
#BHASIA @BlackHatEvents

The Hack@DAC* Story:
Learnings from Organizing the World’s Largest

Hardware Hacking Competition

Arun Kanuparthi

Intel Corporation, USA

Collaborators: Hareesh Khattri, Jason Fung (Intel Corporation, USA)

JV Rajendran (Texas A&M University, USA), Ahmad Reza Sadeghi (TU Darmstadt, Germany)

*Design Automation Conference (DAC)

BHASIA @BlackHatEvents

Arun Kanuparthi
Principal Engineer,
Offensive Security Researcher
Intel Corporation, USA

Hareesh Khattri
Principal Engineer,
Offensive Security Researcher
Intel Corporation, USA

Jason Fung
Sr. Director
Offensive Security Research
Intel Corporation, USA

The Team

Offensive Security Research at Intel

• 50+ years of combined experience

• CPUs, Servers, Clients, Networking,

Cellular, Storage, Security technologies, …

• 500+ vulnerabilities identified

• Vulnerability root causing and categorization

• MITRE HW CWE SIG* members

Jeyavijayan (JV) Rajendran
Associate Professor
Texas A&M University, USA

Ahmad-Reza Sadeghi
Professor
TU Darmstadt, Germany

Security Research

• 35+ years of combined experience

• Circuits, system security, network security,

cryptography, microarchitecture, etc.

• 44000+ citations!

*Special Interest Group (SIG)

BHASIA @BlackHatEvents

Full Team

Texas A&M University

• Rahul Kande

• Chen Chen

• Patrick Haney

• Garrett Persyn

• Bhagyaraja Adapa

• Venkatakrishnan

Sutharsan

TU Darmstadt

• Ghada Dessouky

• David Gens

• Pouya Mahmoody

• Mohammadreza Rostami

• Shaza Zeitouni

Synopsys

• Shylaja Sen

• Yann Antonioli

• Jagminder Chugh

• Meriav Nitzan

BHASIA @BlackHatEvents

Overview

Introduction

Value of Organizing HW CTFs

How Hack@DAC is Unique

Organizing Hack@DAC

Key Takeaways & Summary

BHASIA @BlackHatEvents

Overview

Introduction

Value of Organizing HW CTFs

How Hack@DAC is Unique

Organizing Hack@DAC

Key Takeaways & Summary

BHASIA @BlackHatEvents

Application

Algorithm

Programming

Language

Operating System

Firmware

Microarchitecture

Register Transfer

Level

Gate Level

Transistor
Image4 SourceImage3 Source

Microarchitecture

Register Transfer

Level (RTL)

Gate Level

So
ft

w
ar

e(
SW

)
H

ar
d

w
ar

e
(H

W
)

Computing Stack - Refresher

Hardware

https://www.youtube.com/watch?v=OVnVN0vSXn0
https://www.researchgate.net/figure/The-gate-level-netlist-of-post-synthesized-and-mapped-2-bit-multiplier-over-GF-2-2_fig1_313869759

BHASIA @BlackHatEvents

Application

Algorithm

Programming

Language

Operating System

Firmware

Microarchitecture

Register Transfer

Level

Gate Level

Transistor
Image4 SourceImage3 Source

Microarchitecture

Register Transfer

Level (RTL)

Gate Level

So
ft

w
ar

e
 (

SW
)

H
ar

d
w

ar
e

(H
W

)
Computing Stack - Refresher

assign ADD_result = reg_A + reg_B;
assign SUB_result = reg_A – reg_B;
assign AND_result = reg_A & reg_B;
…
if (IR_opcode_field == 0)

case (IR_function_field)
6’b100000: ALU_result <= ADD_result;
6’b100010: ALU_result <= SUB_result;
6’b100100: ALU_result <= AND_result;

…

Microarchitecture Register Transfer Level (RTL)

Gate Level Transistor

https://www.youtube.com/watch?v=OVnVN0vSXn0
https://www.researchgate.net/figure/The-gate-level-netlist-of-post-synthesized-and-mapped-2-bit-multiplier-over-GF-2-2_fig1_313869759

BHASIA @BlackHatEvents

Application

Algorithm

Programming

Language

Operating System

Firmware

Microarchitecture

Register Transfer

Level

Gate Level

Transistor

Microarchitecture

Register Transfer

Level (RTL)

Gate Level

So
ft

w
ar

e
H

ar
d

w
ar

e
Race to the Bottom of the Stack

Bugs in hardware could be exploitable by software!

Challenge #1: Limited Awareness of HW Security Weaknesses

USENIX Security 2019

BHASIA @BlackHatEvents

Lots of tools for SW/FW security!

