
#BHASIA @BlackHatEvents

Bad Randomness: Protecting Against
Cryptography's Perfect Crime

Tal Be’ery, CTO & Co-Founder Zengo

● Co-Founder, CTO @ ZenGo

● 20+ years cyber security

● 9th time BH Speaker

● 1st time BHASIA speaker!

● @talbeerysec

👋 Hi, I’m Tal Be’ery

https://twitter.com/TalBeerySec

Agenda
● The Perfect Crime: Why bad randomness is crypto’s perfect crime?

● True Crime(s)

→ Bad private key: Bitcoin, gone in milliseconds

→ Bad Nonce: Ethereum, gone in milliseconds

→ Bad DH parameters: TLS malware, even more powerful than

previously known

● Solutions

→ Avoiding single point of failure with MPC

The perfect crime
Randomness in cryptography

The perfect crime

● Lethal

● Undetectable

”
Randomness in cryptography is like the air we
breathe. You can’t do anything without it,

- Prof. Yevgeniy Dodis https://cs.nyu.edu/~dodis/courant-article.pdf

https://cs.nyu.edu/~dodis/courant-article.pdf

Randomness is vital

● Kerckhoffs' principle: the security of a cryptographic system should

be based on the secrecy of the cryptographic key

● Keys values should be unguessable

→ created in random

● But also other crypto items, e.g. Nonces, IVs

● Randomness is vital → Lack thereof is lethal!

Bad randomness is undetectable

Bad randomness is undetectable

● There are no random numbers, only numbers created by a random

process

● In most cases, you cannot inspect a number and decide if it is

random or not

● In most cases, the values of these random numbers are not stored

as they are too secret → not available for a statistical forensic

analysis

Crypto’s perfect crime

Bad randomness is crypto’s perfect crime

● Lethal

● Undetectable

True crime, true detective
Bad Randomness in the wild

True detective
Season 1: Bitcoin’s dark forest

From random to Bitcoin address: step 1

● Generate a random 128 bit number

● Add 1 bit of checksum for each 32 bit (33 is divisible by 11)

From random to Bitcoin address: step 2

● Assign for each 11 bit group a word from BIP-39 to get the seed

phrase

https://github.com/bitcoin/bips/blob/master/bip-0039/english.txt

From random to Bitcoin address: step 3

● Key Derivation Function: PBKDF2: 2048 HMAC-SHA512
● Adding performance “penalty” to make bruteforce harder

From random to Bitcoin address: step 4

● Derive addresses

Randomness in crypto addresses

● Getting an address might be a complex process

● But it all starts with a random number

● If this number is guessable, all funds are gone!

Bad randomness can cost Billions

https://www.washingtonpost.com/technology/2023/11/14/bitcoin-wallet-passcode-flaw/

https://www.washingtonpost.com/technology/2023/11/14/bitcoin-wallet-passcode-flaw/

POC!

Step 1: bad randomness Bitcoin Key

Step 2: Address is pristine

Step 3: Send money.. It’s gone!

Conclusions

● Bad randomness attackers are real

● Bots are lurking for transactions to bad randomness addresses

and taking them away in real time

● Further reading

→ https://zengo.com/how-keys-are-made/

→ https://zengo.com/bitcoin-is-a-dark-forest-too/

https://zengo.com/how-keys-are-made/
https://zengo.com/bitcoin-is-a-dark-forest-too/

True detective
Season 2: Ethereum’s dark forest

ECDSA nonce

● ECDSA signatures are used in many security related protocols

→ Authentication

→ Cryptocurrency

● require a nonce that should be secret → let’s make it random

● However if nonce is somewhat predictable..

● LadderLeak: Breaking ECDSA with Less than One Bit of Nonce

Leakage (BH EU 2020)

https://www.blackhat.com/eu-20/briefings/schedule/
https://www.blackhat.com/eu-20/briefings/schedule/

Nonce reuse dark forest in the wild

https://twitter.com/bertcmiller/status/1475844939816833032

https://twitter.com/bertcmiller/status/1475844939816833032

True detective
Season 3: The TLS malware

The Reductor Malware

● Identified by Kaspersky in 2019

→ https://securelist.com/compfun-successor-reductor/93633/

→ Attributed to Turla APT group

● Malware:

→ patches the PRNG

→ injects CA TLS Certs

https://securelist.com/compfun-successor-reductor/93633/

The TLS Handshake

https://blog.cloudflare.com/keyless-ssl-the-nitty-gritty-technical-details

https://blog.cloudflare.com/keyless-ssl-the-nitty-gritty-technical-details

Patching the PRNG: The Code POV

Patching the PRNG: The network POV

Cyber paleontology

● Reductor malware:

→ patches the PRNG

→ injects CA TLS Certs

● Reductor malware must be

working with a server MITM
https://www.kaspersky.com/blog/cyberpaleontology-managed-protection/24118/

https://www.kaspersky.com/blog/cyberpaleontology-managed-protection/24118/

The Reductor MITM: Active MITM www.cnn.com

https://www.cnn.com
Client random: random

ISP

https://www.cnn.com
Client random: marked

Some observations

● Monsters (Bad randomness attackers) are real!

