
#BHASIA @BlackHatEvents

#BHASIA @BlackHatEvents

The Next Generation of Windows Exploitation:
Attacking the Common Log File System

ShiJie Xu(@ThunderJ17), Jianyang Song(@SecBoxer) and Linshuang Li

360 Vulnerability Research Institute

#BHASIA @BlackHatEvents

About us

• Security researchers from 360 Vulnerability Research Institute.

• ShiJie Xu(@ThunderJ17)

• Jianyang Song(@SecBoxer)

• Linshuang Li

• We are vulnerability researchers currently focused on the Windows
platform.

#BHASIA @BlackHatEvents

Agenda

• Introduction of Common Log File System(CLFS)

• How to Fuzz CLFS

• Vulnerability Analysis

• Vulnerability Exploitation

• Summary

#BHASIA @BlackHatEvents

About Common Log File System

• The Common Log File System (CLFS) is a new logging mechanism
introduced by Windows Vista, which is responsible for providing a high-
performance, universal log file subsystem that dedicated client
applications can use and multiple clients can share to optimize log
access.

• Any user-mode application that needs logging or recovery support can
use CLFS.

#BHASIA @BlackHatEvents

Use Common Log File System

• Create Log File

• CreateLogFile: Creates or opens a log(.blf). The log can be dedicated or
multiplexed, and that depends on the log name. Use the CloseHandle function
to close the log. (log :<LogName>[::<LogStreamName>])

• Use Log File

• API - Provided by MSDN

• DeviceIoControl - Reverse clfs.sys

#BHASIA @BlackHatEvents

• CLFS Internals - Alex Ionescu

• DeathNote of Microsoft Windows Kernel - Keen Lab

• Microsoft Windows 10 CLFS.sys ValidateRegionBlocks privilege
escalation vulnerability - Cisco Talos

Related Research of CLFS

#BHASIA @BlackHatEvents

• Log file parsing vulnerability in clfs.sys

• Error handling of IoCode vulnerability in clfs.sys

Attack Surface

#BHASIA @BlackHatEvents

BLF Format Control Record

Control Record Shadow

Base Log Record

Base Log Record Shadow

Truncate Record

Truncate Record Shadow

+0x0000 CLFS_LOG_BLOCK_HEADER
+0x0070 CLFS_CONTROL_RECORD

+0x0400 CLFS_LOG_BLOCK_HEADER
+0x0470 CLFS_CONTROL_RECORD

+0x0800 CLFS_LOG_BLOCK_HEADER
+0x0870 CLFS_BASE_RECORD_HEADER

+0x8200 CLFS_LOG_BLOCK_HEADER
+0x8270 CLFS_BASE_RECORD_HEADER

+0xFC00 CLFS_LOG_BLOCK_HEADER
+0xFC70 CLFS_TRUNCATE_RECORD_HEADER

+0xFE00 CLFS_LOG_BLOCK_HEADER
+0xFE70 CLFS_TRUNCATE_RECORD_HEADER

#BHASIA @BlackHatEvents

• Create Log File

• Random Log File Data

• Parse Log File Data in clfs.sys (DeviceIoControl|API)

How to Fuzz

#BHASIA @BlackHatEvents

Create Log File

• Dedicated Log File (Log:c:\myLog)

• Set Container

• No Container

• Multiplexed Log File (Log:c:\myCommonLog::Stream1)

• Set Container

• No Container

#BHASIA @BlackHatEvents

Random Log File Data

__int64 __fastcall CCrc32::ComputeCrc32(BYTE* Ptr, int Size)

{

unsigned int Crc;

for (int i = 0; i < Size; i++)

{

data = Ptr[i];

Crc = (Crc >> 8) ^ CCrc32::m_rgCrcTable[(unsigned __int8)Crc ^ data];

}

return ~Crc;

}

• Every time to random the Log file, need to bypass the CRC check

#BHASIA @BlackHatEvents

CLFS_BASE_RECORD_HEADER CClfsBaseFile::GetBaseLogRecord

CLFS_CONTROL_RECORD CClfsBaseFile::GetControlRecord

CLFS_METADATA_BLOCK CClfsBaseFile::AcquireMetadataBlock

CLFS_TRUNCATE_CONTEXT CClfsBaseFilePersisted::AcquireTruncateContext

CLFS_TRUNCATE_RECORD_HEADER CClfsBaseFilePersisted::AcquireTruncateContext

CLFS_CLIENT_CONTEXT CClfsBaseFile::AcquireClientContext

CLFS_CONTAINER_CONTEXT CClfsBaseFile::AcquireContainerContext

CLFS_SHARED_SECURITY_CONTEXT CClfsLogFcbPhysical::AcquireClientSharedSecurityContext

