blgc’:k hat

o | Ad=

MAY 12-13
BRIEFINGS

AutoSpear : Towards Automatically Bypassing
and Inspecting Web Application Firewalls

Zhenqing Qu (Zhejiang University)
Xiang Ling (Institute of Software, Chinese Academy of Sciences)

Chunming Wu (Zhejiang University)

Zhenging Qu Xiang Ling

e Graduate student at Zhejiang University e Research Associate at ISCAS
e CTF player at Team AAA e Research interest: Al security, data-driven
e Research interest: web security and data- security, web security and program analysis
driven security e Published at: IEEE S&P, INFOCOM, TNNLS,
y@u21h2 TKDD, and TOPS, etc.

https://ryderling.github.io/

Chunming Wu
e Professor at Zhejiang University

e Associate Director of the Research Institute of Computer System
Architecture and Network Security

e Research interest: network security, reconfigurable networks and
next-generation network infrastructures

e Published at: ACM CCS, IEEE S&P, USENIX, INFOCOM, ToN, etc. About

Agenda

e \Web attacks and WAF

e WWAF bypass

e AutoSpear: an automatic bypassing and inspecting tool for WAF
e Evaluation and findings

e Disclosure

Agenda

e \Web attacks and WAF

e WWAF bypass

e AutoSpear: an automatic bypassing and inspecting tool for WAF
e Evaluation and findings

e Disclosure

Web Security Risks

OWASP Top10 - 2013

OWASP Top10 - 2017

OWASP Top10 - 2021

A1 Broken Access Control
Broken Authentication and . : :

AV Session Management Broken Authentication Cryptographic Failures

A3 Cross-Site Scripting (XSS) Sensitive Data Exposure

A4 Insecure Direct Object References | XML External Entities (XXE) Insecure Design

AS Security Misconfiguration Broken Access Control Security Misconfiguration

A6 Sensitive Data Exposure Security Misconfiguration Vulnerable and Outdated Components

N Missing Function Level Access Cross-Site Scripting (XSS) |dentification a_nd Authentication

Control Failures

A8 Cross-Sﬂe((I?gclq?lIJ:e;st FOIE R Insecure Deserialization Software and Data Integrity Failures

AQ Using Components with Known | Using Components with Known Security Logging and Monitoring
Vulnerabilities Vulnerabilities Failures

A10 SINEIEIEE MSllEes el Insuficient Logging&Monitoring | Server-Side Request Forgery (SSRF)

Forwards

https://owasp.org/www-project-top-ten/

Web Application Firewall (WAF)

- Normal Request X [oo @
Response o
Client
| ee)
) - [ele= GEKD
Attack Request Gateway
~ | ee)
Attacker WAF S
Back-end
Script

DB

Origin Server

WAF and WAF-as-a-service

e Signature-based WAF (rely on pre-defined rules by domain experts)
regular-expression based (e.g., ModSecurity CRS)
semantic-analysis based (lexical/syntax, e.g., libinjection)

RegExp: /union.*?select.*?from/i

0 or more times 0 or more times

e ML-based WAF (rely on previous collected and labelled datasets)
NLP + RF/SVM/CNN/RNN/GNN

Traditional WAF:

@ Deploying WAF Security-as-a-service = WAF-as-a-service
Al Il
@ Configuring H =

L 1 1 4
@ Updating Google Cloud F::RTINET

A funny thing @&

200 &% Attention Required! | Cloudflar: X <+

< » C # asia-briefings-cfp.blackhat.com/fileupload

v

orry, you have been blocked

)y ¢ IACKNAL.COITI

When | submitted my session content, | was by Cloudflare used by blackhat.com

Agenda

e \Web attacks and WAF

e WAF bypass

e AutoSpear: an automatic bypassing and inspecting tool for WAF
e Evaluation and findings

e Disclosure

Trade-off between FP and FN Bypass

“No System Is Safe”

WAF Bypass

e Architecture-Level
- Directly access to the origin server
- Disguise client IP as a WAF e.q., https://github.com/RyandJarv/cdn-proxy

e Protocol-Level
- Transfer-Encoding: chunked
- HTTP Request Smuggling

e Payload-Level -@Our Focus: The most Common and Universal way
- Transform the original payload:

change the case of letters / add semantic nops (e.g., comments) / ...

