernel space

ion_alloc();

ion_free();

ion_map_kernel();

……

ION core
Default ION heaps Custom ION heaps

ION customization

allocate();

free();

map_kernel();

unmap_kernel();

map_user();

……

custom ioctl():

syscall

ION Memory

buffer

Vendor

modification

… …

• A base driver used by vendor drivers

• Customization of ION

• Vendors’ modification to ION core

• Buffer sharing feature of ION

Kernel vaddr

User vaddr

Driver 1

User space

Kernel space

User process

…

ion open();

ion close();

ion ioctl():

ALLOC;

FREE;

SHARE;

…

dma-buf ioctl();

dma-buf mmap();

……

ion ioctl():

CUSTOM;

Driver NDriver 2

Interfaces for user space Interfaces for kernel space

ion_alloc();

ion_free();

ion_map_kernel();

……

ION core
Default ION heaps Custom ION heaps

ION customization

allocate();

free();

map_kernel();

unmap_kernel();

map_user();

……

custom ioctl():

syscall

ION Memory

buffer

Vendor

modification

… …

Kernel vaddr

User vaddr

Are there issues in

the use of ION core

APIs?

A base driver used by vendor drivers

A base driver used by vendor drivers

Vendor camera

drivers
Vendor video

drivers

Vendor A:

QSEECOM

driver

Vendor B:

apu driver

Vendor C:

NPU driver

IONVulnerability

Vulnerability

…

Vulnerability：From ION Core

Vulnerability：Misuse of ION Core APIs

CVE-2021-0929

CVE-2021-39714

CVE-2022-20110

• Vulnerabilities from ION core：

• Misuse of ION Core APIs by

vendor driver：

A base driver used by vendor drivers

• Analyze the design and

implementation of ION core APIs

for kernel space

• Check if vendor drivers use ION

core APIs correctly

CVE-2021-0929

 Affected ION version:

ION V1,V2,V3

 Root cause:

ION core exposed an API to user space which it

shouldn’t be

 Impact:

An UAF issue would be introduced into vendor drivers

by ION core in a specific use scenario

An ION use scenario

dma-buf fd
Import dma-buf fd, and create an ion_handle:

ion_handle = ion_import_dma_buf_fd(ion_client, dma-buf fd);

Map the memory buffer represented by ion_handle into kernel

space:

kernel_vaddr= ion_map_kernel(ion_client, ion_handle);

（the kernel vaddr will be saved into ion_buffer->vaddr）

Reference the kernel_vaddr;

Create dma-buf fd with ION

Vendor driverUser Process

CVE-2021-0929

static long dma_buf_ioctl(struct file *file,

unsigned int cmd, unsigned long arg)

{

……

dmabuf = file->private_data;

switch (cmd) {

case DMA_BUF_IOCTL_SYNC:

……

if (sync.flags & DMA_BUF_SYNC_END)

ret = dma_buf_end_cpu_access(dmabuf,

direction);

……

int dma_buf_end_cpu_access(struct dma_buf *dmabuf,

enum dma_data_direction direction)

{

int ret = 0;

WARN_ON(!dmabuf);

if (dmabuf->ops->end_cpu_access)

ret = dmabuf->ops->end_cpu_access(dmabuf, direction);

return ret;

}

static int ion_dma_buf_end_cpu_access(struct dma_buf *dmabuf,

…)

{

struct ion_buffer *buffer = dmabuf->priv;

mutex_lock(&buffer->lock);

ion_buffer_kmap_put(buffer);

……

}

void ion_heap_unmap_kernel(struct ion_heap *heap,

struct ion_buffer *buffer)

{

vunmap(buffer->vaddr);

}

……

buffer->vaddr gets

unmmaped in

kernel space!!!

