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The Team

Offensive Security Research at Intel

• 50+ years of combined experience

• CPUs, Servers, Clients, Networking, 
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• Vulnerability root causing and categorization

• MITRE HW CWE SIG* members

Jeyavijayan (JV) Rajendran
Associate Professor
Texas A&M University, USA

Ahmad-Reza Sadeghi
Professor
TU Darmstadt, Germany

Security Research 

• 35+ years of combined experience

• Circuits, system security, network security, 

cryptography, microarchitecture, etc. 

• 44000+ citations!

*Special Interest Group (SIG)
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assign ADD_result = reg_A + reg_B;
assign SUB_result = reg_A – reg_B;
assign AND_result = reg_A & reg_B;
…
if (IR_opcode_field == 0)

case (IR_function_field)
6’b100000: ALU_result <= ADD_result;
6’b100010: ALU_result <= SUB_result;
6’b100100: ALU_result <= AND_result;

…

Microarchitecture Register Transfer Level (RTL)

Gate Level Transistor

https://www.youtube.com/watch?v=OVnVN0vSXn0
https://www.researchgate.net/figure/The-gate-level-netlist-of-post-synthesized-and-mapped-2-bit-multiplier-over-GF-2-2_fig1_313869759
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Bugs in hardware could be exploitable by software!

Challenge #1: Limited Awareness of HW Security Weaknesses

USENIX Security 2019
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Lots of tools for SW/FW security!

• Code scanners
• Protocol checkers
• Configuration checkers
• Decompilers & RE tools

Tools for Security – SW vs HW
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Tools for Security – SW vs HW

HW security tools (at RTL level) are limited

Challenge #2: Need for Security-Aware Design Automation Tools
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• SW bugs fixed with patches

• HW bugs are complicated to fix

- Time consuming

- Expensive

- Cause brand damage

Cost of Fixing Bugs
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Design 
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Fix bugs here!

Challenge #3: Need to Detect/Fix Bugs at RTL Design Phase
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Motivation for Hack@DAC

Awareness of 

Hardware 

Common 

Weaknesses

Security-

Aware Design 

Automation

“Shift-Left” to 

Detect & Fix 

Bugs in RTL

CONCEPTS

TOOLS

BEST PRACTICES

• Hackathons, trainings

• Open-source hardware as target?

• What about hardware CTF?

Hack@DAC



# BHASIA @BlackHatEvents

Overview

Introduction 

Value of Organizing HW CTFs

How Hack@DAC is Unique

Organizing Hack@DAC

Key Takeaways & Summary



# BHASIA @BlackHatEvents

• CTFs bring passionate people together!

• Team make up comprises varied skill set

- Design, Verification, Security expertise

- Cross pollination of ideas

• Fun way to learn and share

Community Building

Image: Design Automation Conference

https://www.dac.com/Conference/Education-Activities-Scholarships-58th-DAC
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• Continuous race between attackers and defenders

• Defenders need to up their game!

• Hardware CTFs foster greater awareness about

- Common hardware security weaknesses

- Constraints of chip design teams

Fostering Awareness for HW Security

Image source

https://www.pinterest.com/pin/498210777505111435/
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• A buggy SoC* framework for furthering innovation

- Realistic security features, threat model, and security objectives

- Vulnerabilities inspired by CVEs and real-world bugs

- Open source and commercial tool support

• Benchmark for developing and testing HW security tools

- Closest to commercial chip designs

• Participants gain hardware security assurance experience

- Develop hacker mindset

- Launchpad for researchers from adjacent areas (e.g., Firmware)

What’s in it for Academia & Industry?

*SoC = System on a chip
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• Data Confidentiality

- Protect secrets from unauthorized access

• Data Integrity

- Protect data modification by untrusted agents

• Availability

- Protect against permanent damage to system

• Security features examples

- Execution core & debug privilege checks

- Access control

- Memory encryption & integrity

- Secure data erase

- Power and thermal critical trip alerts

Access control

Memory 
Encryption

Data Erase

Core privilege 
checks 

Debug 
Authentication

JTAG

System on a Chip (SoC)

Volt, Freq, 
Temp limits 

Thermal 
Alert

FW Secure boot

FW Filter
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• Popular HW CTFs are “closed-box”

• Adopt a hacker-centric approach

• Involve physical interaction with target chip

- Probing input/output ports

- Desoldering and reverse engineering attacks

- Physical side channel attacks, etc. 