● Although attackers can use their malware, they prefer to fiddle

with network traffic

● Why?

→ Does not really matter

→ More stealthy

The TLS Handshake with EDH

https://blog.cloudflare.com/keyless-ssl-the-nitty-gritty-technical-details

https://blog.cloudflare.com/keyless-ssl-the-nitty-gritty-technical-details

Ephemeral Diffie Hellman (EDH)

● EDH provides Perfect Forward Secrecy to TLS

● Provided the DH private parameter (“secret

color”) remains secret…

● But DH parameter is also created with the, now

patched, PRNG!

● 😱 Reductor attackers could probably passively

eavesdrop! 😱

The Reductor MITM: passive eavesdropper!
www.cnn.com

https://www.cnn.com
Client random: random

ISP

https://www.cnn.com
Client random: marked

I can
see!

DEMO!

Demo recipe

1. Use our modified TLS client github.com/ZenGo-X/tls_client_handshake_pure_python to patch
a. Client Random
b. DH parameter

2. Connect with our modified client via TLS to a well known website
3. Record the encrypted traffic of this connection using Wireshark PCAP
4. Use our tool https://github.com/ZenGo-X/TLS-masterkey-recovery key to compute the

masterkey using
a. inputs

i. Server parameters in plaintext, as obtained from PCAP
1. Server random
2. Server DH public key

ii. The predetermined Client parameters
1. Client Random (as obtained from PCAP)
2. Client DH private key

b. Save the masterkey output in the standard SSLKEYLOGFILE format
5. Feed this masterkey file to Wireshark to successfully decrypt the traffic
6. WIN!

https://github.com/ZenGo-X/tls_client_handshake_pure_python
https://github.com/ZenGo-X/TLS-masterkey-recovery
https://datatracker.ietf.org/doc/draft-thomson-tls-keylogfile/

Demo!

Some (additional) observations

● Bad randomness is so undetectable that we are not even sure

what the attackers have done

● Attackers are even more stealthy now

→ Passiveness is the ultimate stealth mode

● PFS is not always better than no PFS

Solving bad randomness

Bad solution: Human generated randomness

Human generated randomness in the wild

● AKA “brain” wallets

● Entropy is generated from a passphrase

● DEF CON 23 (2012) - Ryan Castellucci - Cracking
CryptoCurrency Brainwallets

→ https://www.youtube.com/watch?v=foil0hzl4Pg

● Found 733 BTC in 2012 → ~$50M in 2024
● “Down the Rabbit-Hole”: held about 85 BTC in July 2012

https://www.youtube.com/watch?v=foil0hzl4Pg

”
Humans are not a good source of entropy

Bitcoin Wiki https://en.bitcoin.it/wiki/Brainwallet

https://en.bitcoin.it/wiki/Brainwallet

Removing the need of randomness

● Reusing existing good randomness
→ Deterministic Nonce (RFC6979)

■ HMAC-SHA256(private_key, message)
→ NAXOS trick (draft-irtf-cfrg-randomness-improvements-

10.html)
■ Mix server long term key with entropy

● See also James P. Hughes, Whitfield Diffie: “The Challenges of
IoT, TLS, and Random Number Generators in the Real World”
→ https://queue.acm.org/detail.cfm?id=3546933

https://datatracker.ietf.org/doc/html/rfc6979
https://www.ietf.org/archive/id/draft-irtf-cfrg-randomness-improvements-10.html
https://www.ietf.org/archive/id/draft-irtf-cfrg-randomness-improvements-10.html
https://queue.acm.org/detail.cfm?id=3546933

Protecting the PRNG itself

● Treat PRNG as the most critical part of the system
→ E.g. PRNG protection in hardware

● Helpful, yet limited
→ The PRNG is still single point of failure

● What if we could have it distributed?
→ We can do it with Multi-Party Computation

■ https://drand.love/

https://drand.love/

Multi-Party computation (MPC) for ECDSA
● Key generation is distributed

→ Bad randomness of a single party still create a random key

● Signing is distributed

→ Bad randomness of a single party still create a random nonce

● Our implementation

→ https://github.com/ZenGo-X/gotham-city

→ Blogs

https://github.com/ZenGo-X/gotham-city
https://zengo.com/blog/

MPC wallets
● No Single Point of Failure!
● Key generation is distributed

→ Resilient against malware key theft
→ Resilient against bad randomness

● Signing is distributed
→ Resilient against malware key theft
→ Resilient against bad randomness

● Blockchain is unaware
→ Signature looks the same

Seed Phrase vs. MPC
Seed Phrase

Outro

Takeaways

● Bad randomness is indeed crypto’s perfect crime
● Exploited in the wild

→ APT for TLS
→ Bitcoin dark forest attackers
→ Ethereum dark forest attackers

● Solutions:
→ Protect PRNG
→ Remove unnecessary randomness requirements
→ Use MPC to avoid Single Point of Failure