Random Log File Data

• Focus on some Get* or Acquire* function

#BHASIA @BlackHatEvents

Several types of functions from MSDN

• Log Storage

• Record Chains

• Reservations

• Log Archive and Restore

Parse Log File in clfs.sys

https://docs.microsoft.com/en-us/previous-versions/windows/desktop/clfs/about-common-log-file-system

#BHASIA @BlackHatEvents

Vulnerability Analysis
• CVE-2022-21916

• eExtendState is at the +0x84 offset of the file

• iExtendBlock is at the +0x88 offset of the file

• iFlushBlock is at the +0x8A offset of the file

#BHASIA @BlackHatEvents

Vulnerability Analysis

CClfsBaseFilePersisted::ShiftMetadataBlockDescriptor(this,UINT iFlushBlock,UINT iExtendBlock)

{

// ...

NewTotalSize = -1;

TotalSize = iExtendBlock * this->SectorSize;

if (TotalSize > 0xFFFFFFFF)

return STATUS_INTEGER_OVERFLOW;

TotalSectorSize = this->BaseMetaBlock[iFlushBlock].TotalSectorSize; // OOB read

if (TotalSectorSize + TotalSize >= TotalSectorSize)

NewTotalSize = TotalSectorSize + TotalSize;

Status = TotalSectorSize + TotalSize < TotalSectorSize ? STATUS_INTEGER_OVERFLOW : 0;

this->BaseMetaBlock[iFlushBlock].TotalSectorSize = NewTotalSize;

return Status;

}

• CVE-2022-21916

#BHASIA @BlackHatEvents

Vulnerability Analysis

CClfsLogFcbPhysical::OverflowReferral(CClfsLogFcbPhysical *this, struct _CLFS_LOG_BLOCK_HEADER * LogBlockHeader)

{

// NewOwnerPage is a Paged Pool of size 0x1000

NewOwnerPage = &LogBlockHeader->MajorVersion + LogBlockHeader->RecordOffsets[2];

OldOwnerPage = &this->OwnerPage->MajorVersion + this->OwnerPage->RecordOffsets[2];

ClientId = CClfsBaseFile::HighWaterMarkClientId(this->CClfsBaseFilePersisted); // BaseLogRecord->cNextClient - 1

i = 0;

do

{

i = i++;

i *= 2i64;

*(CLFS_LSN *)&NewOwnerPage[8 * i] = CLFS_LSN_INVALID; // OOB Write

*(_QWORD *)&NewOwnerPage[8 * i + 8] = *(_QWORD *)&OldOwnerPage[8 * i + 8];

}

while (i <= ClientId); // Overflow occurs when ClientId is greater than 0x60

}

• Vulnerability for TianfuCup

#BHASIA @BlackHatEvents

Vulnerability Analysis

i = 0;

do

{

i = i++;

i *= 2i64;

*(CLFS_LSN *)&NewOwnerPage[8 * i] = CLFS_LSN_INVALID; // OOB Write

*(_QWORD *)&NewOwnerPage[8 * i + 8] = *(_QWORD *)&OldOwnerPage[8 * i + 8];

}

while (i <= ClientId); // Overflow occurs when ClientId is greater than 0x60

• Vulnerability for TianfuCup

• This is a pool overflow vulnerability with the paged pool size of 0x1000, which
writes CLFS_LSN_INVALID(0xFFFFFFFF00000000) and OldOwnerPage data to
the head of the next pool.

#BHASIA @BlackHatEvents

Vulnerability Exploitation

• The Windows Notification Facility

• Corrupt the StateData pointer of the _WNF_NAME_INSTANCE structure

• Restricted arbitrary address read and write

• Named Pipes

• Corrupt the Flink pointer of the PipeAttribute structure

• Arbitrary address read

Windows Paged Pool Overflow Exploitation

#BHASIA @BlackHatEvents

Vulnerability Exploitation

• The size of _WNF_NAME_INSTANCE is 0xC0 or 0xD0.