CVE-2021-0929

UAF would happen in a race condition:

Import dma-buf fd, and create an ion_handle:

ion_handle = ion_import_dma_buf_fd(ion_client, dma-buf fd);

Map the memory buffer represented by ion_handle into kernel

space:

kernel_vaddr= ion_map_kernel(ion_client, ion_handle);

Reference the kernel_vaddr;

Create dma-buf fd with ION

sync.flag = DMA_BUF_SYNC_END;

ioctl(dma-buf fd, DMA_BUF_IOCTL_SYNC,

&sync);

UAF

Thread A Thread B
(User space) (Vendor driver)

dma-buf fd

CVE-2021-0929

CVE-2022-20110

 Affected ION version:

A vendor’s devices with ION V1

 Root cause:

Misuse of ION core APIs by vendor driver

 Impact:

UAF

void *ion_map_kernel(struct ion_client *client, struct

ion_handle *handle)

{

struct ion_buffer *buffer;

void *vaddr;

mutex_lock(&client->lock);

……

buffer = handle->buffer;

……

mutex_lock(&buffer->lock);

vaddr = ion_handle_kmap_get(handle);

mutex_unlock(&buffer->lock);

mutex_unlock(&client->lock);

return vaddr;

}

static void *ion_buffer_kmap_get(struct ion_buffer *buffer)

{

void *vaddr;

if (buffer->kmap_cnt) {

buffer->kmap_cnt++;

return buffer->vaddr;

}

vaddr = buffer->heap->ops->map_kernel(buffer->heap,

buffer);

……

buffer->vaddr = vaddr;

buffer->kmap_cnt++;

return vaddr;

}

……

buffer->vaddr and buffer-

>kmap_cnt are protected by

mutex locks!

CVE-2022-20110

static long ion_sys_cache_sync(struct ion_client *client,

struct ion_sys_cache_sync_param *param,

int from_kernel)

{

……

unsigned long sync_va = 0;

struct ion_buffer *buffer;

……

if (buffer->kmap_cnt != 0) {

sync_va = (unsigned long)buffer->vaddr;

} else {

sync_va = (unsigned long)ion_map_kernel(client, kernel_handle);

ion_need_unmap_flag = 1;

}

……

ret = __cache_sync_by_range(client, sync_type,

sync_va, …);

……

ion_unmap_kernel(client, kernel_handle);

……

UAF

CVE-2022-20110

buffer->vaddr and buffer-

>kmap_cnt are not

protected by mutex locks!

Access internal data instead of using the exported API:

Thread A Thread B
(enter ion_sys_cache_sync) (enter ion_sys_cache_sync)

if (buffer->kmap_cnt != 0) {

} else {

sync_va = ion_map_kernel(client, kernel_handle);

}

if (buffer->kmap_cnt != 0) {

sync_va = buffer->vaddr;

} else {

……

}

ion_unmap_kernel(client, kernel_handle);

(sync_va will be unmapped !!!)

__cache_sync_by_range(client, sync_type,

sync_va, sync_size, from_kernel);

__cache_sync_by_range(client, sync_type,

sync_va, sync_size,

from_kernel);

UAF

CVE-2022-20110

UAF would happen in a race condition:

Driver 1

User space

Kernel space

User process

…

ion open();

ion close();

ion ioctl():

ALLOC;

FREE;

SHARE;

…

dma-buf ioctl();

dma-buf mmap();

……

ion ioctl():

CUSTOM;

Driver NDriver 2

Interfaces for user space Interfaces for kernel space

ion_alloc();

ion_free();

ion_map_kernel();

……

ION core
Default ION heaps Custom ION heaps

ION customization

allocate();

free();

map_kernel();

unmap_kernel();

map_user();

……

custom ioctl():

syscall

ION Memory

buffer

Vendor

modification

… …

Kernel vaddr

User vaddr

vuln

vuln

Customization of ION

 To handle all the various types of hardware memory allocation, ION provides interfaces for vendors to add their own

ION heaps(except common heaps)

void ion_device_add_heap(struct ion_device *dev, struct ion_heap *heap);

Struct ion_heap {

……

Struct ion_device *dev;

Emum ion_heap_type type;

Struct ion_heap_ops *ops;

Unsigned long flags;

Unsinged int id;

