
#BHASIA @BlackHatEvents

Faults In Our Bus:
Novel Bus Fault Attacks to

Break ARM TrustZone
Nimish Mishra, Anirban Chakraborty, Debdeep Mukhopadhyay

Indian Institute of Technology Kharagpur, India

BHASIA @BlackHatEvents

Who are we?

Nimish Mishra Anirban Chakraborty Debdeep Mukhopadhyay

Indian Institute of Technology Kharagpur India

BHASIA @BlackHatEvents

1. What are Faults?

2. Traditional Fault Points on Embedded Systems and SoCs

3. A (new) Fault Point on SoCs

4. OP-TEE?

5. End-to-end Attack

▪ Load (adversarial) Trusted Application through Faults

▪ Redirect communication for other Trusted Applications

▪ Decrypt (redirected) communication

6. Impact

Outline

BHASIA @BlackHatEvents

What are Faults?

BHASIA @BlackHatEvents

• Actively perturb data or control-flow of a system and gain

information about the secret through faulty system response

Input

Correct Output Incorrect Output

BHASIA @BlackHatEvents

• Fault causes error and error can be exploited to leak secret

information

• Fault attack sometimes combined with side channel can lead

to stronger attacks

Fault Injection Side Channel Observation

BHASIA @BlackHatEvents

The Fault Attack Jungle
Protocols

Cryptographic
Primitives

Arithmetic

RTL: ALU, REGs, MEM

Logic: Gates, Flip-flops

Transistors

Fault Exploitation

Fault Injection

I. Verbauwhede, D. Karaklajid, and J.-M. Schmidt, “The Fault Attack Jungle - A

Classification Model to Guide You”, FDTC, 2011

Fault Attack on Embedded Systems

BHASIA @BlackHatEvents

Fault Attack Vectors

• WHAT: Strategically modify execution
environment of a system

• HOW: Through changes in external
operational conditions

Fig: Electromagnetic Fault Injection (EMFI) Probe

Fig: Working principle of EMFI Probe

BHASIA @BlackHatEvents

FI Attack Vectors

• WHAT: Strategically modify execution
environment of a system

• HOW: Through changes in external
operational conditions

• WHY: Bias software execution to adversarial
advantage

Fig: Representative Fault Attack to introduce a bit-flip

BHASIA @BlackHatEvents

Fault Models

Granularity

1. Single bit

2. Multiple bits

3. Byte or Word

BHASIA @BlackHatEvents

Fault Models

Granularity

1. Single bit

2. Multiple bits

3. Byte or Word

Fault-type

1. Stuck-at (zero or one)

2. Bit flip

3. Random

BHASIA @BlackHatEvents

Fault Models

Granularity

1. Single bit

2. Multiple bits

3. Byte or Word

Fault-type

1. Stuck-at (zero or one)

2. Bit flip

3. Random

Attacker Control

1. Precise

2. Loose

3. None

BHASIA @BlackHatEvents

Fault Models

Granularity

1. Single bit

2. Multiple bits

3. Byte or Word

Fault-type

1. Stuck-at (zero or one)

2. Bit flip

3. Random

Attacker Control

1. Precise

2. Loose

3. None

Duration of the fault

1. Transient

2. Permanent

3. Persistent

BHASIA @BlackHatEvents

Traditional Fault Points

BHASIA @BlackHatEvents

BHASIA @BlackHatEvents

External interface

(voltage/clock

glitch)

Dynamic

Frequency and

Voltage Scaling

(DVFS)

BHASIA @BlackHatEvents

Rowhammer
Laser/EM Fault

injection

External interface

(voltage/clock

glitch)

Dynamic

Frequency and

Voltage Scaling

(DVFS)

BHASIA @BlackHatEvents

Rowhammer
Laser/EM Fault

injection

No external interface

(in SoCs; ex RPi) Privileged

BHASIA @BlackHatEvents

ECC checks
Casings

(requires invasive

depackaging)

No external interface

(in SoCs; ex RPi) Privileged

BHASIA @BlackHatEvents

Are there other architectural aspects which can be used for faults,

for which no known defences are deployed yet?

