
#BHASIA @BlackHatEvents

Game of Cross Cache:
Let's win it in a more effective way!

Le Wu From Baidu Security

BHASIA @BlackHatEvents

About me

• Le Wu, @NVamous on Twitter

• Focus on Android/Linux vulnerability

• Dirty Pagetable —— A novel technique to rule the Linux Kernel [1]

• Blackhat USA, Europe, Asia

[1]:https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html

https://twitter.com/NVamous
https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html

BHASIA @BlackHatEvents

Agenda

• Introduction to Cross-cache attack

• Challenges in Cross-cache attack

• Advancing Towards a More Effective Cross-cache Attack

• Exploit File UAF with Dirty Pagetable

• Summary

Introduction to Cross-cache attack

A Simplified Cross-cache Attack For UAF

UAF

(Object A or object B could be pages or other kinds of memory regions)

Trigger UAF to release
the victim object A;

Reclaim the victim slab of victim object A to Page
allocator;

kmem_cache B reuse the pages of victim slab, and
object A is reallocated as object B;

Make use of corrupted object B to get ROOT;

corrupt the object BOperations to victim object A;

Cross-cache attack is getting popular:

• Original vulnerable object is not exploitable, especially the one allocated from a dedicated kmem_cache

• Transform the unknown vulnerability to well-known one to simplify the exploitation

• Build data-only exploitation techniques to defeat growing mitigations like KASLR, PAN, CFI...

Method Cross-cache From Cross-cache To

ret2dir * direct mapping

ret2page * kernel allocated page

Drity Cred * struct cred

Dirty Pagetable * user page table

...

Introduction to Cross-cache attack

Well, it's known as an unstable technique...

Introduction to Cross-cache attack

Can we make it less
unstable, or in other

words, more efficient?

Common workflow of Cross-cache attack

Step0. Common knowledge for SLUB allocator

objs_per_slab: number of objects in a single slab
order: order of pages in a single slab

Common workflow of Cross-cache attack

Step 0. Common knowledge for SLUB allocator

The deterministic method for putting slab into the percpu partial list:

Common workflow of Cross-cache attack

Step0. Common knowledge for SLUB allocator

• Create a full slab

Common workflow of Cross-cache attack

Step0. Common knowledge for SLUB allocator

The deterministic method for putting slab into the percpu partial list:

• Pin on cpu#0 and release an object from the full slab

Flushing for the percpu partial list:

cpu_partial: the maximum number of slabs can be put in the percpu partial list

Common workflow of Cross-cache attack

Step0. Common knowledge for SLUB allocator

Common workflow of Cross-cache attack

Step0. Common knowledge for SLUB allocator

Flushing for the percpu partial list:

• Slabs containing some in-use objects are placed
on SLUB's per-NUMA-node partial list

• Slabs that are completely empty are freed back
to the page allocator

Step1. Pin our task to a single CPU, for example, cpu#0

[2]:https://googleprojectzero.blogspot.com/2021/10/how-simple-linux-kernel-memory.html

Step2. Defragmentation: to drain partially-free slabs of all their free objects

Step3. Allocate around objs_per_slab * (1+cpu_partial) objects

Common workflow of Cross-cache attack [2]

https://googleprojectzero.blogspot.com/2021/10/how-simple-linux-kernel-memory.html

Step4. Allocate objs_per_slab-1 objects as pre-alloc objects

Step5. Allocate the victim object

Step6. Trigger the vulnerability(UAF) to release the victim object

Common workflow of Cross-cache attack

Step7. Allocate objs_per_slab+1 objects as post-alloc objects

Common workflow of Cross-cache attack

Step8. Release all the pre-alloc and post-alloc objects

Common workflow of Cross-cache attack

Step9. Free one object per slab from the allocations in Step3

After releasing "cpu_partial – 1" objects:

Common workflow of Cross-cache attack

After releasing one more object, the flushing for cpu partial list gets triggered:

Common workflow of Cross-cache attack

Step9. Free one object per slab from the allocations from Step3

Step10. Heap spray with object B to occupy the victim slab, victim object A gets reallocated as object B

Step11. Construct primitives for privilege escalation

Common workflow of Cross-cache attack

BHASIA @BlackHatEvents

Challenge 1

Challenge 2

• Challenge 1: How to discard the victim slab under a constrained allocation primitive
• Challenge 2: How to make high-order slab reuse the low-order slab deterministically

Challenges in Cross-cache attack

Challenges in Cross-cache attack
Challenge 1: How to discard the victim slab under a constrained allocation primitive

Step 3. Allocate around objs_per_slab * (1+cpu_partial) objects

This step requires us:
• Allocate a large number of objects
• Keep this large number of objects unreleased for a while

• Allocate a large number of objects

• Keep the large number of objects unreleased for a while

❑ Dedicated kmem-cache is becoming a mitigation for cross-cache attack. We can hardly find suitable
allocation primitives. The known mitigations like: CONFIG_RANDOM_KMALLOC_CACHES, AUTOSLAB

❑ Limited system resources

❑ Constraints of kernel components

❑ Temporary kernel object: gets allocated and then released.

Challenges in Cross-cache attack

Challenge 2: How to make high-order slab reuse the low-order slab deterministically
⚫ order-N pages --> order-M pages, N > M

Can be done by allocating tons of object B, order-N pages will definitely be reused as order-M pages.
This may require:
• too many object B, this can be really hard under a limited system resources

Challenges in Cross-cache attack

Allocating tons of object B won't help. We need to let order-N pages get compacted into order-M pages, so object B
can reuse these order-N pages.
So how? ---- Shaping the heap!