……

}

struct ion_heap_ops {

int (*allocate)(struct ion_heap *heap,

struct ion_buffer *buffer, unsigned long len,

unsigned long align, unsigned long flags);

void (*free)(struct ion_buffer *buffer);

void * (*map_kernel)(struct ion_heap *heap, struct ion_buffer *buffer);

void (*unmap_kernel)(struct ion_heap *heap, struct ion_buffer *buffer);

int (*map_user)(struct ion_heap *mapper, struct ion_buffer *buffer,

struct vm_area_struct *vma);

int (*shrink)(struct ion_heap *heap, gfp_t gfp_mask, int nr_to_scan);

};

 ION provides an ION_IOC_CUSTOM ioctl command which allows vendors to implement their own buffer operations

case ION_IOC_CUSTOM:

{

if (!dev->custom_ioctl)

return -ENOTTY;

ret = dev->custom_ioctl(client, data.custom.cmd,

data.custom.arg);

break;

}

Customization of ION

 Most vendors would add custom ioctl commands

long msm_ion_custom_ioctl(struct ion_client *client,

unsigned int cmd,

unsigned long arg)

{

……

switch (cmd) {

case ION_IOC_CLEAN_CACHES:

case ION_IOC_INV_CACHES:

case ION_IOC_CLEAN_INV_CACHES:

{

……

static long _ion_ioctl(struct ion_client *client,

unsigned int cmd, unsigned long arg, int

from_kernel)

{

……

switch (cmd) {

case ION_CMD_SYSTEM:

……

case ION_CMD_MULTIMEDIA:

……

break;

}

……

Vendor A Vendor B

 Most vendors would add their own ion heaps

We found:

Customization is

proven to be

vulnerable in many

cases!

Customization of ION

Dozens of vulnerabilities in the customization

ion_heap customization:

CVE-2021-0498,CVE-2021-0528,CVE-2021-0489,CVE-2021-0493,CVE-2021-0492,

CVE-2021-0490,CVE-2021-0496,CVE-2021-0526,CVE-2021-0420,CVE-2021-0525,

CVE-2021-0495,CVE-2021-0497,CVE-2021-0491,CVE-2021-0421,CVE-2021-0530,

CVE-2021-0494,CVE-2021-0424,CVE-2021-0527 …

ion custom ioctl:

CVE-2022-20036,CVE-2021-0419,CVE-2021-0418,CVE-2021-0529,CVE-2021-0415,

CVE-2021-0417,CVE-2021-0416,CVE-2022-20017,CVE-2022-20037,CVE-2021-0425

All the vulnerabilities have

already been fixed by vendors!

Driver 1

User space

Kernel space

User process

…

ion open();

ion close();

ion ioctl():

ALLOC;

FREE;

SHARE;

…

dma-buf ioctl();

dma-buf mmap();

……

ion ioctl():

CUSTOM;

Driver NDriver 2

Interfaces for user space Interfaces for kernel space

ion_alloc();

ion_free();

ion_map_kernel();

……

ION core
Default ION heaps Custom ION heaps

ION customization

allocate();

free();

map_kernel();

unmap_kernel();

map_user();

……

custom ioctl():

syscall

ION Memory

buffer

Vendor

modification

… …

Kernel vaddr

User vaddr

Vendors’ modification to ION core

static long ion_ioctl(struct file *filp, unsigned int cmd,

unsigned long arg)

{

……

+ case ION_IOC_CLEAN_CACHES:

+ return client->dev->custom_ioctl(client,

+

ION_IOC_CLEAN_CACHES, arg);

+ case ION_IOC_INV_CACHES:

+ return client->dev->custom_ioctl(client,

+

ION_IOC_INV_CACHES, arg);

+ case ION_IOC_CLEAN_INV_CACHES:

+ return client->dev->custom_ioctl(client,

+

ION_IOC_CLEAN_INV_CACHES, arg);

……

struct ion_handle *ion_alloc(struct ion_client *client, size_t len,

size_t align, unsigned int heap_id_mask,

unsigned int flags)

{

……

+ #ifdef CONFIG_MTK_ION

+ ion_history_count_kick(true, len);

+ #endif

+ handle->dbg.user_ts = end;

+ do_div(handle->dbg.user_ts, 1000000);

+ memcpy(buffer->alloc_dbg, client->dbg_name,

ION_MM_DBG_NAME_LEN);