• Overflows the AllocatedSize field, which can reach an out-of-bounds write in
the maximum range of 0x1000 size.

The limitations of Windows Notification Facility

#BHASIA @BlackHatEvents

Vulnerability Exploitation

• ALPC

• Corrupt the Handles pointer of the _ALPC_HANDLE_TABLE structure

• Arbitrary address read and write

A New Way For Windows Paged Pool Overflow Exploitation

#BHASIA @BlackHatEvents

Vulnerability Exploitation

• A Reserve Blob can be created by calling the NtAlpcCreateResourceReserve
function. Whenever a Blob is created, the AlpcAddHandleTableEntry function
will be called to write the address of the created blob to the Handles of the
HandleTable.

_ALPC_HANDLE_TABLE

#BHASIA @BlackHatEvents

Vulnerability Exploitation

• When the alpc port is created, the AlpcInitializeHandleTable function is called
to initialize the HandleTable.

• Handles is a paged pool with an initial size of 0x80, which stores the address of
the blob structure.

• As more blobs are created, the size of Handles doubles.

• The size of Handles is variable, the size can be 0x80, 0x100, 0x200, 0x400, etc.

the Handles structure

#BHASIA @BlackHatEvents

Vulnerability Exploitation

• By overflow corrupting the _KALPC_RESERVE pointer of the Handles structure,
we can construct a fake Reserve Blob.

Arbitrary address read and write

#BHASIA @BlackHatEvents

Vulnerability Exploitation

• The _KALPC_RESERVE structure stores the address of the Message, so we can continue to
construct a fake _KALPC_MESSAGE structure.

• When you call the NtAlpcSendWaitReceivePort function to send a message, it will write the
data passed in by the user to the address pointed to by the ExtensionBuffer in the
_KALPC_MESSAGE structure. We can use it to achieve arbitrary address writing.

• When you call the NtAlpcSendWaitReceivePort function to receive a message, it will read
the data at the address pointed to by the ExtensionBuffer in the _KALPC_MESSAGE
structure. We can use it to achieve arbitrary address reading.

• Advantages: The size of Handles in the _ALPC_HANDLE_TABLE structure is variable.

Arbitrary address read and write

#BHASIA @BlackHatEvents

Vulnerability Exploitation

Arbitrary address read and write

Handles

TotalHandles

Flags

Lock

Fake _KALPC_RESERVE

Fake _KALPC_RESERVE

Blob_addr

Blob_addr

...

Kernel

OwnerPort

HandleTable

Handle

Fake Message

Size

Active

User

_ALPC_HANDLE_TABLE Fake _KALPC_MESSAGE

Entry

PortQueue

...

Fake ExtensionBuffer

Fake
ExtensionBufferSize

...

Handles

arbitrary

kernel

address

#BHASIA @BlackHatEvents

• Call NtUpdateWnfStateData to spray a lot of _WNF_STATE_DATA of size 0x1000

WNF WNF WNF WNF WNF WNF WNF

Vulnerability Exploitation

Spray WNF struct

WNF

#BHASIA @BlackHatEvents

Vulnerability Exploitation

Create a lot of holes

WNF WNF WNF WNF

• Call NtDeleteWnfStateName to create a lot of holes.

#BHASIA @BlackHatEvents

WNF WNF WNF

Vulnerability Exploitation

Create ownerpage

• Call CreateLogFile to open the log file, during the
process it will call OverflowReferral to overflow WNF
struct.

Before:

After:

owner

page

#BHASIA @BlackHatEvents

WNF
owner

page
WNF handles WNF

Vulnerability Exploitation

Create the handles

overflowed

• Call NtAlpcCreatePort to create a lot of ALPC
Ports and listen to them.

• Call NtAlpcCreateResourceReserve to create a
lot of 0x1000 Handles.

handles struct：

created handles

#BHASIA @BlackHatEvents

Vulnerability Exploitation

Overflow Handles via WNF

• Calling NtUpdateWnfStateData will overflow
Handles, because the AllocatedSize of wnf has been
modified to 0xffffffff in the previous step and the
maximum write limit of WNF is 0x1000 bytes, so we
can only modify the first 16 bytes of Handles at
most. In this case we only overflow 8 bytes.

WNF
owner

page
WNF handles WNF

Before:

After:

#BHASIA @BlackHatEvents

AlpcpLookupMessage()+0x220:

Vulnerability Exploitation
Fake _KALPC_RESERVE

• 0x282`99055970 is fake _KALPC_RESERVE structure, which
is a user mode address.