Challenges in Cross-cache attack

⚫ order-N pages --> order-M pages, N < M

Challenge 2: How to make high-order slab reuse the low-order slab deterministically

BHASIA @BlackHatEvents

Advancing Towards a More Effective Cross-Cache Attack

Advancing Towards a More Effective Cross-Cache Attack
CVE-2023-21400

A NPU issue affected qualcomm 4.14 kernel, can be accessed from unstrusted app, found by Ye Zhang

wait_for_completion_timeout(&unload_cmd1->cmd_done,NW_CMD_TIMEOUT);
mutex_lock(&host_ctx->lock);
npu_dequeue_network_cmd(network, unload_cmd1);
npu_free_network_cmd(host_ctx, unload_cmd1);
free_network(host_ctx, client, network->id);
mutex_unlock(&host_ctx->lock);

mutex_lock(&host_ctx->lock);
network = get_network_by_hdl(host_ctx, …,unload->network_hdl);
unload_cmd1 = npu_alloc_network_cmd(host_ctx, 0);
npu_queue_network_cmd(network, unload_cmd1);
mutex_unlock(&host_ctx->lock);

Task A(On cpu1)

mutex_lock(&host_ctx->lock);
network = get_network_by_hdl(host_ctx, …,unload->network_hdl);
unload_cmd2 = npu_alloc_network_cmd(host_ctx, 0);
npu_queue_network_cmd(network, unload_cmd2);
mutex_unlock(&host_ctx->lock);
wait_for_completion_timeout(&unload_cmd2->cmd_done,NW_CMD_TIMEOUT);
mutex_lock(&host_ctx->lock);
npu_dequeue_network_cmd(network, unload_cmd2);
npu_free_network_cmd(host_ctx, unload_cmd2);
free_network(host_ctx, client, network->id);
mutex_unlock(&host_ctx->lock);

Task B(On cpu2)

unload_cmd1 gets released here!

UAF or Double free happens!

20s

[3]:https://i.blackhat.com/EU-23/Presentations/EU-23-Zhang-Attacking-NPUs-of-Multiple-Platforms.pdf

Advancing Towards a More Effective Cross-Cache Attack
CVE-2023-21400)[3]

wait_for_completion_timeout(&unload_cmd1->cmd_done,NW_CMD_TIMEOUT);
mutex_lock(&host_ctx->lock);
npu_dequeue_network_cmd(network, unload_cmd1);
npu_free_network_cmd(host_ctx, unload_cmd1);
free_network(host_ctx, client, network->id);
mutex_unlock(&host_ctx->lock);

With the bug, we can:

static void npu_dequeue_network_cmd(struct npu_network *network,
 struct npu_network_cmd *cmd)
{
 list_del(&cmd->list);
}

static void npu_free_network_cmd(struct npu_host_ctx *ctx,
 struct npu_network_cmd *cmd)
{
 if (cmd->stats_buf)
 kmem_cache_free(ctx->stats_buf_cache, cmd->stats_buf);

kmem_cache_free(ctx->network_cmd_cache, cmd);
}

list_del() primitive

Double free primitive

Arbitrary kmem_cache_free() primitive

https://i.blackhat.com/EU-23/Presentations/EU-23-Zhang-Attacking-NPUs-of-Multiple-Platforms.pdf

Victim object:

struct npu_network_cmd {
 struct list_head list;
 ...
 struct completion cmd_done;
 /* stats buf info */
 uint32_t stats_buf_size;
 void __user *stats_buf_u;
 void *stats_buf;
 int ret_status;

};

Allocated from a dedicated kmem_cache "IPA_TX_PKT_WRAPPER"

Advancing Towards a More Effective Cross-Cache Attack

CVE-2023-21400

Allocated from a dedicated kmem_cache "IPA_TX_PKT_WRAPPER"

Advancing Towards a More Effective Cross-Cache Attack
CVE-2023-21400

Clean and inactive
kmem_cache

Advancing Towards a More Effective Cross-Cache Attack

Allocated from a dedicated kmem_cache "IPA_TX_PKT_WRAPPER"

CVE-2023-21400

Exploitation plan:

Victim
npu_network_cmd

object
Victim file array

A file UAF Get ROOT!

Data-only exploitation, woohoo!

Advancing Towards a More Effective Cross-Cache Attack

But the cross cache is known for the unstable...

Trigger the issue Cross-cache attack

Dirty Pagetable
Make use of arbitrary

kfree() primitive

CVE-2023-21400

Step1. Trigger the issue

Step2. Cross-cache attack: cross from kmem_cache "IPA_TX_PKT_WRAPPER" to file_array(kmalloc-8k)

kmem_cache "IPA_TX_PKT_WRAPPER": order-0 slab

file_array: allocated from kmem_cache "kmalloc-2k" ~ "kmalloc-8k" , all are order-3 slab

static struct fdtable * alloc_fdtable(unsigned int nr)
{

 struct fdtable *fdt;
 void *data;

...
 nr /= (1024 / sizeof(struct file *));
 nr = roundup_pow_of_two(nr + 1);
 nr *= (1024 / sizeof(struct file *));
 ...
 data = kvmalloc_array(nr, sizeof(struct file *),

GFP_KERNEL_ACCOUNT);
 ...
 fdt->fd = data;
...
 return fdt;

...
}

We choose kmalloc-8k to allocate file
array from.