……

Vendor A Vendor B

Add new commands into the original ion_ioctl(): Add some debug code into the original ion_alloc():

Vendors’ modification to ION core

https://android.googlesource.com/kernel/msm/+/eeeb940746de65640d81c386f91aeef39c936a5b^!/#F3

• Missing patch

• Wrong patch

 Code merge conflicts could happen

 Vulnerable modifications
New vulnerabilities

can be introduced

Known vulnerabilities are not

fixed or new vulnerabilities

get introduced

Vendors’ modification to ION core

• Analyze the modifications

made by vendors

• Investigate known issues of

ION and check if they are fixed

downstream

CVE-2021-39801

CVE-2022-20109

CVE-2022-20118

CVE-2021-0610

CVE-2021-0422

• Vulnerabilities introduced by

Modification

• Vulnerabilities due to the missing patch

• Vulnerabilities due to the wrong patch

Vendors’ modification to ION core

CVE-2021-0422

 Affected ION version:

A vendor’s devices with ION V1

 Root cause:

Vulnerable modifications to ION core

 Impact:

Illegal memory access

struct ion_handle *ion_import_dma_buf_fd(struct ion_client

*client, int fd)

{

struct dma_buf *dmabuf;

struct ion_handle *handle;

……

dmabuf = dma_buf_get(fd);

……

handle = ion_import_dma_buf(client, dmabuf);

dma_buf_put(dmabuf);

……

handle->dbg.fd = fd;

handle->dbg.user_ts = sched_clock();

do_div(handle->dbg.user_ts, 1000000);

return handle;

}

“handle” could be an error

code

“handle” is not checked,

invalid memory access will

happen!

CVE-2021-0422

CVE-2021-39801

 Affected ION version:

ION V1

 Root cause:

The patch of a known issue(wrong behavior of the

ION API) is missing

 Impact:

UAF

A known issue in ION_IOC_FREE:

case ION_IOC_FREE:

{

struct ion_handle *handle;

mutex_lock(&client->lock);

handle = ion_handle_get_by_id_nolock(client,

data.handle.handle);

……

ion_free_nolock(client, handle);

ion_handle_put_nolock(handle);

mutex_unlock(&client->lock);

break;

}

static void ion_handle_destroy(struct kref *kref)

{

struct ion_handle *handle = container_of(kref, struct

ion_handle, ref);

……

kfree(handle);

}

handle_data.handle = ion_handle_id;

while(1) {

ioctl(client_fd, ION_IOC_FREE,

&handle_data);

}

ion_handle object in the kernel

could be released at any time

from user space!

…

CVE-2021-39801

UAF scenario:

case ION_IOC_ALLOC:

{

struct ion_handle *handle;

handle = ion_alloc(client, data.allocation.len,

data.allocation.align,

data.allocation.heap_id_mask,

data.allocation.flags);

if (IS_ERR(handle))

return PTR_ERR(handle);

data.allocation.handle = handle->id;

cleanup_handle = handle;

break;

}

……

if (copy_to_user((void __user *)arg, &data, _IOC_SIZE(cmd))) {

if (cleanup_handle)

ion_free(client, cleanup_handle);

return -EFAULT;

}

UAF

UAF

Are there any

other places that

would trigger the

UAF?

CVE-2021-39801

The issue is assigned CVE-id: CVE-2017-0564 in 2017.

Patch for the issue:

ANDROID: ion: Protect kref from userspace manipulation

This separates the kref for ion handles into two components.

Userspace requests through the ioctl will hold at most one

reference to the internally used kref. All additional requests

will increment a separate counter, and the original reference is

only put once that counter hits 0. This protects the kernel from

a poorly behaving userspace.

But some Android common kernel branches & Upstream kernel

branches & some vendors’ kernel branches missed the patch!