#BHASIA @BlackHatEvents

Vulnerability Exploitation

• 0x282`99055970 + 0x18 is fake _KALPC_MESSAGE
structure.

AlpcpLookupMessage()+0x220:

Fake _KALPC_RESERVE

#BHASIA @BlackHatEvents

• Call NtQuerySystemInformation to leak
the token address.

• Write the token address to FAKE
_KALPC_MESSAGE + 0xe0.

Vulnerability Exploitation
Fake _KALPC_RESERVE

#BHASIA @BlackHatEvents

AlpcpCaptureMessageDataSafe()+16:

Before:

After:

Vulnerability Exploitation
Arbitrary address write

• Call NtAlpcSendWaitReceivePort to
trigger arbitrary address write.

• Overwrite the Privileges of token + 0x40
into 16 bytes of 0xff.

#BHASIA @BlackHatEvents

• Open procexp.exe to view the permissions of the process,
and find that the SeDebugPrivilege permission has been
obtained, and Flags is Enable.

• With the SeDebugPrivilege privilege, we can inject
Shellcode into the winlogon.exe process to achieve
elevation of privilege.

Elevation of Privilege

Vulnerability Exploitation

#BHASIA @BlackHatEvents

Demo video

#BHASIA @BlackHatEvents

• Because these are custom size structures.

• They can match the structure size of 0x30 ~ 0x11000+

0x30 ~ 0x1000 size ：

_WNF_STATE_DATA (0x30 ~ 0x1000)

_ALPC_HANDLE_TABLE->Handles (0x90、0x110、0x210、0x410 、0x810、0x1000...0x10000...)

_KALPC_MESSAGE (0x160 ~ 0x11000)

> 0x1000 size:

_ALPC_HANDLE_TABLE->Handles

_KALPC_MESSAGE

Why is it universal?

#BHASIA @BlackHatEvents

Why is it universal?

> 0x11000 size:

_ALPC_HANDLE_TABLE->Handles (0x90、0x110、0x210、0x410 、0x810、0x1000...0x10000...)

#BHASIA @BlackHatEvents

• The size of the _WNF_STATE_DATA structure is customizable, the range is 0x30
to 0x1000.

• Overflows the AllocatedSize field, which can reach an out-of-bounds write in the
maximum range of 0x1000 size.

Universal exploitation of WNF

#BHASIA @BlackHatEvents

• The calculation rule of size: 0x90、0x110、0x210、0x410 、0x810、
0x1000...0x10000...

• When the size of the pool is > 0x1000, there is no pool header of size 0x10.

• Overflow Handles and modify the address to our fake _KALPC_RESERVE user mode
address.

• Even if what you overwrite is an invalid value, you can still call VirtualAlloc to map
it to a user-mode address.

Universal exploitation of Handles

#BHASIA @BlackHatEvents

• The size range of _KALPC_MESSAGE is 0x160 to 0x11000.

• Overflow the ExtensionBuffer pointer at +0xe0 of the structure, you can do
arbitrary address write.

Fake _KALPC_MESSAGE

Entry

PortQueue

...

Fake ExtensionBuffer

Fake ExtensionBufferSize

...

arbitrary kernel

address
+0xe0

Universal exploitation of Message

#BHASIA @BlackHatEvents

Summary

• File parsing vulnerabilities similar to clfs is still a good attack surface to this day.

• Evolving mitigations on windows making exploits harder and harder.

#BHASIA @BlackHatEvents

• CLFS Internals - Alex Ionescu

• DeathNote of Microsoft Windows Kernel - Keen Lab

• Microsoft Windows 10 CLFS.sys ValidateRegionBlocks privilege escalation
vulnerability - Cisco Talos

• CVE-2021-31956 Exploiting the Windows Kernel (NTFS with WNF) - Alex Plaskett

Links and References

https://github.com/ionescu007/clfs-docs/
https://www.slideshare.net/PeterHlavaty/deathnote-of-microsoft-windows-kernel
https://talosintelligence.com/vulnerability_reports/TALOS-2020-1098
https://research.nccgroup.com/2021/07/15/cve-2021-31956-exploiting-the-windows-kernel-ntfs-with-wnf-part-1/

#BHASIA @BlackHatEvents

Thanks