Advancing Towards a More Effective Cross-Cache Attack

• Challenge 1: How to discard the victim order-0 slab under a constrained allocation primitive

• Challenge 2: How to make order-3 slab reuse the order-0 slab deterministically

Challenge 1

Challenge 2

Advancing Towards a More Effective Cross-Cache Attack

Step2. Cross-cache attack: cross from kmem_cache "IPA_TX_PKT_WRAPPER" to file_array(kmalloc-8k)

Challenge 1: How to discard the victim order-0 slab under a constrained allocation primitive

We can't Allocate a large number of npu_network_cmd objects and keep this large number of objects
unreleased for a while.

❑ npu_network_cmd object is a temporary likely kernel object: gets allocated and then released

o MSM_NPU_LOAD_NETWORK_V2
o MSM_NPU_UNLOAD_NETWORK
o MSM_NPU_EXEC_NETWORK_V2 (use this later)

struct npu_network_cmd *cmd = NULL;
mutex_lock(&host_ctx->lock);
cmd = kmem_cache_zalloc(ctx->network_cmd_cache, GFP_KERNEL);
mutex_unlock(&host_ctx->lock);

wait_for_npu_firmware();

mutex_lock(&host_ctx->lock);
kmem_cache_free(ctx->network_cmd_cache, cmd);
mutex_unlock(&host_ctx->lock);

Advancing Towards a More Effective Cross-Cache Attack

A really constrained allocation primitive:

Well, we found another kernel object sharing the same kmem_cache IPA_TX_PKT_WRAPPER because of SLAB Merging:

struct msm_cvp_frame {
 struct list_head list;
 struct msm_cvp_list bufs;
 u64 ktid;

};

From msm_cvp driver:

System privilege required to access the driver 

So we can't even discard the victim order-0 slab with the old method

Advancing Towards a More Effective Cross-Cache Attack

Challenge 1: How to discard the victim order-0 slab under a constrained allocation primitive

Solving Challenge1: Discard the empty slab in a Race way

The slab move primitive: move the cpu slab from one cpu to another cpu’s percpu partial list

Advancing Towards a More Effective Cross-Cache Attack

Step1. Pin the task on cpu#1

Step2. Make cpu slab of cpu#1 full by
allocating OBJS_PER_SLAB objects

Advancing Towards a More Effective Cross-Cache Attack

The slab move primitive: move the cpu slab from one cpu to another cpu’s percpu partial list

Example:move cpu slab of cpu#1 into the percpu parital list of cpu#0

Solving Challenge1: Discard the empty slab in a Race way

Step1. Pin the task on cpu#1

Step2. Let cpu slab of cpu#1 become full by
allocating OBJS_PER_SLAB objects

Step3. Pin the task on cpu#0

Step4. Release all the objects allocated in step2. The “slab
move” happens（The move would happen when the first
object of the full slab get released）

With the help of slab move primitive, we can put one more slab into the cpu partial list of target cpu by
allocating OBJS_PER_SLAB objects at most!

Advancing Towards a More Effective Cross-Cache Attack

The slab move primitive: move the cpu slab from one cpu to another cpu’s percpu partial list

Example:move cpu slab of cpu#1 into the percpu parital list of cpu#0

Solving Challenge1: Discard the empty slab in a Race way

Repeat the slab move primitive

Advancing Towards a More Effective Cross-Cache Attack

we can put controllable number
of slabs into the percpu partial list
of target cpu

Solving Challenge1: Discard the empty slab in a Race way

By this new way of putting slabs into the percpu partial list, we can remove the Step3 in common
workflow of cross-cache attack, and replace the step9 with "repeating slab move primitive"

Advancing Towards a More Effective Cross-Cache Attack

Step 3. Allocate around objs_per_slab * (1+cpu_partial) objects

Solving Challenge1: Discard the empty slab in a Race way

Repeating slab move pritimive helps us accomplish discarding of victim slab under a very constrained allocation of
objects:

Ideally, we can finish the attack with only OBJS_PER_SLAB objects!

However, it's still not good enough for the issue:

 We only have the ability to allocate one npu_network_cmd object and hold it for a very short time

Advancing Towards a More Effective Cross-Cache Attack

Solving Challenge1: Discard the empty slab in a Race way

Race style slab move primitive:

Task 1

struct npu_network_cmd *cmd;
mutex_lock(&host_ctx->lock);
cmd = kmem_cache_zalloc(...);
mutex_unlock(&host_ctx->lock);

mutex_lock(&host_ctx->lock);
kmem_cache_free(..., cmd);
mutex_unlock(&host_ctx->lock);

Pinned on cpu#1

Task N

struct npu_network_cmd *cmd;
mutex_lock(&host_ctx->lock);
cmd = kmem_cache_zalloc(...);
mutex_unlock(&host_ctx->lock);

mutex_lock(&host_ctx->lock);
kmem_cache_free(..., cmd);
mutex_unlock(&host_ctx->lock);

Pinned on cpu#1...
(N > OBJS_PER_SLAB)

Advancing Towards a More Effective Cross-Cache Attack

Solving Challenge1: Discard the empty slab in a Race way

Pinned on cpu#1

struct npu_network_cmd *cmd;

mutex_lock(&host_ctx->lock);

cmd = kmem_cache_zalloc(...);

mutex_unlock(&host_ctx->lock);

...