CVE-2021-39801

https://android.googlesource.com/kernel/msm/+/8531a798d4e8886fa9af90d76d326b336a1ef7a2^!/#F0

CVE-2022-20118

 Affected ION version:

A vendor’s devices with ION V1

 Root cause:

Wrong patch for a known mutex lock using issue

 Impact:

UAF

A known UAF issue in the ION_IOC_SHARE :

case ION_IOC_SHARE:

case ION_IOC_MAP:

{

struct ion_handle *handle;

handle = ion_handle_get_by_id(client, data.handle.handle);

if (IS_ERR(handle))

return PTR_ERR(handle);

data.fd.fd = ion_share_dma_buf_fd(client, handle);

ion_handle_put(handle);

if (data.fd.fd < 0)

ret = data.fd.fd;

break;

}

case ION_IOC_FREE:

{

struct ion_handle *handle;

mutex_lock(&client->lock);

handle = ion_handle_get_by_id_nolock(client,

data.handle.handle);

if (IS_ERR(handle)) {

mutex_unlock(&client->lock);

return PTR_ERR(handle);

}

ion_free_nolock(client, handle);

ion_handle_put_nolock(handle);

mutex_unlock(&client->lock);

break;

}

Wrong behavior

version of

ION_IOC_FREE

CVE-2022-20118

Thread A Thread B
(Process ION_IOC_SHARE / ION_IOC_MAP) (user space)

handle = ion_handle_get_by_id(client,

data.handle.handle);

data.fd.fd = ion_share_dma_buf_fd(client, handle);

handle_data.handle = ion_handle_id;

ioctl(client_fd, ION_IOC_FREE, &handle_data);

ioctl(client_fd, ION_IOC_FREE, &handle_data);

(the ion_handle object in the kernel will be released

after the two ION_IOC_FREE)

UAF

A known UAF issue in the ION_IOC_SHARE:

CVE-2022-20118

staging: android: ion: fix ION_IOC_{MAP,SHARE} use-after-free:

case ION_IOC_SHARE:

case ION_IOC_MAP:

{

struct ion_handle *handle;

mutex_lock(&client->lock);

handle = ion_handle_get_by_id_nolock(client, data.handle.handle);

if (IS_ERR(handle)) {

mutex_unlock(&client->lock);

return PTR_ERR(handle);

}

data.fd.fd = ion_share_dma_buf_fd_nolock(client, handle);

ion_handle_put_nolock(handle);

mutex_unlock(&client->lock);

if (data.fd.fd < 0)

ret = data.fd.fd;

break;

}

case ION_IOC_FREE:

{

struct ion_handle *handle;

mutex_lock(&client->lock);

handle = ion_handle_get_by_id_nolock(client,

data.handle.handle);

if (IS_ERR(handle)) {

mutex_unlock(&client->lock);

return PTR_ERR(handle);

}

ion_free_nolock(client, handle);

ion_handle_put_nolock(handle);

mutex_unlock(&client->lock);

break;

}

CVE-2022-20118

The patch to fix the issue in 2018:

https://android.googlesource.com/kernel/msm/+/3fedc0cd376b34ad48b5917e64de2a0bba44deb5

A variant vulnerability similar to the known issue:

In a vendor’s ION deriver:

case ION_IOC_SHARE:

case ION_IOC_MAP:

{

struct ion_handle *handle;

handle = ion_handle_get_by_id_nolock(client,

data.handle.handle);

if (IS_ERR(handle))

return PTR_ERR(handle);

data.fd.fd = ion_share_dma_buf_fd(client, handle);

ion_handle_put(handle);

if (data.fd.fd < 0)

ret = data.fd.fd;

break;

}

struct ion_handle *ion_handle_get_by_id_nolock(struct ion_client

*client,

int id)

{

struct ion_handle *handle;

handle = idr_find(&client->idr, id);

if (handle)

ion_handle_get(handle);

return handle ? handle : ERR_PTR(-EINVAL);

}

case ION_IOC_FREE:

(correct behavior version)

CVE-2022-20118

UAF still happens in function ion_handle_get_by_id_nolock:

Thread A Thread B
(Enter function ion_handle_get_by_id_nolock)

(User space)

handle = idr_find(&client->idr, id);

if (handle)

ion_handle_get(handle);

handle_data.handle = ion_handle_id;

ioctl(client_fd, ION_IOC_FREE, &handle_data); (the

ion_handle object in the kernel will be released after the

ION_IOC_FREE)

