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Target: Nissan Leaf ZE1

● Nissan Leaf 2nd Gen produced in 2020

● Gateway Unit: 284U15SN0A

○ CAN messages filtering

● Telematic Unit: 282755SN0E

○ Cellular communication

● Infotainment Unit: 259155SR0B

○ WLAN client mode only

○ Bluetooth (phonebook / calls)

○ USB (updates / communication)

○ Apple CarPlay / Android Auto

○ Navigation (Maps and GPS)
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Testbench

● Bought several units from ebay

● Component mutual-authentication is enabled

● Went to the closest auto junkyard in Budapest

○ IVI, Gateway, BCM, IC, wiring harness

● The result is a working testbench
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Anti-Theft: General Information

Anti-Theft protection is used to prevent theft of the IVI, or unauthorized access 

to the vehicle’s systems

● Locking mechanisms

○ Firmware authentication

● VIN encoding

○ Disable if mismatch is detected

● Functionality reduction

○ Disturbance during usage
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Anti-Theft: Nissan IVI Logic

● When IVI is switched on, the anti-theft challenge must be solved

● IVI communicates with the specific ECU over CAN bus
○ Error [GREEN]: No response received

○ Error [RED]: Incorrect response received

● If successful, the anti-theft is passed
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CAN-ID Message

0x71e: IVI → ECU (seed) 14 03 f05bb5 17 ffff

0x72e: IVI ← ECU (solution) 14 c826e381 66 ffff

0x71e: IVI → ECU (fixed) 24 c76c9a98 89 ffff

0x72e: IVI ← ECU (fixed) 24 c76c9a98 89 ffff



Anti-Theft: CAN Message Structure

CAN Message from 0x71e (IVI → ECU)
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Function Seed Constant Chksum Constant

14 01 f0 5b b5 15 ff ff

CAN Message from 0x72e (ECU → IVI)

Function Calculation result Chksum Constant

14 ef ef ef ef d0 ff ff

Checksum calc: (0x14 + 0x01 + 0xf0 + 0x5b + 0xb5) && 0x0ff = 0x15



Anti-Theft: Bypass

● Analyzed the runtime CAN communication between device and IVI

○ Could be done via the IVI firmware analysis but we respect our time

● Implemented a Python script based on the obtained information

○ Built a solution table for every seed

● The anti-theft protection is bypassed

○ IVI is completely functional
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Infotainment: Hardware Analysis
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OEM Part Number

FCC Identificator



Infotainment: Hardware Analysis: Internals #1
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Renesas RH850/D1L 
microcontroller

i.MX6 automotive 

and infotainment 

processor by NXP

Cypress SPI 

memory chips
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Infotainment: Hardware Analysis: Internals #2
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Wi-Fi + Bluetooth 

SoC by Alps Alpine

eMMC NAND 

by Samsung
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Infotainment: Architecture and Connections
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Infotainment: Architecture and Connections
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Infotainment: Architecture and Connections
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Infotainment: Architecture and Connections
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Bluetooth
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Bluetooth
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Bluetooth: Bluedragon Evo Stack

● ARM 32-bit ELF executable

● Launched as root

● Bluetooth Stack - a proprietary implementation
○ BT logic is divided into multiple libraries

○ Other devices might be vulnerable

● Security mitigations:
○ Stack: No canary found

○ PIE: PIE enabled

○ ASLR: ASLR enabled

● Fixed library loading addresses!
○ Discards the enabled ASLR

● Partially contains symbols - simplifies reverse-engineering
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ASLR is enabled



Bluetooth: Pairing

Pairing - an authentication mechanism for 

Bluetooth devices

● Simple Secure Pairing or SSP (I/O caps)

○ Just Works

○ Numeric Comparison

○ Passkey Entry

● Legacy Pairing

○ Pin-code based
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Bluetooth: Pairing: Nissan

● Accepts pairing requests only in Add New submenu

● Pairing can be completed without user interaction

● 0.5-click bluetooth communication:

○ 0-click if specific menu is opened

○ How to force a user to open it?

■ 2.4Ghz Jamming

● Link connections:

○ Can be established from any menu
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Bluetooth: Hands-Free Profile (HFP)

HFP is used to place and receive audio 

streams.