Pinned on cpu#1
mutex_lock(&host_ctx->lock);
kmem_cache_free(..., cmd);
mutex_unlock(&host_ctx->lock);

...

OBJS_PER_SLAB tasks can race like this:

OBJS_PER_SLAB
allocations

Pinned on cpu#1

struct npu_network_cmd *cmd;

mutex_lock(&host_ctx->lock);

cmd = kmem_cache_zalloc(...);

mutex_unlock(&host_ctx->lock);

Pinned on cpu#1

struct npu_network_cmd *cmd;

mutex_lock(&host_ctx->lock);

cmd = kmem_cache_zalloc(...);

mutex_unlock(&host_ctx->lock);

Pinned on cpu#1
mutex_lock(&host_ctx->lock);
kmem_cache_free(..., cmd);
mutex_unlock(&host_ctx->lock);

Pinned on cpu#1
mutex_lock(&host_ctx->lock);
kmem_cache_free(..., cmd);
mutex_unlock(&host_ctx->lock);

Advancing Towards a More Effective Cross-Cache Attack

Race style slab move primitive:

Task 1

struct npu_network_cmd *cmd;
mutex_lock(&host_ctx->lock);
cmd = kmem_cache_zalloc(...);
mutex_unlock(&host_ctx->lock);

mutex_lock(&host_ctx->lock);
kmem_cache_free(..., cmd);
mutex_unlock(&host_ctx->lock);

Pinned on cpu#1

Task N

struct npu_network_cmd *cmd;
mutex_lock(&host_ctx->lock);
cmd = kmem_cache_zalloc(...);
mutex_unlock(&host_ctx->lock);

mutex_lock(&host_ctx->lock);
kmem_cache_free(..., cmd);
mutex_unlock(&host_ctx->lock);

Pinned on cpu#1...
(N > OBJS_PER_SLAB)

Solving Challenge1: Discard the empty slab in a Race way

OBJS_PER_SLAB
allocations lead to A full
slab created on cpu#1

Pinned on cpu#1

struct npu_network_cmd *cmd;

mutex_lock(&host_ctx->lock);

cmd = kmem_cache_zalloc(...);

mutex_unlock(&host_ctx->lock);

...

Pinned on cpu#1
mutex_lock(&host_ctx->lock);
kmem_cache_free(..., cmd);
mutex_unlock(&host_ctx->lock);

...

Pinned on cpu#1

struct npu_network_cmd *cmd;

mutex_lock(&host_ctx->lock);

cmd = kmem_cache_zalloc(...);

mutex_unlock(&host_ctx->lock);

Pinned on cpu#1

struct npu_network_cmd *cmd;

mutex_lock(&host_ctx->lock);

cmd = kmem_cache_zalloc(...);

mutex_unlock(&host_ctx->lock);

Pinned on cpu#1
mutex_lock(&host_ctx->lock);
kmem_cache_free(..., cmd);
mutex_unlock(&host_ctx->lock);

Pinned on cpu#0
mutex_lock(&host_ctx->lock);
kmem_cache_free(..., cmd);
mutex_unlock(&host_ctx->lock);

The full slab gets moved
from cpu#1 to the percpu

partial list of cpu#0

Switch any task to cpu#0

Advancing Towards a More Effective Cross-Cache Attack

Race style slab move primitive:

Solving Challenge1: Discard the empty slab in a Race way

Task for Switching cpu

For (i = 0; i < SWITCH_CPU_NUM; i++) {

pin Task i to cpu#0 ;

}

(SWITCH_CPU_NUM < OBJS_PER_SLAB)

Model for race style slab move primitive:

(Usually race condition blocks us from exploitation, but this time it helps us)

Advancing Towards a More Effective Cross-Cache Attack

Task 1

struct npu_network_cmd *cmd;
mutex_lock(&host_ctx->lock);
cmd = kmem_cache_zalloc(...);
mutex_unlock(&host_ctx->lock);

mutex_lock(&host_ctx->lock);
kmem_cache_free(..., cmd);
mutex_unlock(&host_ctx->lock);

Pinned on cpu#1

Task N

Pinned on cpu#1...
(N > OBJS_PER_SLAB)

Pinned on cpu#2

Solving Challenge1: Discard the empty slab in a Race way

Pin task to cpu#1

struct npu_network_cmd *cmd;
mutex_lock(&host_ctx->lock);
cmd = kmem_cache_zalloc(...);
mutex_unlock(&host_ctx->lock);

mutex_lock(&host_ctx->lock);
kmem_cache_free(..., cmd);
mutex_unlock(&host_ctx->lock);

Pin task to cpu#1

By adjusting:
• The number of race tasks
• SWITCH_CPU_NUM
• Race time
• Maybe some time window expanding technique ?

Move a relatively stable
number of slabs into the percpu parital list of

cpu#0

Will there be some side effects for the original percpu slabs of cpu#0 ?

Not really. In the worst case, we might allocate SWITCH_CPU_NUM objects on cpu#0, which won't create a full
slab on cpu#0, so:
• If any of these objects gets released on cpu#0, no slab move would happen because we are the same cpu
• If any of these objects gets released on cpu#1, no slab move would happen because the slab is not full

Race style slab move primitive

Advancing Towards a More Effective Cross-Cache Attack

With the race style slab move primitive, we can easily all add enough slabs into the percpu partial list, and
then succeed in reclaiming the empty slab with a really constrained allocation.