UAF

CVE-2022-20118

Driver 1

User space

Kernel space

User process

…

ion open();

ion close();

ion ioctl():

ALLOC;

FREE;

SHARE;

…

dma-buf ioctl();

dma-buf mmap();

……

ion ioctl():

CUSTOM;

Driver NDriver 2

Interfaces for user space Interfaces for kernel space

ion_alloc();

ion_free();

ion_map_kernel();

……

ION core
Default ION heaps Custom ION heaps

ION customization

allocate();

free();

map_kernel();

unmap_kernel();

map_user();

……

custom ioctl():

syscall

ION Memory

buffer

Vendor

modification

… …

Kernel vaddr

User vaddr

Buffer sharing

vuln

Buffer sharing feature of ION can introduce vulnerabilities:

 《Android ION Hazard》

Two kinds of vulnerabilities introduced by ION buffering sharing

• System crash due to hardware protection

• Sensitive information leakage

https://dl.acm.org/doi/10.1145/2976749.2978320

 《An iOS hacker tries Android》

Kernel space

User space

1st fetch

(check)

Malicious

update

Memory buffer

2nd fetch

(use)

• Double fetch vulnerabilities introduced by Buffer Sharing

Buffer sharing feature of ION can introduce vulnerabilities:

https://googleprojectzero.blogspot.com/2020/12/an-ios-hacker-tries-android.html

Double fetch vulnerabilities introduced by Buffer Sharing

We found other double fetch vulnerabilities in a vendor’s apu driver：

CVE-2021-0897

CVE-2021-0895

CVE-2021-0903

Is ION the only

component that

has buffer

sharing feature?

Get root!

Exploitation

 Have been used since

around 2012

 Still widely used in devices

of which kernel<4.12

 Bug fixes & small refactors

happen from time to time

Reflections on ExplosION

 ION Evolution——Refactors from Upstream

Legacy ION
Refactor ION

since Kernel 4.12

Replace ION with DMA-

BUF heaps since

Android Common

kernel android12-5.10

Modular ION Heaps for

GKI since Android

Common Kernel 5.4

ION V1 ION V2 ION V3 DMA-BUF2012 2017 2019 2021 now

 Removal of Ion clients and handles:

IOC_ION_ALLOC ioctl directly outputs

dma-buf fds.

 Addition of cache-coherency ioctls:

Kernel 4.12 replaced ION_IOC_SYNC with

the DMA_BUF_IOCTL_SYNC ioctl

ION core become more

brief,which means more

secure!

Reflections on ExplosION

 ION Evolution——Refactors from Upstream

Legacy ION
Refactor ION

since Kernel 4.12

Replace ION with DMA-

BUF heaps since

Android Common

kernel android12-5.10

Modular ION Heaps for

GKI since Android

Common Kernel 5.4

ION V1 ION V2 ION V3 DMA-BUF2012 2017 2019 2021 now

 The ION core driver can be part of the GKI

image, enabling all device-independent

performance optimizations and bug fixes to

reach all devices.

 The ION core driver in the common kernel can

handle heap registration and manage the

interface to userspace and kernel clients. The

vendor heap modules are required only to

implement the custom heap operations.

No more vendor

modifications!

Reflections on ExplosION

 ION Evolution——Refactors from Upstream

Legacy ION
Refactor ION

since Kernel 4.12

Replace ION with DMA-

BUF heaps since

Android Common

kernel android12-5.10

Modular ION Heaps for

GKI since Android

Common Kernel 5.4

ION V1 ION V2 ION V3 DMA-BUF2012 2017 2019 2021 now

 Replace the ION with DMA-BUF

Advantages of DMA-BUF

heaps:

 Security

 ABI stability

 Standardization

Reflections on ExplosION

 ION Evolution——Refactors from Upstream

Legacy ION
Refactor ION

since Kernel 4.12

Replace ION with DMA-

BUF heaps since

Android Common

kernel android12-5.10

Modular ION Heaps for

GKI since Android

Common Kernel 5.4

ION V1 ION V2 ION V3 DMA-BUF2012 2017 2019 2021 now

 Suggestions for vendors

 Apply the refactors right now!

 Patch quickly and carefully!

 Understand the ION APIs before using them!