BHASIA @BlackHatEvents

A (new) Fault Point on SoCs

BHASIA @BlackHatEvents

ECC checks
Casings

(requires invasive

depackaging)

No external interface

(in SoCs; ex RPi) Privileged

BHASIA @BlackHatEvents

ECC checks
Casings

(requires invasive

depackaging)

No external interface

(in SoCs; ex RPi) Privileged

System Bus

BHASIA @BlackHatEvents

• Uncased and exposed

• Involved mainly with

load/store instructions

• Prior works

▪ Simulation of bus faults

▪ External voltage glitches

on PlayStation consoles to

skip memory cycles
Fig: Exposed bus connections in RPi3

BHASIA @BlackHatEvents

FI on System Bus: Attack Principle

load dest_reg, [mem_addr]

Fig: Electromagnetic Fault Injection probe positioned

over the exposed system bus on a RPi3

BHASIA @BlackHatEvents

FI on System Bus: Attack Principle

load dest_reg, [mem_addr]

Fig: Electromagnetic Fault Injection

probe positioned over the exposed

system bus on a RPi3

mem_addr mem_addr

BHASIA @BlackHatEvents

FI on System Bus: Attack Principle

load dest_reg, [mem_addr]

Fig: Electromagnetic Fault Injection

probe positioned over the exposed

system bus on a RPi3

mem_addr mem_addr

data data
mem_addr : data

BHASIA @BlackHatEvents

FI on System Bus: Attack Principle

load dest_reg, [mem_addr]

Fig: Electromagnetic Fault Injection

probe positioned over the exposed

system bus on a RPi3

mem_addr mem_addr

data data
mem_addr : data

faulted data

mem_addr : data

data

BHASIA @BlackHatEvents

FI on System Bus: Success Rates

load dest_reg, [mem_addr]

BHASIA @BlackHatEvents

FI on System Bus: Success Rates

load dest_reg, [mem_addr]

Data Bus Faults

• Result in incorrect data

• Success rate breakdown

▪No fault: 38%

▪Fault to 0x0: 35%

▪Other cases: 27%

BHASIA @BlackHatEvents

FI on System Bus: Success Rates

load dest_reg, [mem_addr]

Data Bus Faults

• Result in incorrect data

• Success rate breakdown

▪No fault: 38%

▪Fault to 0x0: 35%

▪Other cases: 27%

Address Bus Faults

• Result in SEGFAULT

• Success rate breakdown

▪SEGFAULT: 31%

▪Other cases: 69%

BHASIA @BlackHatEvents

FI on System Bus: Success Rates

load dest_reg, [mem_addr]

Data Bus Faults

• Result in incorrect data

• Success rate breakdown

▪No fault: 38%

▪Fault to 0x0: 35%

▪Other cases: 27%

Address Bus Faults

• Result in SEGFAULT

• Success rate breakdown

▪SEGFAULT: 31%

▪Other cases: 69%

Register sweeping

(cleans the value of a load)

BHASIA @BlackHatEvents

Implication: Register sweeping to mount an end-to-end attack

on Open Portable Trusted Execution Environment (OP-TEE)

BHASIA @BlackHatEvents

OP-TEE?

BHASIA @BlackHatEvents

"Trusted" Execution Environment

• WHAT: An attempt to disentangle critical applications from
generic software (including kernel)

• HOW: (Hardware backed) isolation of system resources

• OP-TEE: Implementation of GlobalPlatformAPI specification
for ARM TZ

oMaintained by the Trusted Firmware, with members like
Google, ARM, Linaro, NXP, STMicroelectronics

oDeployed in commercial platforms like Apertis, iWave, and so
on

BHASIA @BlackHatEvents

"Trusted" Execution Environment

• Two main divisions

1. TEE or Trusted Execution Environment

Execution context where all the security critical operations reside.
TEE has its own

a) secure/encrypted memory storage,

b) secure I/O peripherals,

c) secure context switching

BHASIA @BlackHatEvents

"Trusted" Execution Environment

• Two main divisions

1. TEE or Trusted Execution Environment

Execution context where all the security critical operations reside.
TEE has its own

a) secure/encrypted memory storage,
b) secure I/O peripherals,
c) secure context switching

2. REE or Rich Execution Environment

Execution context where rest of the things run. REE invokes the
services of TEE when required.