Solving Challenge1: Discard the empty slab in a Race way

The new optimized workflow of cross-cache attack for the issue
Step1. Defragmentation with race style slab move primitive, a new slab will be created:

Advancing Towards a More Effective Cross-Cache Attack

Step2. Allocate the victim object

Step3. Trigger the vulnerability(UAF) to release the victim object

Advancing Towards a More Effective Cross-Cache Attack

The new optimized workflow of cross-cache attack for the issue

Step4. Move the victim slab to the percpu partial list of cpu#1. Don't trigger the flushing of percpu partial list

Advancing Towards a More Effective Cross-Cache Attack

The new optimized workflow of cross-cache attack for the issue

Step 6: Heap spray with file array to occupy the victim slab

Step 5: move the victim slab from the percpu partial list of cpu#1 to cpu#0. Trigger flushing of percpu partial list of cpu#0

Advancing Towards a More Effective Cross-Cache Attack

The new optimized workflow of cross-cache attack for the issue

• Challenge 1: How to discard the victim order-0 slab under a constrained allocation primitive

• Challenge 2: How to make order-3 slab reuse the order-0 slab deterministically

SOLVED!

Advancing Towards a More Effective Cross-Cache Attack

Step2. Cross-cache attack: cross from kmem_cache "IPA_TX_PKT_WRAPPER" to file_array(kmalloc-8k)

Challenge 1

Challenge 2

Advancing Towards a More Effective Cross-Cache Attack

Challenge 1

Challenge 2

Challenge 2: How to make order-3 slab reuse the order-0 slab deterministically

Pre-knowledge for page allocator (based on kernel 4.14)

A simplified view of page allocator for Android devices:(single pgdata & single zone)

Kernel space
alloc_pages()

User space
mmap()

Advancing Towards a More Effective Cross-Cache Attack

Exported by procfs

/proc/pagetypeinfo (unreadable by untrusted app)

Advancing Towards a More Effective Cross-Cache Attack

Pre-knowledge for page allocator (based on kernel 4.14)

/proc/zoneinfo (unreadable by untrusted app)

High watermark
for zone

Current number of order-0 pages

Maxium number of order-0 pages

Specific number of order-0 pages
for pcplist shrink or bulk

Advancing Towards a More Effective Cross-Cache Attack

Exported by procfs

Pre-knowledge for page allocator (based on kernel 4.14)

• Order-0 allocation and releasing will use pcplist first, stack-liked way
• Flushing for the pcplist: flush from tail

Charactoristic of pcplist

Advancing Towards a More Effective Cross-Cache Attack

Pre-knowledge for page allocator (based on kernel 4.14)

Deterministic page merging:

static inline void __free_one_page(struct page *page,
 unsigned long pfn,
 struct zone *zone, unsigned int order,
 int migratetype)

continue_merging:
 while (order < max_order - 1) {

 ...
 buddy_pfn = __find_buddy_pfn(pfn, order);
 buddy = page + (buddy_pfn - pfn);

 if (!pfn_valid_within(buddy_pfn))
 goto done_merging;

 if (!page_is_buddy(page, buddy, order))
 goto done_merging;

 /*
 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 * merge with it and move up one order.
 */
 if (page_is_guard(buddy)) {

 clear_page_guard(zone, buddy, order, migratetype);
 } else {

 list_del(&buddy->lru);
 zone->free_area[order].nr_free--;
 rmv_page_order(buddy);

 }
 combined_pfn = buddy_pfn & pfn;
 page = page + (combined_pfn - pfn);
 pfn = combined_pfn;
 order++;

 }

Page allocator tends to merge low-order pages to
high-order pages when low-order pages gets
reclaimed into free_area.

Advancing Towards a More Effective Cross-Cache Attack

…

Pre-knowledge for page allocator (based on kernel 4.14)

Solving Challenge2: Deterministic heap shaping

Step1: Pin task on cpu#0

Step2: Allocate a specific number of order-0 pages, the specific number is: maxium number of order-0 pages could
be in pcplist. Releasing these pages will definitely trigger the flushing or pcplist later.

Requirements for page allocation:
• Able to allocate a large number of order-0 pages
• Allocated from UNMOVALE free_area

Requirements for page releasing:
• Synchronized releasing(No cpu switching)

Choosing the proper kernel component:

➢ ION
➢ Pipe
➢ Socket
➢ GPUs(kgsl)
...

➢ ION: releasing pages asynchronously

➢ Pipe
➢ Socket
➢ GPUs(kgsl):releasing pages asynchronously
...

Advancing Towards a More Effective Cross-Cache Attack

Step3: allocate a few hundreds of physically continuous order-0 pages from UNMOVALE free_area

... ...

Memory area

In-use order-0 page

free order-0 page

pfn pfn+8 pfn+16 pfn+24

Advancing Towards a More Effective Cross-Cache Attack

Solving Challenge2: Deterministic heap shaping

Step3: allocate a few hundreds of physically continuous order-0 pages from UNMOVALE free_area

... ...