WAF Bypass

e Payload-Level -®Our Focus: The most Common and Universal way
- Transform the original payload:

change the case of letters / add semantic nops (e.g., comments) / ...

——————————————————————————\

1 union select foo from bar #
1" uNion sEleCt foo fROm bar #
v~ 1" uNion/*foo*/sEleCt foo/*bar*/fROm bar #

|
I
I
I

How to automate it?

Semi-Auto: WAFNinja: fuzzing for SQLi and XSS

WAFNinja - Penetration testers favorite for WAF Bypassing

e select ¥
URL: https://examples.com/getinfo?uid=1'%20FUZZ _
TYPE: sq e union select

mrte status | Content-Length | Ewpected | Outpst | Working

Il o v indavaid
seLeCt \ 200 \ 612 \ seLeCt \ TYPE h keywqrd, VVAF Stl” WI”
seL/**/eCt \ 200 \ 612 \ seL/**/eCt \ TYPE htmi> block it after belng
832 | sertedinto the entire
union/**/select \ 403 \ : \ union/**/select \ : pay| oad.
uNion(sElect) \ 403 \ . \ uNion(sElect) \ -
union all select \ 403 \ . \ union all select \ -
union/**/all/**/select \ 403 \ . \ union/**/all/**/select \ -
uNion all(sElect) \ \ \ uNion all(sElect) \
insert \ \ \ insert \ TYPE h

values values TYPE h

Semi-Auto: Handcrafted fuzzing

import requests

blocked_url = "https://examples.com/getInfo?uid=1' or 1 =1 — "

fuzzing_template = "https://examples.com/getInfo?uid=1"'{}{}{}{} — "

diCt_Of_SpaCe - [ll/**/ll' u\nu’ u\tu]
dict_of_or. — [Il/*!or*/ll' llorll’ IIORII' IIORII]
dict_of_lequalsl = ["True", "'a' = 'a'", "Oxbeef=48879"]

for posl in dict_of_space:
for pos2 in dict_of_or:

for pos3 in dict_of_space:
for pos4 in dict_of_lequalsl:

current_url =

fuzzing_template. format(posl, pos2, pos3, pos4)

print(current_url)
. # Send this url and judge whether it is blocked by WAF

1' \noR+0xbeef=48879 —
1'/** /oR\tTrue—
1' /*lor*//**/'a' ='a’ —

e Attackers need to generate mutated keywords manually
e This is similar to brute-force search, which is inefficient

Semi-Auto: SQLMap tamper scripts

Tamper Example

equal 2 like where id = 1 -> where id like 1

multiple spaces 1 union select foo ->1 union select foo

random comments 1 union select foo -> 1 /*kk*/ union select /*ff*/foo

space 2 blank 1 union select foo -> 1%0Aunion%0Cselect foo
upper case 1 union select foo -> 1 UNION SELECT FOO
lower case 1 UNION SELECT FOO -> 1 union select foo

python sqlmap.py -u "https://examples.com/getInfo?uid=1" --tamper "spaceZcomment,uppercase”

e Attackers need to choose tampers manually; SQLMap cannot select them intelligently

e Multiple tampers cannot work well together; Tampers can only mutate all locations
within the payload

Full-Auto(?): WAF-A-MoLE [1]
e String-based Mutation

Operator Example

Case Swapping CS(admin' OR 1=1#) — ADmIn' oR 1=1#

Whitespace Substitution WS(admin' OR 1=1#) — admin'\n OR \t 1=1#
Comment Injection CI(admin' OR 1=1#) — admin'/**/0R 1=1#

Comment Rewriting CR(admin'/**/0R 1=1#) — admin'/*abc*x/0OR 1=1#xyz
Integer Encoding IE(admin' OR 1=1#) — admin' OR @x1=1#

Operator Swapping OS(admin' OR 1=1#) — admin' OR 1 LIKE 1#
Logical Invariant LI(admin' OR 1=1#) — admin' OR 1=1 AND 2<>3#

e Priority Queue-based Optimization

(Pn+1,Un+1)

Figures from:

[1] Demetrio, Luca, et al. "Waf-a-
mole: evading web application
firewalls through adversarial
machine learning." Proceedings of
the 35th Annual ACM Symposium
on Applied Computing. 2020.