BHASIA @BlackHatEvents

"Trusted" Execution Environment

• Two main divisions

1. TEE or Trusted Execution Environment

2. REE or Rich Execution Environment

Note: All Trusted Applications (TAs) running in the TEE are
checked for integrity, implying no adversary having
complete control over REE can execute arbitrary TEE code.

BHASIA @BlackHatEvents

• Two main divisions

1. TEE or Trusted Execution Environment

2. REE or Rich Execution Environment

Note: All Trusted Applications (TAs) running in the TEE are
checked for integrity, implying no adversary having
complete control over REE can execute arbitrary TEE code.

"Trusted" Execution Environment

ADVERSARIAL GOAL !

BHASIA @BlackHatEvents

Adversarial Goals

• Goal 1 : Entire attack must be online (without taking the device offline)

BHASIA @BlackHatEvents

Adversarial Goals

• Goal 1 : Entire attack must be online (without taking the device offline)

• Challenge 1 : Secure Boot cannot be attacked (requires taking the device offline)

(Our) Solution: Attack the loading of Trusted Applications in the TEE

BHASIA @BlackHatEvents

Adversarial Goals

• Goal 1 : Entire attack must be online (without taking the device offline)

• Challenge 1 : Secure Boot cannot be attacked (requires taking the device offline)

(Our) Solution: Attack the loading of Trusted Applications in the TEE

• Challenge 2 : Cannot use code-based triggers (requires code modifications to the OP-TEE kernel)

(Our) Solution: Construct a combined adversary (side-channel analysis + fault injection)

BHASIA @BlackHatEvents

Adversarial Goals

Goal 2 : The attack must be non-invasive

BHASIA @BlackHatEvents

Adversarial Goals

Goal 2 : The attack must be non-invasive

• Challenge 3 : Cannot inject processor faults (requires depackaging). Trivial attacks like instruction skips
cannot work

(Our) Solution: Work with a new fault model (register sweeping) on the system-bus (requires no
invasive alterations to the target device)

BHASIA @BlackHatEvents

Fault Attack Target

BHASIA @BlackHatEvents

Fault Attack Target

BHASIA @BlackHatEvents

Fault Attack Target

DVFS RowhammerExternal glitch Stealing signing key

BHASIA @BlackHatEvents

Fault Attack Target

Not Available Protected TA

access
Not Available

Signing key not

stored on device

BHASIA @BlackHatEvents

Fault Attack Target

Register Sweeping: Fault the load to 0x0 through data bus
faults

BHASIA @BlackHatEvents

Fault Attack Target

Register Sweeping: Fault the load to 0x0 through data bus
faults

FAULT INJECTION TARGET!

BHASIA @BlackHatEvents

Fault Attack Results

• No Effect (denoted by a "dot") : No effect of the injected fault

• Partial Success : Injected fault changes the value of the load, but not to 0x0.
Or causes SEGFAULT

• Success : Faults value of the load to 0x0.

BHASIA @BlackHatEvents

End to End Attack

Load (adversarial) Trusted Applications through Faults

Redirect communication for other Trusted Applications

Decrypt (redirected) communication

BHASIA @BlackHatEvents

End to End Attack
Load (adversarial) Trusted Applications through Faults

BHASIA @BlackHatEvents

Combined Adversary = Power SCA + FI

Power side-channel to inform

fault injection in a non-invasive way

(no recompilation of OP-TEE necessary)

BHASIA @BlackHatEvents

Combined Adversary = Power SCA + FI

Power side-channel to inform

fault injection in a non-invasive way

(no recompilation of OP-TEE necessary) Actual Fault Injection on signature verification

BHASIA @BlackHatEvents

Combined Adversary = Power SCA + FI

56

FAULT INJECTION TARGET!

