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1. What are Faults?

2. Traditional Fault Points on Embedded Systems and SoCs

3. A (new) Fault Point on SoCs

4. OP-TEE?

5. End-to-end Attack

▪ Load (adversarial) Trusted Application through Faults

▪ Redirect communication for other Trusted Applications

▪ Decrypt (redirected) communication

6. Impact

Outline
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What are Faults?
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• Actively perturb data or control-flow of a system and gain 

information about the secret through faulty system response

Input

Correct Output Incorrect Output
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• Fault causes error and error can be exploited to leak secret 

information

• Fault attack sometimes combined with side channel can lead 

to stronger attacks

Fault Injection Side Channel Observation
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The Fault Attack Jungle
Protocols

Cryptographic 
Primitives

Arithmetic

RTL: ALU, REGs, MEM

Logic: Gates, Flip-flops

Transistors

Fault Exploitation

Fault Injection

I. Verbauwhede, D. Karaklajid, and J.-M. Schmidt, “The Fault Attack Jungle - A

Classification Model to Guide You”, FDTC, 2011

Fault Attack on Embedded Systems
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Fault Attack Vectors

• WHAT: Strategically modify execution 
environment of a system

• HOW: Through changes in external 
operational conditions

Fig: Electromagnetic Fault Injection (EMFI) Probe

Fig: Working principle of EMFI Probe
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FI Attack Vectors

• WHAT: Strategically modify execution 
environment of a system

• HOW: Through changes in external 
operational conditions

• WHY: Bias software execution to adversarial 
advantage

Fig: Representative Fault Attack to introduce a bit-flip
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1. Single bit

2. Multiple bits
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Fault Models

Granularity

1. Single bit

2. Multiple bits

3. Byte or Word

Fault-type

1. Stuck-at (zero or one)

2. Bit flip

3. Random

Attacker Control

1. Precise

2. Loose

3. None

Duration of the fault

1. Transient

2. Permanent

3. Persistent
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Traditional Fault Points 
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(voltage/clock 

glitch)

Dynamic 

Frequency and 

Voltage Scaling 

(DVFS)
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Rowhammer
Laser/EM Fault 

injection

External interface

(voltage/clock 

glitch)

Dynamic 

Frequency and 

Voltage Scaling 

(DVFS)
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(in SoCs; ex RPi) Privileged



# BHASIA @BlackHatEvents

ECC checks
Casings

(requires invasive

depackaging)

No external interface

(in SoCs; ex RPi) Privileged
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Are there other architectural aspects which can be used for faults,

for which no known defences are deployed yet?
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A (new) Fault Point on SoCs
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ECC checks
Casings

(requires invasive

depackaging)

No external interface

(in SoCs; ex RPi) Privileged

System Bus
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• Uncased and exposed

• Involved mainly with 

load/store instructions

• Prior works

▪ Simulation of bus faults

▪ External voltage glitches 

on PlayStation consoles to 

skip memory cycles
Fig: Exposed bus connections in RPi3
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FI on System Bus: Attack Principle

load dest_reg, [mem_addr]

Fig: Electromagnetic Fault Injection probe positioned 

over the exposed system bus on a RPi3
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FI on System Bus: Attack Principle

load dest_reg, [mem_addr]

Fig: Electromagnetic Fault Injection 

probe positioned over the exposed 

system bus on a RPi3

mem_addr mem_addr

data data
mem_addr : data
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FI on System Bus: Attack Principle

load dest_reg, [mem_addr]

Fig: Electromagnetic Fault Injection 

probe positioned over the exposed 

system bus on a RPi3

mem_addr mem_addr

data data
mem_addr : data

faulted data

mem_addr : data

data
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FI on System Bus: Success Rates

load dest_reg, [mem_addr]
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FI on System Bus: Success Rates
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Data Bus Faults

• Result in incorrect data

• Success rate breakdown

▪No fault: 38%

▪Fault to 0x0: 35%

▪Other cases: 27%
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FI on System Bus: Success Rates

load dest_reg, [mem_addr]

Data Bus Faults

• Result in incorrect data

• Success rate breakdown

▪No fault: 38%

▪Fault to 0x0: 35%

▪Other cases: 27%

Address Bus Faults

• Result in SEGFAULT

• Success rate breakdown

▪SEGFAULT: 31%

▪Other cases: 69%

Register sweeping

(cleans the value of a load)
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Implication: Register sweeping to mount an end-to-end attack

on Open Portable Trusted Execution Environment (OP-TEE)
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OP-TEE?
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"Trusted" Execution Environment

• WHAT: An attempt to disentangle critical applications from 
generic software (including kernel)

• HOW: (Hardware backed) isolation of system resources

• OP-TEE: Implementation of GlobalPlatformAPI specification 
for ARM TZ

oMaintained by the Trusted Firmware, with members like 
Google, ARM, Linaro, NXP, STMicroelectronics

oDeployed in commercial platforms like Apertis, iWave, and so 
on
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"Trusted" Execution Environment

• Two main divisions

1. TEE or Trusted Execution Environment

Execution context where all the security critical operations reside. 
TEE has its own 

a) secure/encrypted memory storage,

b) secure I/O peripherals,

c) secure context switching
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"Trusted" Execution Environment

• Two main divisions

1. TEE or Trusted Execution Environment

Execution context where all the security critical operations reside. 
TEE has its own 

a) secure/encrypted memory storage,
b) secure I/O peripherals,
c) secure context switching

2. REE or Rich Execution Environment

Execution context where rest of the things run. REE invokes the 
services of TEE when required.
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"Trusted" Execution Environment

• Two main divisions

1. TEE or Trusted Execution Environment

2. REE or Rich Execution Environment

Note: All Trusted Applications (TAs) running in the TEE are 
checked for integrity, implying no adversary having 
complete control over REE can execute arbitrary TEE code.
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• Two main divisions

1. TEE or Trusted Execution Environment

2. REE or Rich Execution Environment

Note: All Trusted Applications (TAs) running in the TEE are 
checked for integrity, implying no adversary having 
complete control over REE can execute arbitrary TEE code.