• No insights into the RTL code of the chip

• Very important research!

• Does not address “shift-left” challenge
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• Hack@DAC is “Open-box”

- Participants given a buggy SoC RTL

- Finer grained scope 

• Participants attempt to break security features

- RTL Simulation/ Emulation

- Formal Verification

- RTL Static Analysis

- Manual reviews

• Designer-centric approach

Closed-box vs Open-box CTFs
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Registration

Buggy design (RTL)

Open-source design
Security features
Threat model

Bug list

Updated spec

Tool support

1

2
3

4

5

6 Bug submission

Hack@DAC – The Process

Bug evaluation

7

Commercial tools 

on cloud

9

Winners announced

10

FPGA support for 

emulation

Scoreboard8

Judges

Cloud Team

Design TeamParticipants

11 Opportunities
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• Survey various open-source hardware designs and pick full SoC

• Priority given to designs with support for hardware simulation (open-source tool support), stability 

• Reduced Instruction Set Computing (RISCV) RISC-V architecture based SoCs 

• Pulpino -> Pulpissimo -> OpenPiton -> Open Titan

Selection of Target

AXI 4

UART SPI
Boot 

ROM

JTAG PLIC CLINTI$ D$

RISC-V Core

https://github.com/pulp-platform/pulpino
https://github.com/pulp-platform/pulpissimo
https://parallel.princeton.edu/openpiton/
https://opentitan.org/
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1 https://github.com/pulp-platform/ariane
2 https://content.riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf

Proxy Kernel

HMAC AES SHA Fuse

DMA

Password

- Enables virtual memory addresses and 
memory isolation
- FW running at machine mode performs 
self-test of crypto engines
- loads data from fuses into peripherals

- Counter-mode AES 

SHA-256

HMAC SHA-256

- Password-based protection
- Verification of HMAC of password

- Contains keys, passwords,   
and other sensitive config      

information 

Register locks

- Fabric access control

-ROM privilege switch 
from M to U

Adding Security Features to HW

https://github.com/pulp-platform/ariane
https://content.riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf
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Threat Modeling & Security Objectives

• Threat Model

• Security Objectives

- Unprivileged code in core should not be able to compromise privilege level

- Internal registers of crypto blocks should not be accessible from JTAG
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Proxy Kernel

HMAC AES SHA Fuse

DMA

Password

- Enables virtual memory addresses 
and memory isolation
- FW running at machine mode 
performs self-test of crypto engines
- loads data from fuses into 
peripherals

- Counter-mode AES 

SHA-256

HMAC 
SHA-256

- Password-based protection
- Verification of HMAC of 

password

- Contains keys, passwords,   
and other sensitive config      

information 

Register locks

- Fabric access 
control

-ROM privilege 
switch from M to U

Inserted Security Vulnerability 

Non-Inserted Security Vulnerability 

Inserting Vulnerabilities

Vulnerabilities inspired by:
• CVEs
• Security advisories
• Our experience
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• Website updated with Call for Participation

• Advertised on social media

Advertisement
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• Phase 1 is offline

• Participants have over 2 months to:

- Analyze entry points

- Identify assets based

- Develop security test cases 

- Develop custom tools to detect bugs

- Submit bugs for evaluation by judges

Competition: Phase 1
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Submission and Scoring 

Specific security feature that participants managed to bypass
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Submission and Scoring 

How was the vulnerability identified? 
- Simulation
- Formal Verification?
- Custom tool?
- Manual code review?
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Submission and Scoring 

What is the security impact of bypassing security feature?
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Submission and Scoring 

Mitigation suggestions
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Submission and Scoring 

CVSS scoring details to determine severity of issue
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Submission and Scoring 

Scoring based on:
• Validity of issue
• Novelty of methodology used
• Correctness of security impact, mitigation, CVSS
• Conference theme based bonus 

- New tool bonus at DAC
- Exploit bonus at USENIX Security

Special award for “cool” finds!