● Based on RFCOMM

● Manages the communication process

● Signal control messages

● AT-commands based

● Audio goes through SCO channel

23



Bluetooth: Hands-Free Profile (HFP)
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Bluetooth: Hands-Free Profile (HFP)

● Most of the AT-commands are standardized

● Vendor-specific AT-commands might be implemented:

○ Mobile phone specific: Android, IPhone

○ Voice Recognition: Siri

● Request example: AT+COMMAND=”AAAA”,”BBBB”
● Response example: +COMMAND: “CCCC”,“DDDD”
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AT Command Comment

AT+APLSIRI? AT command to retrieve Siri status 
information

AT+APLNRSTAT Obtains information about the state of 
incoming audio



HFP: Stack Buffer Overflow
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Bluetooth: HFP Vulnerability: Root cause 
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size_t __fastcall HF_ParseRsp(RfDlc *dlc, uint8_t *rxbf, size_t rxlen)

{

size_t params[10]; // [sp+8Ch] [bp-94h] BYREF

if ( j_CmpBuffer(rxbf, "+ANDROID:") )

{

if ( j_CmpBuffer(&rxbf[space_len + 11], "probe") )

{

param_cnt = j_GetParameters(

probe_bf,

(unsigned __int16)(probe_len - 2),

&probe_params,

probe_lens,

2u);

switch ( param_cnt )

{

case 2:

if ( (unsigned int)probe_lens[1] - 2 <= 0xC )

{

v40 = probe_lens[0];

memcpy(params, probe_params, probe_lens[0]);

}

}



size_t __fastcall HF_ParseRsp(RfDlc *dlc, uint8_t *rxbf, size_t rxlen)
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param_cnt = j_GetParameters(

probe_bf,

(unsigned __int16)(probe_len - 2),

&probe_params,

probe_lens,

2u);

switch ( param_cnt )
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case 2:

if ( (unsigned int)probe_lens[1] - 2 <= 0xC )
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}

Bluetooth: HFP Vulnerability: Root cause 
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Bluetooth: HFP Vulnerability: Root cause 
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Bluetooth: HFP Vulnerability: Root cause
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Bluetooth: HFP Vulnerability: Root cause 
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Bluetooth: HFP Vulnerability: Root cause 
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if ( j_CmpBuffer(rxbf, "+ANDROID:") )

{

if ( j_CmpBuffer(&rxbf[space_len + 11], "audiosource") )

{

j_GetParameters(

v48,

(unsigned __int16)(v49 - 2),

tmp_params,

&tmp_lens,

1u

);

memcpy(params, tmp_params[0], tmp_lens);

}

}

if ( j_CmpBuffer(rxbf, "+ANDROID:") )

{

if ( j_CmpBuffer(&rxbf[space_len + 11], "vds") )

{

j_GetParameters(

v52,

(unsigned __int16)(v43 - 2),

tmp_params,

&tmp_lens,

1u

);

memcpy(probe_lens, tmp_params[0], tmp_lens);

}

}



if ( j_CmpBuffer(rxbf, "+ANDROID:") )

{

if ( j_CmpBuffer(&rxbf[space_len + 11], "vds") )

{

j_GetParameters(
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(unsigned __int16)(v43 - 2),
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1u

);

memcpy(probe_lens, tmp_params[0], tmp_lens);

}

}

if ( j_CmpBuffer(rxbf, "+ANDROID:") )

{

if ( j_CmpBuffer(&rxbf[space_len + 11], "audiosource") )

{

j_GetParameters(

v48,

(unsigned __int16)(v49 - 2),

tmp_params,

&tmp_lens,

1u

);

memcpy(params, tmp_params[0], tmp_lens);

}

}

Bluetooth: HFP Vulnerability: Root cause 
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Multiple Stack-based Buffer Overflows



HFP: Exploitation
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Bluetooth: HFP Exploitation

● Trivial ROP chain to call system() and gracefully 

continue BT stack execution

○ Restriction: 0x2c, 0x22 bytes are disallowed
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Bluetooth: HFP Exploitation

● Trivial ROP chain to call system() and gracefully 

continue BT stack execution

○ Restriction: 0x2c, 0x22 bytes are disallowed

● But where is the system payload stored?

○ Utilize AVCTP Bluetooth profile

○ AVCTP fragmentation message buffer

● Content of the system payload?
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Bluetooth: HFP Exploitation: Payload

● Problem:

○ Firewall restrictions based on the iptables rules

○ Limits outbound connections
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Bluetooth: HFP Exploitation: Payload

● Problem:

○ Firewall restrictions based on the iptables rules

○ Limits outbound connections

● Solution:

○ Get rid of DROP rules to establish a reverse shell
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Bluetooth: HFP Exploitation: Overview
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Bluetooth: HFP Exploitation: Results
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Bluetooth: HFP Exploitation: Results

44

What do we have so far?