Full-Auto(?): Wang.RL [2] & Hemmati.RL [3]

e String-based Mutation from [1]

e Reinforcement Learning-based Optimization

Web Application
Firewall (WAF)

reward: score/label

state. tokenized payload

action:
payload mutation

Figures from:

[2] Wang X, Han H U. Evading Web
Application Firewalls with Reinforcement
Learning[J]. 2020.

[3] Hemmati, Mojtaba, and Mohammad Ali
Hadavi. "Using Deep Reinforcement Learning
to Evade Web Application Firewalls." 2021
18th International ISC Conference on
Information Security and Cryptology (ISCISC).
IEEE, 2021.

Dilemma 1: String-based Mutation (and)

Recursively enumerable

Context-sensitive

Context-free

Regular

Chomsky hierarchy

The regular-based rule descriptions (i.e., rule-based grammar) in above methods cannot fully cover the program-language
based attack payloads (e.g., SQLi payloads).

Dilemma 1: String-based Mutation (and)

Too few:
the code snippet of a mutation operator in WAF-A-MoLE
def change_tautologies(payload): Payload Example
1'or 1=1 -- v
results = list(re.finditer(r'((?<=["\""\d\wx])\d+(?=["\""\d\wx]))=\1"', payload)) :
1"or1=1 --
RegExp: /((<=["\d\w'"x])\d+(=["\d\w'"x]))=\1/ 1" or1 =1 --
Group #1 1' or1 — 1 _
Group #2 Group #3 1' o
r — -
None of: None of: or @ a
] —
T 1" or -1=-1 -- -
1"or 1.1=1.1 --
o—=«- — =D o 1=1.
1"or1.1=1.1 --
R 1 or more times A))

Too much:

rike r= port p||t order ~ OR der

Dilemma 2: Optimization

Previous work:

e Brute-force Search
Not efficient
e Priority Queue-based Optimization
Not suitable for real-world WAF (block-box)
e RL-based Optimization
Not suitable for real-world WAF (block-box)
A training process is necessary

Adversarial ML:

e Gradient-based optimization
Not suitable our black-box problem-space attack

Challenges

e Semantic-preserving Method
- Preserve the original functionality and maliciousness of the initial payload

Method suitable for black-box attacks
- Training-free
- Generalizability for different WAFs
- Malicious scores reported by WAF are not necessary (black-box)

Agenda

e \Web attacks and WAF

e WWAF bypass

e AutoSpear: an automatic bypassing and inspecting tool for WAF
e Evaluation and findings

e Disclosure

Payload

URL

——AUthO [t} m—]

http:// www.example.com: 80 /path/to/myfile.html ?key1=value1&key2=value2 #SomewherelnTheDocument

Scheme Domain Name Port Path to the file Parameters Anchor

Parameters
?key1=value1&key2=value2 name=david
country=china
Parameters uid=1

SQLi payload

uid=1" -+

uid=1" ——+

uic =1' ——+

(1) Hierarchical Tree Representation

1. Divide the SQL.i payload into 3 modules Schema Domain Name Path Parameter(s)
https: les. tinfo?uid=1" 1=1--
- Left boundary ps://examples.com/getinfo l;leC)I, val(;:/ +
- SQLi query SQLi Payload

- Right boundary
2. Remain boundaries unchanged /I\

. . . Left Boundary Right Boundary
3. Represent query with a hierarchical tree

- Each leaf node is the atomic token in SQL /l\

- Each parent (non-leaf) node is a SQL oL Tautology

statement that assembles all tokens from its

ordered child nodes - n - m -
Integer DML Integer

We can perform more fine-grained and customized processing for each node according to its
unique characteristics and constraints.