• Code scanners
• Protocol checkers
• Configuration checkers
• Decompilers & RE tools

Tools for Security – SW vs HW

Application

Algorithm

Programming

Language

Operating System

Firmware

Microarchitecture

Register Transfer

Level

Gate Level

Transistor

Microarchitecture

Register Transfer

Level (RTL)

Gate Level

So
ft

w
ar

e
H

ar
d

w
ar

e

BHASIA @BlackHatEvents

Tools for Security – SW vs HW

HW security tools (at RTL level) are limited

Challenge #2: Need for Security-Aware Design Automation Tools

Application

Algorithm

Programming

Language

Operating System

Firmware

Microarchitecture

Register Transfer

Level

Gate Level

Transistor

Microarchitecture

Register Transfer

Level (RTL)

Gate Level

So
ft

w
ar

e
H

ar
d

w
ar

e

BHASIA @BlackHatEvents

• SW bugs fixed with patches

• HW bugs are complicated to fix

- Time consuming

- Expensive

- Cause brand damage

Cost of Fixing Bugs

X

10X

100X

1000X

RTL
Design

Physical
Design

Fab Customer

Fix bugs here!

Challenge #3: Need to Detect/Fix Bugs at RTL Design Phase

C
o

st
 t

o
 f

ix

“Shift Left”

Pre-Silicon Post-Silicon

BHASIA @BlackHatEvents

Motivation for Hack@DAC

Awareness of

Hardware

Common

Weaknesses

Security-

Aware Design

Automation

“Shift-Left” to

Detect & Fix

Bugs in RTL

CONCEPTS

TOOLS

BEST PRACTICES

• Hackathons, trainings

• Open-source hardware as target?

• What about hardware CTF?

Hack@DAC

BHASIA @BlackHatEvents

Overview

Introduction

Value of Organizing HW CTFs

How Hack@DAC is Unique

Organizing Hack@DAC

Key Takeaways & Summary

BHASIA @BlackHatEvents

• CTFs bring passionate people together!

• Team make up comprises varied skill set

- Design, Verification, Security expertise

- Cross pollination of ideas

• Fun way to learn and share

Community Building

Image: Design Automation Conference

https://www.dac.com/Conference/Education-Activities-Scholarships-58th-DAC

BHASIA @BlackHatEvents

• Continuous race between attackers and defenders

• Defenders need to up their game!

• Hardware CTFs foster greater awareness about

- Common hardware security weaknesses

- Constraints of chip design teams

Fostering Awareness for HW Security

Image source

https://www.pinterest.com/pin/498210777505111435/

BHASIA @BlackHatEvents

• A buggy SoC* framework for furthering innovation

- Realistic security features, threat model, and security objectives

- Vulnerabilities inspired by CVEs and real-world bugs

- Open source and commercial tool support

• Benchmark for developing and testing HW security tools

- Closest to commercial chip designs

• Participants gain hardware security assurance experience

- Develop hacker mindset

- Launchpad for researchers from adjacent areas (e.g., Firmware)

What’s in it for Academia & Industry?

*SoC = System on a chip

BHASIA @BlackHatEvents

• Data Confidentiality

- Protect secrets from unauthorized access

• Data Integrity

- Protect data modification by untrusted agents

• Availability

- Protect against permanent damage to system

• Security features examples

- Execution core & debug privilege checks

- Access control

- Memory encryption & integrity

- Secure data erase

- Power and thermal critical trip alerts

Access control

Memory
Encryption

Data Erase

Core privilege
checks

Debug
Authentication

JTAG

System on a Chip (SoC)

Volt, Freq,
Temp limits

Thermal
Alert

FW Secure boot

FW Filter

BHASIA @BlackHatEvents

Overview

Introduction

Value of Organizing HW CTFs

How Hack@DAC is Unique

Organizing Hack@DAC

Key Takeaways & Summary

BHASIA @BlackHatEvents

Application

Algorithm

Programming

Language

Operating System

Firmware

Microarchitecture

Register Transfer

Level

Gate Level

Transistor

Microarchitecture

Register Transfer

Level (RTL)

Gate Level

So
ft

w
ar

e
H

ar
d

w
ar

e
Popular HW CTFs

• Popular HW CTFs are “closed-box”

• Adopt a hacker-centric approach

• Involve physical interaction with target chip

- Probing input/output ports

- Desoldering and reverse engineering attacks

- Physical side channel attacks, etc.

• No insights into the RTL code of the chip

• Very important research!