 Do customization carefully!

Reflections on ExplosION

All the affected vendors had worked

diligently with us to remediate the

ExplosION and had already made the

patches available.

DMA-BUF

heaps

Buffer sharing

Customization

Are there

vulnerabilities

in it?

Future work

A base driver

Acknowledge

Thanks to Chengfu Bao, 某因幡, Shufan Yang, Lin Wu

Thank you!

Details of other ION vulnerabilities

Supplement

CVE-2021-39714

 Affected ION version:

ION V1,V2

 Root cause:

Reference count overflow in ION core

 Impact:

Potential UAF would be introduced into vendor drivers

by ION

static void *ion_buffer_kmap_get(struct ion_buffer *buffer)

{

void *vaddr;

if (buffer->kmap_cnt) {

buffer->kmap_cnt++;

return buffer->vaddr;

}

vaddr = buffer->heap->ops->map_kernel(buffer-

>heap, buffer);

……

buffer->vaddr = vaddr;

buffer->kmap_cnt++;

return vaddr;

}

void *ion_map_kernel(struct ion_client *client, struct

ion_handle *handle)

{

struct ion_buffer *buffer;

void *vaddr;

mutex_lock(&client->lock);

……

buffer = handle->buffer;

if (!handle->buffer->heap->ops->map_kernel) {

……

}

mutex_lock(&buffer->lock);

vaddr = ion_handle_kmap_get(handle);

mutex_unlock(&buffer->lock);

mutex_unlock(&client->lock);

return vaddr;

}

……

Integer overflow can

happen !!!

CVE-2021-39714

static void ion_buffer_kmap_put(struct ion_buffer *buffer)

{

buffer->kmap_cnt--;

if (!buffer->kmap_cnt) {

buffer->heap->ops->unmap_kernel(buffer->heap,

buffer);

buffer->vaddr = NULL;

}

}

void ion_unmap_kernel(struct ion_client *client, struct

ion_handle *handle)

{

struct ion_buffer *buffer;

mutex_lock(&client->lock);

buffer = handle->buffer;

mutex_lock(&buffer->lock);

ion_handle_kmap_put(handle);

mutex_unlock(&buffer->lock);

mutex_unlock(&client->lock);

}

……

CVE-2021-39714

Thread A Thread B

call ion_map_kernel() constantly to let ion_buffer-

>kmap_cnt become 0xffffffff

Access the vaddr2;

vaddr2 = ion_map_kernel();

ion_buffer->kmap_cnt become 1;

vaddr = ion_map_kernel();

ion_buffer->kmap_cnt become 0;

ion_unmap_kernel();

vaddr2 will be unmapped

Integer overflow

UAF

CVE-2021-39714

CVE-2022-20109

 Affected ION version:

ION V1

 Root cause:

The patch of a known issue is missing, resulting in a

reference count issue of ion_handle

 Impact:

UAF

The latest legacy ION_IOC_ALLOC:

case ION_IOC_ALLOC:

{

struct ion_handle *handle;

handle = __ion_alloc(client, data.allocation.len,

data.allocation.align,

data.allocation.heap_id_mask,

data.allocation.flags, true);

……

cleanup_handle = handle;

pass_to_user(handle);

break;

}

……

if (copy_to_user((void __user *)arg, &data, _IOC_SIZE(cmd))) {

if (cleanup_handle) {

mutex_lock(&client->lock);

user_ion_free_nolock(client, cleanup_handle);

ion_handle_put_nolock(cleanup_handle);

mutex_unlock(&client->lock);

……

Reference count of

Ion_handle becomes 2

Reference count of

ion_handle becomes 1

Reference count of Ion_handle

becomes 0,ion_handle will be

released!

CVE-2022-20109

ION_IOC_ALLOC of a vendor’s devices is like this:

case ION_IOC_ALLOC:

{

struct ion_handle *handle;

handle = ion_alloc(client, data.allocation.len,

data.allocation.align,

data.allocation.heap_id_mask,

data.allocation.flags);

……

pass_to_user(handle);

data.allocation.handle = handle->id;

cleanup_handle = handle;

……

if (copy_to_user((void __user *)arg, &data, _IOC_SIZE(cmd))) {

if (cleanup_handle) {

mutex_lock(&client->lock);

user_ion_free_nolock(client, cleanup_handle);

ion_handle_put_nolock(cleanup_handle);

……

Reference count of

Ion_handle becomes 1

Reference count of

Ion_handle becomes

0,ion_handle will be

released!