(2) Mutation with Context-free Grammar

A based on the

of candidate nodes / sub-trees.
CFG grammars for each

DML
or

1

Taut
2 1=1

1

of SQLi Hierarchical Tree.

A B C
CFG DML DML Comment
-—-==" OR I /*lor*/
CFG Taut Bool Bool
—~=~"® 5.3 True NotFalse
CFG Comment
-_—-— e — P \n /*fOO*/ \t
CFG Integer DML String
- Ox1 select1 ‘foo’
Comment DML DML
CFG
TR M= ke liKE
CFG String Integer Integer

o ‘name’ Ox1

(CFG) to generate a set

(2) Mutation with Context-free Grammar

Operator Example
Case Swapping or1=1—->0R1=1
Whitespace Substitution® or1=1—- \tor1\n=1
Comment Injection” or 1 =1 — /[*foo*/or 1 =/*bar*/1
Comment Rewriting [*foo*/or 1 =1 — /*1.png*/or 1 =1
Integer Encoding or1=1—-o0r0x1=1
Operator Swapping or1=1—or1like 1
Logical Invariant or1=1—-or1=1and'a'="a'

or1=1—/*lor/1=1

Inline Comment union select — /*lunion*/ /*150000select*/

where xxx — where xxx and True

Where Rewriting where xxx — where (select 0) or xxx

or1=1—->||1=1

DML Substitution and name = 'foo’ — && name = 'foo’

1=1— ‘foo’ = ‘foo’
Tautology Substitution 1’=1"—>2<>3
1 =1 — (select ord(’r’) regexp 114) = Ox1

* means that the operator is flexible for different request methods, while others are fixed.

(3) Monte-carlo Tree Search Guided Searching

Employ the (MCTS) algorithm to guide the searching
process, i.e., combining the mutation replacements of each node.

MCTS is to continuously , where each node represents a of

the SQLi hierarchical tree, and the correspond to transformations, i.e.,
replacements of the node in the SQLi hierarchical tree.

|. Selection
Il. Expansion
lIl. Simulation

V. Back-propagation

(3) Monte-carlo Tree Search Guided Searching

‘ Play a few rounds
- - - 3A 3C —_—
MCTS
Root
Node 5G/ 5 Y
OBest

Child
' Il. Expansion
cjf!‘:‘f/“t (Tree Policy) C

l. Selection
‘ Finish the game
< - - - B —
O % LS
O 505 ¢

(Tree Policy)
O lll. Simulation

IV. Backpropagation (Default Policy)
JAN

All Selections Chain Reach Max Step

White

Comment
Space /*foo*/

Integer
—>
VO;B

O

(4) Payload Reconstruction

SQLi Payload

1’ || Ox1 /*1=*/ Ox1/*foo*/ --+

_— | T

Left Boundary Right Boundary
“ || Ox1 /*!=*/ Ox1/*foo*/ —— ,
/I\ SRS 1’ || Ox1 /*1="/ 0x1/*fo0"/--+

DML Tautology Comment SQLi payload which can bypass WAF

m | O

Integer Comment Integer

m--m

Agenda

e \Web attacks and WAF

e WWAF bypass

e AutoSpear: an automatic bypassing and inspecting tool for WAF
e Evaluation and findings

e Disclosure

Dataset

e Hand-constructed (to verify the semantic of the generated payloads)

- Count: 100 — 10000
- union-based / error-based / blind injection ...

e SIK (from Kaggle, to evaluate the attack success rate)
- Count: 28008
- https://www.kaggle.com/datasets/syedsaglainhussain/sql-injection-dataset

e HPD (from Github, to evaluate the attack success rate)

- Count: 30156
- https://github.com/Morzeux/HttpParamsDataset

- CSIC / SQLMap ...