BHASIA @BlackHatEvents

Combined Adversary = Power SCA + FI

BHASIA @BlackHatEvents

Fallout: Register sweeping fault attack loads a self-signed, adversarial controlled Trusted

Application in the secure world of OP-TEE

BHASIA @BlackHatEvents

Fallout: Register sweeping fault attack loads a self-signed, adversarial controlled Trusted

Application in the secure world of OP-TEE

BHASIA @BlackHatEvents

End to End Attack
Redirect communication for other Trusted Applications

BHASIA @BlackHatEvents

Communication Redirection

Insecure World Secure World

Universally Unique

IDentifier (UUID)

comparison

Secure Trusted Application

execution

BHASIA @BlackHatEvents

Communication Redirection

Our Findings: GlobalPlatform API specification (upon which OP-TEE is constructed) offloads

the responsibility of choosing UUID to Original Equipment Manufacturer. It is the responsibility

of the OEM to ensure no two Trusted Applications (TA) share same UUID.

BHASIA @BlackHatEvents

Communication Redirection

Our Findings: GlobalPlatform API specification (upon which OP-TEE is constructed) offloads

the responsibility of choosing UUID to Original Equipment Manufacturer. It is the responsibility

of the OEM to ensure no two Trusted Applications (TA) share same UUID.

UUID confusion: Behaviour of the system when UUID are non-unique is undefined. Our

empirical conclusion is that, when UUIDs are shared, a non-persistent TA is preferred over

persistent TA.

BHASIA @BlackHatEvents

Communication Redirection

Insecure World Secure World
Universally Unique

IDentifier (UUID)

comparison

(with self-signed TA loaded

after register sweeping
attack)

Secure Trusted

Application execution

(persistent TA)

Self-signed Trusted Application execution

(non-persistent TA with UUID confusion)

BHASIA @BlackHatEvents

End to End Attack
Decrypt (redirected) communication

BHASIA @BlackHatEvents

Decrypt (redirected) communication

Third Party extension:

SeCReT

● Symmetric key management

● Blocks SIGTRAP

● Blocks unauthorized read to

sensitive data pages

BHASIA @BlackHatEvents

Decrypt (redirected) communication

Third Party extension:

SeCReT

● Symmetric key management

● Blocks SIGTRAP

● Blocks unauthorized read to

sensitive data pages

BHASIA @BlackHatEvents

Decrypt (redirected) communication

Third Party extension:

SeCReT

● Symmetric key management

● Blocks SIGTRAP

● Blocks unauthorized read to

sensitive data pages

● Does not block SIGSEGV. Leaks

key through coredumps

BHASIA @BlackHatEvents

Decrypt (redirected) communication

BHASIA @BlackHatEvents

End to End Attack
Bird's eye-view

BHASIA @BlackHatEvents

End to End Attack

BHASIA @BlackHatEvents

Impact

BHASIA @BlackHatEvents

Responsible Disclosure

● CVE 2022-47549

● Worked together with Linaro to deploy countermeasure in OP-TEE kernel

● Website: https://nimishmishra.wixsite.com/disarmament

https://nimishmishra.wixsite.com/disarmament

BHASIA @BlackHatEvents

Countermeasure

BHASIA @BlackHatEvents

Other Implications

● Re-enable Differential Fault Attack (DFA) on T-table implementation of AES (on

SoCs)

● Address Bus Faults to leak all shares of Masked PQC implementations (like

Kyber)

Observation: All shares encapsulated within a single memory structure

BHASIA @BlackHatEvents

Takeaways!

● System + Execution Environment, not just the System

● Register sweeping fault model on a (new) architectural aspect – System Bus

- Implications for other systems?

● Rethinking protocol specifications for embedded systems in light of SCA+FI adversaries

BHASIA @BlackHatEvents

Research @ Secured Embedded Architecture Laboratory, IIT Kgp

● Power/EM Side-channel evaluation of

FPGAs/micro-controllers/SoCs

● Fault Attacks, Fault Analysis, and design

of countermeasures

● Evaluation of Microarchitectural attack s

cenarios on workstations as well as

embedded systems

● Others directions…

(Some) Research Directions

#BHASIA @BlackHatEvents

Thank You!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

