blackhať ASIA 2023

MAY 11-12

BRIEFINGS

Phoenix Domain Attack: Vulnerable Links in Domain Name **Delegation and Revocation**

Xiang Li Tsinghua University

Domain Name

Domain name system (DNS)

- Entry point of many Internet activities Ο
- Security guarantee of multiple application services Ο
- Domain names are widely registered Ο

Domain Name Abuse

>Also abused by criminal activities

• Botnet, phishing, malware distribution

bleepingcomputer.com

scmp.com

norton.com

Domain Name Abuse

> Also abused by criminal activities

• Botnet, phishing, malware distribution

ICANN Domain abuse activity reporting (DAAR)

- o In March 2023
- Check 216,171,933 domain names within 1,154 gTLDs

622,875 domains showing security threats

Domain Name Revocation

Fighting against malicious domain names

> Mechanism

- Domain name revocation
- Operated by registries or registrars
- Deleting or changing domain name registration (delegation)

➢ Result

• Domains are no longer controlled by original registrants/attackers

Domain Name Revocation

Domain name seizure activity

- Best security practice
- Widely adopted

Microsoft seizes Chinese dot-org to kill Nitol bot army

Takedown after infected new computers sold to victims

🤻 John Leyden

Thu 13 Sep 2012 // 15:01 UTC

Microsoft has disrupted the emerging Nitol botnet - and more than 500 additional strains of malware - by taking control of a rogue dot-org website. The takedown is the latest in Microsoft's war against armies of hackercontrolled PCs.

theregister.com

intelligentciso.com

How does domain name revocation work on domain name registration (delegation)?

It is the reverse process of **delegation**.

Domain Name Revocation

- Normal resolution
- Revocation
- Domain delisting Ο
- Domain sinkholing Ο

Change NS

sinkhole

ns.botnet.com

Does domain name revocation function as desired?

No. Ghost domain broke this guarantee.

Ghost Domain

> Ghost domain attack

- Proposed in NDSS 2012 by our NISL lab Ο
- Making revoked domain names still resolvable on resolvers Ο

Ghost domain attack

With ghost domain, even after revocation, malicious domains can still be resolvable.

Attackers can use it to evade **domain take-down** or domain expiration.

Ghost Domain

> Vulnerable software

• Not all software: BIND, PowerDNS, etc.

Mitigation

TTL field cannot be prolonged Ο

DNS Vendor	Version	Vulnerable?
BIND	9.8.0-P4	Yes
DJB dnscache	1.05	Yes
Unbound	1.4.11	No
	1.4.7	Yes
PowerDNS	Recursor 3.3	Yes
MaraDNS	Deadwood-3.0.03	No
	Deadwood-2.3.05	No
Microsoft DNS	Windows Server 2008 R2	No
	Windows Server 2008	Yes

10 years later, does domain name revocation work as desired after fixing ghost domain?

No. Phoenix domain still breaks this guarantee with a broader attack surface.

Phoenix Domain

What is phoenix domain

- Proposed by our NISL lab too
- Also making revoked domain names still resolvable on resolvers
- Two new vulnerabilities in protocols or implementations
- Two variations (T1 and T2)
- Affecting all DNS implementations

Why is domain name revocation still vulnerable?

We find that the entire attack surface remains unclear now.

DNS Cache Operations

DNS Cache Operations

How does Phoenix Domain work?

Two variations, two ways.

Phoenix Domain T1

≻ T1 attack

- Exploiting vulnerable cache insertion implementations Ο
- Inserting new NS records when the old is about to expire Ο

➤ T1 attack

- Attack steps
- Cache expiration
- Cache deletion \bigcirc
- Cache insertion

Cache expiration and NS records are removed

a.t.k.r

Phoenix Domain T2

> T2 attack

- Exploiting vulnerable cache searching operations Ο
- Inserting new NS records of subdomains Ο

After revocation (iterative delegation)

Phoenix Domain T2

> T2 attack

Exploiting vulnerable cache searching operations Ο

Inserting new NS records of subdomains Ο

(iterative delegation)

Vulnerable Software

Phoenix domain T1

BIND9, Knot, Unbound, and Technitium

Phoenix domain T2

All tested 8 software are vulnerable (7 confirmed, 9 CVEs)

CVE-2022-30250 CVE-2022-30251 CVE-2022-30252 CVE-2022-30254 CVE-2022-30256 CVE-2022-30257 CVE-2022-30258 CVE-2022-30698 CVE-2022-30699

Phoenix domain T1 and/or T2

- We test 41 public resolver vendors
- All resolvers are vulnerable to T1 and/or T2
- Such as Google, Cloudflare, Akamai, AdGuard, etc. (15 confirmed)

Recursive resolver list

- Through scanning, we collected 1.2M resolvers Ο
- 210k recursive resolvers are selected

	Region	Number	%	ASN	Number	%
	USA	43,034	20.5%	4837	9,825	4.7%
	China	25,152	12.0%	4134	5,988	2.9%
	Russia	22,802	10.9%	3462	5,864	2.8%
	Japan	13,421	6.4%	4713	5,134	2.4%
	France	12,801	6.1%	8866	4,884	2.3%
Λιαρ	Turkey	8,389	4.0%	9121	4,779	2.3%
	Brazil	7,128	3.4%	16276	4,355	2.1%
New Internet Scanning	Sweden	7,026	3.3%	209	3,937	1.9%
	Taiwan	6,869	3.3%	3215	3,735	1.8%
	Ukraine	6,572	3.1%	12389	3,485	1.7%
	Total 218 regions			Total 11,274 ASes		

Experiments for T2

Short-term experiments

- Check how many labels are supported
- 89% are vulnerable
- After 100 rounds, 42% are vulnerable

Experiments for T2

Long-term experiments

- Check how long phoenix domain can be alive
- After one week, 40% are vulnerable
- After one month, 25% are vulnerable

Experiments for T2

Geolocation of vulnerable resolvers

 $\circ\,$ USA, Russia, and China

Mitigation

➢ 6 approaches

- Discussing with RFC editors
- ➢ For example,
- > M1: when NS RRs expire, querying upstream for NS
- M2: trust NS from the parent more than the child
- ➤ M3: use small TTL values

Delegation Revalidation by DNS Resolvers draft-ietf-dnsop-ns-revalidation-03

Mitigation M1: Re-validating delegation information M2: Updating delegation data by parent-centric polic M3: Aligning the cache use-and-check operations M4: Ignoring unsolicited DNS records M5: Scrutinizing domain names with over many lab M6: Restricting the maximum cache TTL •: Fully valid. •: Partially valid.

	T1	T2
		•
cies.		0
		0
els	0	
	0	

Black Hat Sound Bytes

- > The DNS RFCs and specifications are not clear to provide a definitive definition for each operation, hence leaving a large attack window for ambiguous implementations.
- We should check the RFC's essential specifications.
- > The DNS implementations are not consistent across software, even for identical client queries.
- This inconsistency is likely to conceal possible risks, which should be thoroughly Ο researched and evaluated.
- The original DNS mechanism is insufficient to defend against several types of attacks.
- To improve it, we should propose new patches or redesign some structures. Ο

Paper

Thanks for listening! Any question?

Tool