Requirements for page allocation:
• Able to allocate a large number of order-0 pages
• Allocated from UNMOVALE free_area
• Relatively Clean: No other allocation than allocating order-0 pages

Requirements for page releasing:
• Synchronized releasing
• Able to release pages partially

Choosing the proper kernel component:
➢ ION
➢ Pipe
➢ Socket
➢ GPUs(kgsl)
...

➢ ION: releasing pages asynchronously

➢ Pipe
➢ Socket
➢ GPUs(kgsl):releasing pages asynchronously
...

Memory area

Advancing Towards a More Effective Cross-Cache Attack

Solving Challenge2: Deterministic heap shaping

Page allocation and releasing with pipe:

Allocating order-0 page when writing pipe: Releasing order-0 page when reading pipe:

pipe_write(struct kiocb *iocb, struct iov_iter *from)
{
…
if (bufs < pipe->buffers) {

 int newbuf = (pipe->curbuf + bufs) & (pipe->buffers-1);
 struct pipe_buffer *buf = pipe->bufs + newbuf;
 struct page *page = pipe->tmp_page;
 int copied;

 if (!page) {
 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
 if (unlikely(!page)) {

 ret = ret ? : -ENOMEM;
 break;

 }
 pipe->tmp_page = page;

 }
….

static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
 struct pipe_buffer *buf)

{
 struct page *page = buf->page;

 /*
 * If nobody else uses this page, and we don't already have a
 * temporary page, let's keep track of it as a one-deep
 * allocation cache. (Otherwise just release our reference to it)
 */

 if (page_count(page) == 1 && !pipe->tmp_page)
 pipe->tmp_page = page;

else
 put_page(page);

}

(The very first page won't be released, so we need to pre-allocated it
before the heap shaping)

Step3: allocate a few hundreds of physically continuous order-0 pages from UNMOVALE free_area

Advancing Towards a More Effective Cross-Cache Attack

Solving Challenge2: Deterministic heap shaping

Step3: allocate a few hundreds of physically continuous order-0 pages from UNMOVALE free_area

... ...

Owned by pipe_n Owned by pipe_n+1

Step4: Create order-o page holes by releasing one order-0 page every 8 order-0 pages

... ...

Owned by pipe_n+2

Owned by pipe_n Owned by pipe_n+1 Owned by pipe_n+2

Memory area

Memory area

order-0 page hole

Advancing Towards a More Effective Cross-Cache Attack

Solving Challenge2: Deterministic heap shaping

Pcplist of cpu#0 would be like:

pcplist

Advancing Towards a More Effective Cross-Cache Attack

Solving Challenge2: Deterministic heap shaping

order-0 page hole

Step5. Trigger the step1 in “new optimized workflow of cross cache attack for the issue”

The optimized workflow of cross cache attack for the issue:

Advancing Towards a More Effective Cross-Cache Attack

Step1. Defragmentation with race style slab move primitive, a new slab will be created:

Solving Challenge2: Deterministic heap shaping

Empty slab comes from
order-0 page holes

... ...

Owned by pipe_n Owned by pipe_n+1 Owned by pipe_n+2

Memory area

order-0 page hole

New slab(victim slab)

Advancing Towards a More Effective Cross-Cache Attack

Step5. Trigger the step1 in “new optimized workflow of cross cache attack for the issue”

Solving Challenge2: Deterministic heap shaping

Step6. Occupy all the other order-0 page holes, except the one has been used as new slab

Requirements for page allocation:
• Able to allocate a large number of order-0 pages
• Allocated from UNMOVALE free_area

Choosing the proper kernel component: ➢ ION
➢ Pipe
➢ Socket
➢ GPUs(kgsl)
...

...

Owned by pipe_n Owned by pipe_n+1 Owned by pipe_n+2

Memory area

order-0 page hole

New slab

ION occupied page

Advancing Towards a More Effective Cross-Cache Attack

Solving Challenge2: Deterministic heap shaping

Step7. Finish the step2 ~ step5 of “new optimized workflow of cross cache attack for the issue”

...

Owned by pipe_n Owned by pipe_n+1 Owned by pipe_n+2

Memory area

order-0 page hole

released victim slab

ION occupied page

After the step5 of "optimized workflow of cross cache attack for the issue", the victim slab will be
reclaimed to page allocator:

Pcplist of cpu#0 would be like:

pcplist ...

Advancing Towards a More Effective Cross-Cache Attack

Solving Challenge2: Deterministic heap shaping

Step8. Release all the pages owned by the pipe

...

Memory area

order-0 page hole

released victim slab

ION occupied page

...

free order-0 page

There must be one and only one order-3 pages here,
and released victim slab must be in it!

Pcplist of cpu#0 would be like:

pcplist

Advancing Towards a More Effective Cross-Cache Attack

Solving Challenge2: Deterministic heap shaping

Step9. Release all the pages created in step2 to forse the flushing of pcplist

Victim slab and other order-0 pages are reclaimed into free_area, page merging will happen
because of "Deterministic page merging"

...

Memory area

...

Order-3 pages

Step10. Heap spray lots of file array to occupy the order-3 pages where victim slab lies

Advancing Towards a More Effective Cross-Cache Attack

Solving Challenge2: Deterministic heap shaping

In actual practice, the success rate of the entire utilization largely depends on step 3:

Step3: allocate a few hundreds of physically continuous order-0 pages from UNMOVALE free_area

Advancing Towards a More Effective Cross-Cache Attack

Solving Challenge2: Deterministic heap shaping

How?