Verify Semantic-preserving (Method)

e By observing the of the payloads, verify sematic-preserving
(functionality and maliciousness)

e Multiple run-time envs:
- Request Method: GET / GET(JSON) / POST / POST(JSON)
- Back-end (with SQLIi vulnerability): Python 2.x / Python 3.x / PHP 5.x / PHP 7.x
- Database: MySQL 5.x / MySQL 8.x
- Dataset: Generate 10000 (from 100) unique payloads

e Result
- payloads generated by AutoSpear can maintain the original semantics (still)

Target WAFs

aws 65 ERY s S
v" E 5 Wa"arm CLOUDFLARE Open Source Web Application Firewall
S Trial version Pro version PL1
Based on the and the with full CRS v3.3.2
provided by these vendors functionality Mods v2.9.5
Request Methods
Request . 0/. 9RO
GET Method [*#*/ && %26%26
GET (JSON) GET 7 7
POST
POST (JSON) GET (JSON) - -
POST 4 v v
POST(JSON) | @ | ® v

Results - False Negative Rate

Request AWS F5 CSC Fortinet Cloudflare | Wallarm |ModSecurity
Method HPD | SIK | HPD | SIK | HPD | SIK | HPD | SIK | HPD | SIK | HPD |SIK| HPD | SIK
GET 5.3 | 8.2 | 40.7 |451| 19.7 |(37.1| 88 |14.2| 81 [188| 14 |6.5| 0.1 3.3
GET(JSON) 40.5 |43.7| 20 |37.1| 9.7 |(15.7| 17.7 [29.2| 1.4 |6.4| 20.1 | 30.9
POST 3.4 (145| 356 |41.9| 19.7 |(37.1| 8.8 14 | 47 .1 1.4 |6.7| 0.1 3.5
POST(JSON) 354 [40.5| 20 |371| 9.7 |15.5] 47.1 24 |7.6] 0.1 3.5
POST > GET non-JSON > JSON
. treatthefour request methods ‘\I
I - implements different strategies based on whether the request method is or :
: - processes the payload separately according to whether the request parameter is in type :
\

processes requests via

separately

Results - Attack Success Rate (within 100 queries / payload)

Tﬂe;lﬁgzt AWS F5 | CSC | Fortinet | Cloudflare | Wallarm | ModSecurity
GET 18.69 |82.46|77.33| 53.4 21.33 18.76 11.61
. GET(JSON) 83.87(77.38| 83.17 37.79 18.76 49.06
POST 30.02 | 83.7 [75.22| 53.4 35.92 17.28 10.61
POST(JSON) 85.76| 74.5 | 83.17 35.92 17.4 10.61
GET 14.39 | 79.6 |70.27| 55.19 32.43 33.94 10.88
SIK GET(JSON) 82.06(70.91| 81.24 58.13 34.01 58.32
POST 31.91 [80.72(70.38| 55.06 48.77 31.26 9.55
POST(JSON) 82.69(71.38| 81.28 49.05 32.24 9.55

v’ Effective and Efficient
AutoSpear achieves against WAF-as-a-service.

Inference

Dataset: SIK Dataset: SIK

F5 F>

CSC CSC

Fortinet Fortinet

Cloudflare | Request Method
| . GET
Wallarm GET(JSON)
| mam POST
ModSecuirty B POST(JSON)

Cloudflare

s GET
GET(JSON)

s POST

B POST(JSON)

o 10% 20% 30% 40% 50% 60%
FNR

Wallarm

ModSecuirty

OO

o~

40% 60% 80% 100%
ASR

@ Four WAFs hosted on are less capable of preventing SQLi.
o= is very because it has low FNR and ASR both.
) has ASR many times higher than FNR, which means that it

very well.

Statement

The above results of vendors are obtained with our
. which cannot represent the

actual defense effects against in the wild.