Manual vs Automated scoring

https://ctfd.io/


# BHASIA @BlackHatEvents

• Top 10 teams invited to participate in finals

• Phase 2 live at the conference

• Partnership with Synopsys 

- All necessary tools hosted on Synopsys cloud

- Buggy design ported to cloud

- Tool trainings provided to all finalists

• Travel grants to US-based finalists to attend in person

• 33 hours of competition

Competition: Phase 2 (Finals)
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Competition: Phase 2 (Finals)

Image: “Hacking SoC IP Under Pressure”, SemiEngineering 2018 source

https://semiengineering.com/hacking-soc-ip-under-pressure/
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Competition: Phase 2 (Finals)

Winners Honored Publications
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• Extended to USENIX Security (Hack@SEC) and CHES (Hack@CHES)

• 300+ teams participated from all over the world; 1000+ participants

- Strong participation from Asian teams!

• Industry participation too!

• Past winners now working in hardware security roles at top companies

So Far..
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Recap of 3 Top Challenges

Awareness of 

Hardware 

Common 

Weaknesses

Security-Aware 

Design 

Automation

“Shift-Left” to 

Detect & Fix 

Bugs in RTL
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MITRE Hardware CWE

https://cwe.mitre.org

Awareness of HW Weaknesses

• 75+/110 CWE entries contributed by Intel
• Hack@DAC vulnerability and mitigation 

examples now added to several CWE entries

https://cwe.mitre.org/
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• Framework can be used to build new tools/ flows/ methodologies to detect bugs

- Security Test Case Generation and Bug Patching using LLMs

o (Security) Assertions by Large Language Models (IEEE TIFS 2024)

o Examining Zero Shot Vulnerability Repair with Large Language Models (IEEE Security and Privacy 2023)

o Fixing Hardware Security Bugs with Large Language Models (arXiv)

- Formal Verification

o Sylvia: Countering the Path Explosion Problem in the Symbolic Execution of Hardware Designs (FMCAD 2023)

- Static Analysis

o Don’t CWEAT It: Toward CWE Analysis Techniques in Early Stages of Hardware Design (IEEE/ACM ICCAD 2022)

- Concolic Testing

o RTL-ConTest: Concolic Testing on RTL for Detecting Security Vulnerabilities (IEEE TCAD 2022)

- Hardware Information Flow Tracking

o Cell-IFT: Leveraging Cells for Scalable & Precise Dynamic Information Flow Tracking in RTL (USENIX Security 2022)

• All these work on RTL!

Security-Aware Tooling & Bug Detection 
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• Hack@DAC SoC framework

- Realistic threat model and security objectives

- Closest available to commercial chip designs

- Uncover new classes of security vulnerabilities 

• Get invaluable hardware security assurance skills!

- Mimic security teams at a chip design company

- Develop a hacker mindset

Key Takeaways for Academia

Hack@DAC 2018 finals

at San Francisco, CA

Image: “Hacking SoC IP Under Pressure”, SemiEngineering 2018 source

https://semiengineering.com/hacking-soc-ip-under-pressure/
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• Improve in-house security assurance best practices

• Exposure to new kinds of weaknesses

• Planning for survivability features

• Easier for functional verification teams to pick up security assurance

• New tools for identifying weakness classes

• Publish guides on detection of classes of hardware security weaknesses

• Add security capabilities to today’s functional tools

• Address gaps of today’s security verification tools to detect classes of vulnerabilities

Takeaways for Industry

https://cycuity.com/type/white_paper/radix-coverage-for-hardware-common-weakness-enumeration-cwe-guide/
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Media Coverage
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Website: https://hackthesilicon.com/

Email: hackatevent@gmail.com

Black Hat Sound Bytes

Register for Hack@DAC 2024• Increased HW Security Awareness

- MITRE HW CWE

- Corpus of weaknesses and code examples

• Open-sourced buggy SoC design

- Realistic security features

- CVE-inspired vulnerabilities

- Complexity matching commercial chips

• Innovations in HW security tooling

- Tools that detect and patch bugs at RTL

• Participants developed hacker mindset

https://hackthesilicon.com/
mailto:hackatevent@gmail.com
https://cwe.mitre.org/
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• Data Confidentiality

- Protect secrets from unauthorized access

• Data Integrity

- Protect data modification by untrusted agents

• Availability

- Protect against permanent damage to system

• Security features examples

- Execution core & debug privilege checks

- Access control

- Memory encryption & integrity

- Secure data erase

- Power and thermal critical trip alerts

Access control

Memory 
Encryption

Data Erase

Core privilege 
checks 

Debug 
Authentication

JTAG

System on a Chip (SoC)

Volt, Freq, 
Temp limits 

Thermal 
Alert

FW Secure boot

FW Filter
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