Detect status of page allocator in a side-channel way

If we keeps on allocate order-0 pages with "__GFP_KSWAPD_RECLAIM" flag enabled from UNMOVALBE free_area:

State 1:allocated from pcplist first (1)

(2)

Advancing Towards a More Effective Cross-Cache Attack

State 2:pcplist become empty, Unmovable
free_area will be used:
 Start from low-order

If we keeps on allocate order-0 pages with "__GFP_KSWAPD_RECLAIM" flag enabled from UNMOVALBE free_area:

State3: If Unmovable free_area becom
empty, other migration type free_areas
will be used for allocation acording to
fallback list

static int fallbacks[MIGRATE_TYPES][4] = {
 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },

…...
};

Wake up kswapd for reclaiming pages
if free pages of zone is under High
watermark. (3)

Advancing Towards a More Effective Cross-Cache Attack

Detect status of page allocator in a side-channel way

If we keeps on allocate order-0 pages with "__GFP_KSWAPD_RECLAIM" flag enabled from UNMOVALBE free_area:

State 4: If other migration type
free_areas becom empty, then enter
the slow path for allocating order-0
page:
• Wake up kswpad for reclaiming

pages
• Direct reclaim
...

Advancing Towards a More Effective Cross-Cache Attack

Detect status of page allocator in a side-channel way

If we keeps on allocate order-0 pages with "__GFP_KSWAPD_RECLAIM" flag enabled from UNMOVALBE free_area:

Reclaming pages:
• Wake up kswpad for reclaiming pages
• direct reclaim

• LRU_INACTIVE_ANON
• LRU_INACTIVE_FILE
• LRU_ACTIVE_ANON
• LRU_ACTIVE_FILE
• shrinker_list

Advancing Towards a More Effective Cross-Cache Attack

Detect status of page allocator in a side-channel way

Exported by /proc/meminfo, accessable from untrusted app:

• LRU_ACTIVE_ANON
• LRU_INACTIVE_ANON
• LRU_ACTIVE_FILE
• LRU_INACTIVE_FILE
• shrinker_list

Advancing Towards a More Effective Cross-Cache Attack

Detect status of page allocator in a side-channel way

Get reduced
frequently Page allocator might be in

State 3 or State 4

Unmovable free_area is
almost empty!

Advancing Towards a More Effective Cross-Cache Attack

Detect status of page allocator in a side-channel way

Tested on the device with kernel 4.14:

/proc/pagetypeinfo:

Advancing Towards a More Effective Cross-Cache Attack

Detect status of page allocator in a side-channel way

Strategy for allocating a few hundreds of physically continuous order-0 pages from UNMOVALE free_area:

Step1: reserve a dozen of order-8/9 pages with ION

Step2: Create and detect the empty state of Unmovable free_area:

2.1: Consume a large memory from both Unmoable free_area and Movable free_area. This will put memory of
zone under pressure(for example, under High watermark)

Allocate_large_memory _with_ION(); // Consume a large memory from both Unmoable free_area
Allocate_large_memory_with_mmap(); // Consume a large memory from both Moable free_area

2.2: Run the circle to detect the empty state of Unmovable free_area

While (1) {
Allocate_a_few_order0_pages();
Detect_page_allocator_state_by_watching_meminfo();
If (page_allocator_enter_state_3_or_4) {

break;
}

}

#if defined(CONFIG_IOMMU_IO_PGTABLE_ARMV7S)
static const unsigned int orders[] = {8, 4, 0};
#else
static const unsigned int orders[] = {9, 4, 0};
#endif

Advancing Towards a More Effective Cross-Cache Attack

Step3: release the order-8 pages with ION

Step4: allocate some order-0 pages to reduce the noise

Step5: allocate a few hundreds of physically continuous order-0 pages from UNMOVALE free_area

Advancing Towards a More Effective Cross-Cache Attack

Strategy for allocating a few hundreds of physically continuous order-0 pages from UNMOVALE free_area:

Step5: allocate a few hundreds of order-0 pages from UNMOVALE free_area

The order-0 page comes from the spliting of high-order pages:

Original state of Unmovable free_area

Order: Order:

Allocate one order-0 page

Allocated page

So these order-0 pages will be physically continuous

Advancing Towards a More Effective Cross-Cache Attack

Strategy for allocating a few hundreds of physically continuous order-0 pages from UNMOVALE free_area:

• Challenge 2: How to make order-3 slab reuse the order-0 slab deterministically

• Challenge 1: How to discard the victim order-0 slab under a constrained allocation primitive

• Challenge 2: How to make order-3 slab reuse the order-0 slab deterministically

SOLVED!

SOLVED!

Challenge 1

Challenge 2

Advancing Towards a More Effective Cross-Cache Attack

Exploit File UAF with Dirty Pagetable

1

2

1: Use the old method to discard the victim filp slab

2: Occupy the released victim filp slab with user page table by heap spraying many user page tables

Step1. Use the mentioned method to make Unmovable free_area become almost empty

Step2. Discard the victim filp slab

Step3. Heap spray many user page tables to occupy the released victim filp slab.

The occupation is more likely
to succeed because the

free_area is relatively clean.