Video

Case Studies — AWS/F5/Cloudflare

WAF | Reduest SQLi Payload

0' union select 1, group_concat(table _name), 3 from information_schema.tables where table schema=database() --+
- 0' union select 1, group_concat(column_name),3 from information_schema.columns where table _name='users' --+
0' union select 1, group_concat(username, 0x3a, password), 3 from users --+

0" union select 1, group _concat(table_name), 3 from information_schema.tables where table schema=database() --+
GET o : : i .
AWS (JSON) 0' union 'select 11, group_concat(column_name),3 from information_schema.columns where table _name='users' --+
0' ‘union select 1, group concat(username, 0x3a, password), 3 from users --+
0' select 1, group_concat(table_name), 3 from information_schema.tables where table schema=database() --+
F5 GET 0’ select 1, group_concat(column_name),3 from information_schema.columns where table name='users' --+
0) union select 1, group_concat(username, 0x3a, password), 3 from users --+

GET 0' union 'select 1, group concat(table _name), 3 from information_schema.tables table _schema=database() --+

loudflare | 5o 0' union 1'select 1, group_concat(column_name),3 from information_schema.columns where table_name='users' --+

0' union 'select 1, group concat(username, 0x3a, password), 3 users --+
Replacing whitespaces with (\t, \n) can bypass WAF.

Furthermore, adding a or turn DML into can bypass and

Case Studies — ModSecurity(PL1)

Original Payload:
1) where 5232=5232 union all select null,null,null#

Stepl: Bypass ModSecurity-Libinjection (semantic-analysis engine):
1) where 5232=5232 union all select null,null,null#

Step2: Bypass ModSecurity-CoreRuleSet (regular-matching engine):
1) where 5232=5232 union all select null,null,null#

Bypass both the engine and the engine.

Case Studies - Summary

AWS F5 CSC | Fortinet | Cloud- | Wallar | Mod-
flare m Security
G|P|G|P|G|P|G|P|G|P|G|P|G|P
. . . 2 Whi .
the hierarchical tree automatically. ltespace Sub. | 10| 9900090906 66006 ¢ ht
3 DML Substitution ooo0000000000000
4 Logical Invariant 0000 0000
5 Operator Swap. 000000000000
. . . 6 Where Rewriting (@@ @®|® o000 o000
Effective mutation methods for specific
. P 7 Tautology Sub. 00000000
WAFs and different payloads are 8 Comment Mani. olo|ofo alojo|o olo|o]o|o]o]alo
. 9 Int E di UIUIUIY UIUIUIY
Just adding some can bypass Toge —neotn9
. 10 Case Swapping
four WAFs under specific payloads.
Lucky attackers manually using the
can bypass WAF sometimes.
However, in most cases, only a of at takes effect.
That is, combining multiple mutation methods, AutoSpear is much more in bypassing

mainstream WAF-as-a-service solutions due to their vulnerable detection signatures for semantic
matching and regular expression matching.

Agenda

e \Web attacks and WAF

e WWAF bypass

e AutoSpear: an automatic bypassing and inspecting tool for WAF
e Evaluation and findings

e Disclosure

Responsible Disclosure (All vendors confirmed, and 3/7 have fixed)

CLOUDFLARE® M

modsecurity

Open Source Web Application Firewall

Responsible Disclosure

shboard Job Board

etests (0) All (1)

Report ol

ADD HACKER SUMMARY
TIMELINE - EXPORT

u21h2 submitted
Cloudflare sect

Hello, here are
SQL injection&
security risks ti

| put the compl
Impact
bypass waftor

1 attachment:
F1468856: Repo

u21h2 posted a ¢
Hello?

bassguitar = Hac
Hi @u21h2,

We have forwarded your report to the team and are waiting on their input.

v

AWS WAF, AWS
Firewall Manager, and
AWS Shield Advanced

Developer Guide

What are AWS WAF, AWS Shield,
and AWS Firewall Manager?