"Trusted" Execution Environment

ADVERSARIAL GOAL !
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Adversarial Goals

• Goal 1 : Entire attack must be online (without taking the device offline)

• Challenge 1 : Secure Boot cannot be attacked (requires taking the device offline)

(Our) Solution: Attack the loading of Trusted Applications in the TEE

• Challenge 2 : Cannot use code-based triggers (requires code modifications to the OP-TEE kernel)

(Our) Solution: Construct a combined adversary (side-channel analysis + fault injection)
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Adversarial Goals

Goal 2 : The attack must be non-invasive
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Adversarial Goals

Goal 2 : The attack must be non-invasive

• Challenge 3 : Cannot inject processor faults (requires depackaging). Trivial attacks like instruction skips 
cannot work

(Our) Solution: Work with a new fault model (register sweeping) on the system-bus (requires no 
invasive alterations to the target device)
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Fault Attack Target
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Fault Attack Target
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Fault Attack Target

DVFS RowhammerExternal glitch Stealing signing key
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Fault Attack Target

Not Available Protected TA 

access
Not Available

Signing key not 

stored on device
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Fault Attack Target

Register Sweeping: Fault the load to 0x0 through data bus 
faults
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Fault Attack Target

Register Sweeping: Fault the load to 0x0 through data bus 
faults

FAULT INJECTION TARGET!
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Fault Attack Results

• No Effect ( denoted by a "dot" ) : No effect of the injected fault

• Partial Success : Injected fault changes the value of the load, but not to 0x0.
Or causes SEGFAULT

• Success : Faults value of the load to 0x0.
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End to End Attack

Load (adversarial) Trusted Applications through Faults

Redirect communication for other Trusted Applications

Decrypt (redirected) communication
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End to End Attack
Load (adversarial) Trusted Applications through Faults
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Combined Adversary = Power SCA + FI

Power side-channel to inform

fault injection in a non-invasive way

(no recompilation of OP-TEE necessary)
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Combined Adversary = Power SCA + FI

Power side-channel to inform

fault injection in a non-invasive way

(no recompilation of OP-TEE necessary) Actual Fault Injection on signature verification
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Combined Adversary = Power SCA + FI

56

FAULT INJECTION TARGET!
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Combined Adversary = Power SCA + FI
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Fallout: Register sweeping fault attack loads a self-signed, adversarial controlled Trusted 

Application in the secure world of OP-TEE
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End to End Attack
Redirect communication for other Trusted Applications
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Communication Redirection

Insecure World Secure World

Universally Unique

IDentifier (UUID)

comparison

Secure Trusted Application 

execution
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Communication Redirection

Our Findings: GlobalPlatform API specification (upon which OP-TEE is constructed) offloads 

the responsibility of choosing UUID to Original Equipment Manufacturer. It is the responsibility 

of the OEM to ensure no two Trusted Applications (TA) share same UUID.
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Communication Redirection

Our Findings: GlobalPlatform API specification (upon which OP-TEE is constructed) offloads 

the responsibility of choosing UUID to Original Equipment Manufacturer. It is the responsibility 

of the OEM to ensure no two Trusted Applications (TA) share same UUID.

UUID confusion: Behaviour of the system when UUID are non-unique is undefined. Our 

empirical conclusion is that, when UUIDs are shared, a non-persistent TA is preferred over 

persistent TA.
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Communication Redirection

Insecure World Secure World
Universally Unique

IDentifier (UUID)

comparison

(with self-signed TA loaded 

after register sweeping
attack)

Secure Trusted 

Application execution

(persistent TA)

Self-signed Trusted Application execution

(non-persistent TA with UUID confusion)
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End to End Attack
Decrypt (redirected) communication
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Decrypt (redirected) communication

Third Party extension: 

SeCReT

● Symmetric key management

● Blocks SIGTRAP

● Blocks unauthorized read to 

sensitive data pages
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Decrypt (redirected) communication

Third Party extension: 

SeCReT

● Symmetric key management

● Blocks SIGTRAP

● Blocks unauthorized read to 

sensitive data pages

● Does not block SIGSEGV. Leaks 

key through coredumps
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Decrypt (redirected) communication
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End to End Attack
Bird's eye-view
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End to End Attack
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Impact
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Responsible Disclosure

● CVE 2022-47549

● Worked together with Linaro to deploy countermeasure in OP-TEE kernel

● Website: https://nimishmishra.wixsite.com/disarmament

https://nimishmishra.wixsite.com/disarmament
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Countermeasure
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Other Implications

● Re-enable Differential Fault Attack (DFA) on T-table implementation of AES (on 

SoCs)

● Address Bus Faults to leak all shares of Masked PQC implementations (like 

Kyber)

Observation: All shares encapsulated within a single memory structure
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Takeaways!

● System + Execution Environment, not just the System

● Register sweeping fault model on a (new) architectural aspect – System Bus

- Implications for other systems?

● Rethinking protocol specifications for embedded systems in light of SCA+FI adversaries
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Research @ Secured Embedded Architecture Laboratory, IIT Kgp

● Power/EM Side-channel evaluation of 

FPGAs/micro-controllers/SoCs

● Fault Attacks, Fault Analysis, and design 

of countermeasures

● Evaluation of Microarchitectural attack s

cenarios on workstations as well as 

embedded systems

● Others directions…

(Some) Research Directions
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Thank You!
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