Exploit File UAF with Dirty Pagetable

Adapt Dirty Pagetable to Samsung Device

Not working :(
Construct physical AARW with Dirty Pagetable:
https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html

Mitigations on Samsung Device:
• Physical KASLR
• RO kernel text

Exploit File UAF with Dirty Pagetable

https://yanglingxi1993.github.io/dirty_pagetable/dirty_pagetable.html

Corrupt kernel object to construct AARW

Exploit File UAF with Dirty Pagetable

Adapt Dirty Pagetable to Samsung Device

⚫ Make the page of pipe buffer follow the page owned by ION:
Using the similar technique for allocating physically
continuous order-0 pages.

Exploit File UAF with Dirty Pagetable

Adapt Dirty Pagetable to Samsung Device

Corrupt pipe_buffer to construct AARW

⚫ victim_pte += 0x1000

⚫ Using pipe primitive to construct AARW!

Exploit File UAF with Dirty Pagetable

Adapt Dirty Pagetable to Samsung Device

Corrupt kernel object to construct virtual AARW

⚫ Make the page of pipe buffer follow the page owned by ION:
Using the similar technique for allocating physically
continuous order-0 pages.

for(int i = 0; i < 0x1000; i++) {
dup(victim_fd);

}

Bypass SELinux in Samsung device
Attack global data used in "security_compute_av()":

void security_compute_av(u32 ssid,
 u32 tsid,
 u16 orig_tclass,
 struct av_decision *avd, ...)

{
 u16 tclass;
 struct context *scontext = NULL, *tcontext = NULL;

 read_lock(&policy_rwlock);
 avd_init(avd);
 xperms->len = 0;
 if (!ss_initialized)

 goto allow;
 ...
 tclass = unmap_class(orig_tclass);
 ...
 context_struct_compute_av(scontext, tcontext, tclass, avd, xperms);
 map_decision(orig_tclass, avd, policydb.allow_unknown);

out:
 read_unlock(&policy_rwlock);
 return;

allow:
 avd->allowed = 0xffffffff;
 goto out;

}

static void map_decision(u16 tclass, struct av_decision *avd,
 int allow_unknown)

{
 if (tclass < current_mapping_size) {

 unsigned i, n = current_mapping[tclass].num_perms;
 u32 result;

 for (i = 0, result = 0; i < n; i++) {
 if (avd->allowed & current_mapping[tclass].perms[i])

 result |= 1<<i;
 if (allow_unknown && !current_mapping[tclass].perms[i])

 result |= 1<<i;
 }
 avd->allowed = result;

 ...
 }

}

• System privilege required
• Less than 10% success rate

• Attack from Untrusted App
• ~65%(13/20) success rate

Win The Game

Mitigations for Cross-cache Attack

SLAB_VIRTUAL:
https://github.com/thejh/linux/commit/bc52f973a53d0b525892088dfbd251bc934e3ac3 Kill the Game!

https://github.com/thejh/linux/commit/bc52f973a53d0b525892088dfbd251bc934e3ac3

BHASIA @BlackHatEvents

Summary

➢ Advancing Towards a More Effective Cross-Cache Attack

• Solve the challenge 1: Discard the victim order-0 slab under a really limitation allocation primitive

• Solve the challenge 2: How to make order-3 slab reuse the order-0 slab deterministically

➢ Dirty Pagetable on Samsung Device

BHASIA @BlackHatEvents

Acknowledgements

Ye Zhang, Teacher Jin

BHASIA @BlackHatEvents

Q&A

	幻灯片 1
	幻灯片 2
	幻灯片 3
	幻灯片 4
	幻灯片 5
	幻灯片 6
	幻灯片 7
	幻灯片 8
	幻灯片 9
	幻灯片 10
	幻灯片 11
	幻灯片 12
	幻灯片 13
	幻灯片 14
	幻灯片 15
	幻灯片 16
	幻灯片 17
	幻灯片 18
	幻灯片 19
	幻灯片 20
	幻灯片 21
	幻灯片 22
	幻灯片 23
	幻灯片 24
	幻灯片 25
	幻灯片 26
	幻灯片 27
	幻灯片 28
	幻灯片 29
	幻灯片 30
	幻灯片 31
	幻灯片 32
	幻灯片 33
	幻灯片 34
	幻灯片 35
	幻灯片 36
	幻灯片 37
	幻灯片 38
	幻灯片 39
	幻灯片 40
	幻灯片 41
	幻灯片 42
	幻灯片 43
	幻灯片 44
	幻灯片 45
	幻灯片 46
	幻灯片 47
	幻灯片 48
	幻灯片 49
	幻灯片 50
	幻灯片 51
	幻灯片 52
	幻灯片 53
	幻灯片 54
	幻灯片 55
	幻灯片 56
	幻灯片 57
	幻灯片 58
	幻灯片 59
	幻灯片 60
	幻灯片 61
	幻灯片 62
	幻灯片 63
	幻灯片 64
	幻灯片 65
	幻灯片 66
	幻灯片 67
	幻灯片 68
	幻灯片 69
	幻灯片 70
	幻灯片 71
	幻灯片 72
	幻灯片 73
	幻灯片 74
	幻灯片 75
	幻灯片 76
	幻灯片 77
	幻灯片 78
	幻灯片 79
	幻灯片 80
	幻灯片 81
	幻灯片 82
	幻灯片 83
	幻灯片 84
	幻灯片 85
	幻灯片 86
	幻灯片 87
	幻灯片 88
	幻灯片 89
	幻灯片 90
	幻灯片 91
	幻灯片 92
	幻灯片 93