• Does not address “shift-left” challenge

BHASIA @BlackHatEvents

• Hack@DAC is “Open-box”

- Participants given a buggy SoC RTL

- Finer grained scope

• Participants attempt to break security features

- RTL Simulation/ Emulation

- Formal Verification

- RTL Static Analysis

- Manual reviews

• Designer-centric approach

Closed-box vs Open-box CTFs

BHASIA @BlackHatEvents

Overview

Introduction

Value of Organizing HW CTFs

How Hack@DAC is Unique

Organizing Hack@DAC

Key Takeaways & Summary

BHASIA @BlackHatEvents

Registration

Buggy design (RTL)

Open-source design
Security features
Threat model

Bug list

Updated spec

Tool support

1

2
3

4

5

6 Bug submission

Hack@DAC – The Process

Bug evaluation

7

Commercial tools

on cloud

9

Winners announced

10

FPGA support for

emulation

Scoreboard8

Judges

Cloud Team

Design TeamParticipants

11 Opportunities

BHASIA @BlackHatEvents

• Survey various open-source hardware designs and pick full SoC

• Priority given to designs with support for hardware simulation (open-source tool support), stability

• Reduced Instruction Set Computing (RISCV) RISC-V architecture based SoCs

• Pulpino -> Pulpissimo -> OpenPiton -> Open Titan

Selection of Target

AXI 4

UART SPI
Boot

ROM

JTAG PLIC CLINTI$ D$

RISC-V Core

https://github.com/pulp-platform/pulpino
https://github.com/pulp-platform/pulpissimo
https://parallel.princeton.edu/openpiton/
https://opentitan.org/

BHASIA @BlackHatEvents

1 https://github.com/pulp-platform/ariane
2 https://content.riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf

Proxy Kernel

HMAC AES SHA Fuse

DMA

Password

- Enables virtual memory addresses and
memory isolation
- FW running at machine mode performs
self-test of crypto engines
- loads data from fuses into peripherals

- Counter-mode AES

SHA-256

HMAC SHA-256

- Password-based protection
- Verification of HMAC of password

- Contains keys, passwords,
and other sensitive config

information

Register locks

- Fabric access control

-ROM privilege switch
from M to U

Adding Security Features to HW

https://github.com/pulp-platform/ariane
https://content.riscv.org/wp-content/uploads/2017/05/riscv-privileged-v1.10.pdf

BHASIA @BlackHatEvents

Threat Modeling & Security Objectives

• Threat Model

• Security Objectives

- Unprivileged code in core should not be able to compromise privilege level

- Internal registers of crypto blocks should not be accessible from JTAG

BHASIA @BlackHatEvents

Proxy Kernel

HMAC AES SHA Fuse

DMA

Password

- Enables virtual memory addresses
and memory isolation
- FW running at machine mode
performs self-test of crypto engines
- loads data from fuses into
peripherals

- Counter-mode AES

SHA-256

HMAC
SHA-256

- Password-based protection
- Verification of HMAC of

password

- Contains keys, passwords,
and other sensitive config

information

Register locks

- Fabric access
control

-ROM privilege
switch from M to U

Inserted Security Vulnerability

Non-Inserted Security Vulnerability

Inserting Vulnerabilities

Vulnerabilities inspired by:
• CVEs
• Security advisories
• Our experience

BHASIA @BlackHatEvents

• Website updated with Call for Participation

• Advertised on social media

Advertisement

BHASIA @BlackHatEvents

• Phase 1 is offline

• Participants have over 2 months to:

- Analyze entry points

- Identify assets based

- Develop security test cases

- Develop custom tools to detect bugs

- Submit bugs for evaluation by judges

Competition: Phase 1

BHASIA @BlackHatEvents

Submission and Scoring

Specific security feature that participants managed to bypass

BHASIA @BlackHatEvents

Submission and Scoring

How was the vulnerability identified?
- Simulation
- Formal Verification?
- Custom tool?
- Manual code review?

BHASIA @BlackHatEvents

Submission and Scoring

What is the security impact of bypassing security feature?

BHASIA @BlackHatEvents

Submission and Scoring

Mitigation suggestions

BHASIA @BlackHatEvents

Submission and Scoring

CVSS scoring details to determine severity of issue

BHASIA @BlackHatEvents

Submission and Scoring

Scoring based on:
• Validity of issue
• Novelty of methodology used
• Correctness of security impact, mitigation, CVSS
• Conference theme based bonus

- New tool bonus at DAC
- Exploit bonus at USENIX Security

Special award for “cool” finds!

Manual vs Automated scoring

https://ctfd.io/

BHASIA @BlackHatEvents

• Top 10 teams invited to participate in finals

• Phase 2 live at the conference

• Partnership with Synopsys

- All necessary tools hosted on Synopsys cloud

- Buggy design ported to cloud

- Tool trainings provided to all finalists

• Travel grants to US-based finalists to attend in person

• 33 hours of competition

Competition: Phase 2 (Finals)

BHASIA @BlackHatEvents

Competition: Phase 2 (Finals)

Image: “Hacking SoC IP Under Pressure”, SemiEngineering 2018 source

https://semiengineering.com/hacking-soc-ip-under-pressure/

BHASIA @BlackHatEvents

Competition: Phase 2 (Finals)

Winners Honored Publications

BHASIA @BlackHatEvents

• Extended to USENIX Security (Hack@SEC) and CHES (Hack@CHES)

• 300+ teams participated from all over the world; 1000+ participants

- Strong participation from Asian teams!