Setting up
AWS WAF
How AWS WAF works

Getting started with AWS
WAF

Migrating your AWS WAF
Classic resources to AWS WAF

Managing and using a web
access control list (web ACL)

Rule groups
¥ Managed rule groups
Version management

» Working with managed
rule groups

¥ AWS Managed Rules
for AWS WAF

AWS Managed Rules
rule groups list

AWS Managed Rules
disclaimer

AWS Managed
Rules changelog

AWS Marketplace
managed rule groups

» Managing your own rule
groups

F > Developer

TECHSUP-6727 [Emergency]

Kuleshov A&1%x£ quzhenaing@zju.edu

cn

Anton Kuleshov commented:

We discussed your report on our side and will ad
Anton Kuleshov resolved this as Fixed.

Please evaluate our service for this reques

Very poor Poor Average

Best regards,
Wallarm Support Team

GenericRFI_BODY

GenericRFI_URIPATH

All rules

Please be patient in the meantime and rest assured that we will provide you an update as soon as there is new information to share.

Thank you,
(@bassguitar

K22788490: F5 SIRT Security Researcher Acknowledgement — Attack Signature
Improvement

@ Support Solution

Original Publication Date: Aug 18, 2020
Updated Date: Oct 26, 2021

Applies to (see versions): ¥

SECURITY INCIDENT
RESPONSE TEAM

The F5 Security Incident Response Team (F5 SIRT) is pleased to recognize the security researchers who have helped improve attack
signatures for Advanced WAF/ASM/NGINX App Protect by finding and reporting ways to bypass certain attack signature checks. Each
name listed represents an individual or company who has privately disclosed one or more bypass methods to us. The attack signature

IDs listed are the attack signatures that F5 adds to or updates in the new attack signature update files based on the researcher's report.

2021 Acknowledgments

Name Attack Signature Update Files Attack Signature IDs
Zhenging Qu from Zhejiang University &
Xiang Ling from Institute of Software,

Chinese Academy of Sciences

F5 Rules for AWS WAF - Web exploits OWASP Rules - update
2021-10-14

Added support for AWS WAF labels to all rules that didn't already support labeling.

Quick Tasks

AskF5 YouTube Cha

Diagnose your syste
iHealth

Create service requg
Manage service req
Find serial number

#. Search Bug Trac
EY New and update
&% Subscribe to mail

Contact Support

Black hat Sound Bytes.

Takeaways

e \We prove that WAF-as-a-service can in a fully and
intelligent manner.

e \We propose AutoSpear which utilizes a and a
strategy suitable for black-box attacks.

e We summarize the various underlying mechanisms of WAFs in the wild and their
actual defense effects. In addition, we disclose some general that

defenders can employ to improve their products.

blgc’zk hat

o | Ad=

MAY 12-13
BRIEFINGS

Thank You

We will release AutoSpear after all vendors complete the fix process.

https://github.com/u21h2/AutoSpear

Zhenging Qu (Zhejiang University)
Xiang Ling (Institute of Software, Chinese Academy of Sciences)

Chunming Wu (Zhejiang University)

#BHASIA

(@ BT G EW AN

Question by audience

“How do you configure these WAFs in your evaluation? Are they all in default settings?”

Thanks for the valuable question.

In fact, we deployed our own websites with databases on the Google Cloud Platform and protected them utilizing
seven WAFs in turn. The WAFs followed the default configurations. Specifically:

(1) For WAFs (AWS, F5, Fortinet and CSC) that require manual rules configuration, we have enabled the core
ruleset and the advanced ruleset for SQL. These managed rules are provided by vendors on the AWS marketplace.

(2) For WAFs that do not require extensive configuration, we subscribed to the Pro versions of Cloudflare and
Wallarm for complete protection.

(3) For the open-source ModSecurity, we followed the official manual to integrate the CoreRuleSet with its default
protection level (i.e., enable the rule-engine and semantic-engine under paranoia-level 1).
Under the above framework, AutoSpear acts as a client to send attack requests to the websites to evaluate WAFs'

vulnerabilities. It launched no attacks against any external entities. We did not cause unexpected damage to the
real world.