UAF

CVE-2022-20109

The root cause of the UAF: Missed a patch which is released in 2016

ion: Fix use after free during ION_IOC_ALLOC

If a user happens to call ION_IOC_FREE during an ION_IOC_ALLOC

on the just allocated id, and the copy_to_user fails, the cleanup

code will attempt to free an already freed handle.

This adds a wrapper for ion_alloc that adds an ion_handle_get to

avoid this.

CVE-2022-20109

https://android.googlesource.com/kernel/msm/+/c30d45ac0d79ef6214748c3e1742a2bca9583047

CVE-2021-0610

 Affected ION version:

ION V1

 Root cause:

The patch of a known issue(ion_handle kref overflow) is

missing

 Impact:

A known issue 3 years ago:

struct ion_handle *ion_import_dma_buf(struct ion_client *client,

struct dma_buf *dmabuf)

{

struct ion_buffer *buffer;

struct ion_handle *handle;

int ret;

……

buffer = dmabuf->priv;

mutex_lock(&client->lock);

/* if a handle exists for this buffer just take a reference to it */

handle = ion_handle_lookup(client, buffer);

if (!IS_ERR(handle)) {

ion_handle_get(handle);

mutex_unlock(&client->lock);

goto end;

}

……

}

case ION_IOC_IMPORT:

{

struct ion_handle *handle;

handle = ion_import_dma_buf_fd(client, data.fd.fd);

if (IS_ERR(handle)) {

ret = PTR_ERR(handle);

} else {

data.handle.handle = handle->id;

handle = pass_to_user(handle);

if (IS_ERR(handle)) {

ret = PTR_ERR(handle);

data.handle.handle = 0;

}

}

break;

}

kref overflow !

CVE-2021-0610

The patch to fix it:

staging: android: ion: check for kref overflow

This patch is against 4.9. It does not apply to master due to a

large

rework of ion in 4.12 which removed the affected functions

altogther.

4c23cbff073f3b9b ("staging: android: ion: Remove import

interface")

Userspace can cause the kref to handles to increment

arbitrarily high. Ensure it does not overflow.

+/* Must hold the client lock */

+static struct ion_handle *ion_handle_get_check_overflow(

+ struct ion_handle *handle)

+{

+ if (atomic_read(&handle->ref.refcount) + 1 == 0)

+ return ERR_PTR(-EOVERFLOW);

+ ion_handle_get(handle);

+ return handle;

+}

+

……

static bool ion_handle_validate(struct ion_client *client,

@@ -1110,7 +1121,7 @@

/* if a handle exists for this buffer just take a reference to it */

handle = ion_handle_lookup(client, buffer);

if (!IS_ERR(handle)) {

- ion_handle_get(handle);

+ handle = ion_handle_get_check_overflow(handle);

mutex_unlock(&client->lock);

goto end;

}

CVE-2021-0610

The issue still exists in a vendor’s devices because of the wrong patch:

struct ion_handle *ion_import_dma_buf(struct ion_client *client,

struct dma_buf *dmabuf)

{

struct ion_buffer *buffer;

struct ion_handle *handle;

……

buffer = dmabuf->priv;

mutex_lock(&client->lock);

/* if a handle exists for this buffer just take a reference to it */

handle = ion_handle_lookup(client, buffer);

if (!IS_ERR(handle)) {

ion_handle_get_check_overflow(handle);

mutex_unlock(&client->lock);

goto end;

}

……

}

static struct ion_handle *ion_handle_get_check_overflow(

struct ion_handle *handle)

{

if (atomic_read(&handle->ref.refcount.refs) + 1 ==

0)

return ERR_PTR(-EOVERFLOW);

ion_handle_get(handle);

return handle;

}

Kref overflow can still

happen!!!

CVE-2021-0610