• Industry participation too!

• Past winners now working in hardware security roles at top companies

So Far..

BHASIA @BlackHatEvents

Overview

Introduction

Value of Organizing HW CTFs

How Hack@DAC is Unique

Organizing Hack@DAC

Key Takeaways & Summary

BHASIA @BlackHatEvents

Recap of 3 Top Challenges

Awareness of

Hardware

Common

Weaknesses

Security-Aware

Design

Automation

“Shift-Left” to

Detect & Fix

Bugs in RTL

BHASIA @BlackHatEvents

MITRE Hardware CWE

https://cwe.mitre.org

Awareness of HW Weaknesses

• 75+/110 CWE entries contributed by Intel
• Hack@DAC vulnerability and mitigation

examples now added to several CWE entries

https://cwe.mitre.org/

BHASIA @BlackHatEvents

• Framework can be used to build new tools/ flows/ methodologies to detect bugs

- Security Test Case Generation and Bug Patching using LLMs

o (Security) Assertions by Large Language Models (IEEE TIFS 2024)

o Examining Zero Shot Vulnerability Repair with Large Language Models (IEEE Security and Privacy 2023)

o Fixing Hardware Security Bugs with Large Language Models (arXiv)

- Formal Verification

o Sylvia: Countering the Path Explosion Problem in the Symbolic Execution of Hardware Designs (FMCAD 2023)

- Static Analysis

o Don’t CWEAT It: Toward CWE Analysis Techniques in Early Stages of Hardware Design (IEEE/ACM ICCAD 2022)

- Concolic Testing

o RTL-ConTest: Concolic Testing on RTL for Detecting Security Vulnerabilities (IEEE TCAD 2022)

- Hardware Information Flow Tracking

o Cell-IFT: Leveraging Cells for Scalable & Precise Dynamic Information Flow Tracking in RTL (USENIX Security 2022)

• All these work on RTL!

Security-Aware Tooling & Bug Detection

BHASIA @BlackHatEvents

• Hack@DAC SoC framework

- Realistic threat model and security objectives

- Closest available to commercial chip designs

- Uncover new classes of security vulnerabilities

• Get invaluable hardware security assurance skills!

- Mimic security teams at a chip design company

- Develop a hacker mindset

Key Takeaways for Academia

Hack@DAC 2018 finals

at San Francisco, CA

Image: “Hacking SoC IP Under Pressure”, SemiEngineering 2018 source

https://semiengineering.com/hacking-soc-ip-under-pressure/

BHASIA @BlackHatEvents

• Improve in-house security assurance best practices

• Exposure to new kinds of weaknesses

• Planning for survivability features

• Easier for functional verification teams to pick up security assurance

• New tools for identifying weakness classes

• Publish guides on detection of classes of hardware security weaknesses

• Add security capabilities to today’s functional tools

• Address gaps of today’s security verification tools to detect classes of vulnerabilities

Takeaways for Industry

https://cycuity.com/type/white_paper/radix-coverage-for-hardware-common-weakness-enumeration-cwe-guide/

BHASIA @BlackHatEvents

Media Coverage

BHASIA @BlackHatEvents

Website: https://hackthesilicon.com/

Email: hackatevent@gmail.com

Black Hat Sound Bytes

Register for Hack@DAC 2024• Increased HW Security Awareness

- MITRE HW CWE

- Corpus of weaknesses and code examples

• Open-sourced buggy SoC design

- Realistic security features

- CVE-inspired vulnerabilities

- Complexity matching commercial chips

• Innovations in HW security tooling

- Tools that detect and patch bugs at RTL

• Participants developed hacker mindset

https://hackthesilicon.com/
mailto:hackatevent@gmail.com
https://cwe.mitre.org/

BHASIA @BlackHatEvents

• Data Confidentiality

- Protect secrets from unauthorized access

• Data Integrity

- Protect data modification by untrusted agents

• Availability

- Protect against permanent damage to system

• Security features examples

- Execution core & debug privilege checks

- Access control

- Memory encryption & integrity

- Secure data erase

- Power and thermal critical trip alerts

Access control

Memory
Encryption

Data Erase

Core privilege
checks

Debug
Authentication

JTAG

System on a Chip (SoC)

Volt, Freq,
Temp limits

Thermal
Alert

FW Secure boot

FW Filter

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