● 1-click Remote Code Execution (~0.5-clicks)

○ HFP Stack Buffer Overflow

● Permissions: root

● Ability to load arbitrary kernel modules

○ Absence of a kernel module signature verification



System
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System: Information

● Bootloader: U-boot 2013.01.01

● Kernel: Linux-3.14.49

● SELinux: No

● Processes hypervisor: systemd

● Filesystem: ext4

● Filesystem integrity control: dm-verity

● Firewall configuration: Enabled

● Intrusion detection systems: None

● tmpfs under /tmp: Executable

46



System: Debugging

To explore the system further we need debugging
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System: Debugging

To explore the system further we need debugging

Problem:

● When connecting gdb to a process, IVI reboots

48



System: Debugging

To explore the system further we need debugging

Problem:

● When connecting gdb to a process, IVI reboots

● The target process has special signal handling?

49



System: Debugging

To explore the system further we need debugging

Problem:

● When connecting gdb to a process, IVI reboots

● The target process has special signal handling? No

50



System: Debugging
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System: Debugging

To explore the system further we need debugging

Problem:

● When connecting gdb to a process, IVI reboots

● The target process has special signal handling? No

● Kernel intercepts specific signals from processes? Yes
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System: Debugging

To explore the system further we need debugging

Problem:

● When connecting gdb to a process, IVI reboots

● The target process has special signal handling? No

● Kernel intercepts specific signals from processes? Yes
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Kernel: Obtaining an Image

Kernel image can be found in the extracted firmware, however:

● The image is obviously compressed (uImage)

● Can’t be decompressed via standard algorithms:

○ xz / lzma / gunzip / etc

● binwalk doesn’t give any clues either

54



Kernel: Obtaining an Image

Kernel image can be found in the extracted firmware, however:

● The image is obviously compressed (uImage)

● Can’t be decompressed via standard algorithms:

○ xz / lzma / gunzip / etc

● binwalk doesn’t give any clues either
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Explore the u-boot bootloader!



Kernel: uImage Header
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00000000: 27 05 19 56 db 2f 53 e2 5d 10 9b be 00 50 59 94 

00000010: 10 00 7f c0 10 00 80 00 93 c9 01 d1 05 02 02 4d

ih_os: Linux

ih_arch: ARM

ih_type: Kernel

ih_comp: ???

ih_magic ih_hcrc ih_time ih_size

ih_load

ih_ep

ih_dcrc



Kernel: U-boot bootloader
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int __fastcall bootm_load_os(...)

{

if ( comp == 1 ) {

// GUNZIP: uncompress

}

else if ( comp ) {

if ( comp != 0x4d ) {

printf("Unimplemented compression type %d\n", comp);

return -3;

}

v16 = lz77_decompress(

load_buf,

lzma_len,

image_buf,

image_len

);

}

}



Kernel: U-boot bootloader
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int __fastcall bootm_load_os(...)

{

if ( comp == 1 ) {

// GUNZIP: uncompress

}

else if ( comp ) {

if ( comp != 0x4d ) {

printf("Unimplemented compression type %d\n", comp);

return -3;

}

v16 = lz77_decompress(

load_buf,

lzma_len,

image_buf,

image_len

);

}

}

LZ77 - ???



Kernel: U-boot bootloader

What is LZ77?

● Lossless data compression algorithm

○ Published in 1977

● Basis for LZW, LZSS, LZMA and others

● Public implementations: cstdvd/lz77

○ Didn’t work for our kernel image

59

https://github.com/cstdvd/lz77


Kernel: U-boot bootloader

What is LZ77?

● Lossless data compression algorithm

○ Published in 1977

● Basis for LZW, LZSS, LZMA and others

● Public implementations: cstdvd/lz77

○ Didn’t work for our kernel image

Solution: Emulate lz77_decompress() via Qiling framework

60

https://github.com/cstdvd/lz77


Kernel: exchnd LKM

Exception Handler Driver (built-in):

● Catches exceptions (signals) from processes

○ Registers kprobes / jprobes at specific kernel procedures

● Does predefined actions when an exception event occurs

○ In our case, it’s IVI reboot for SIGTRAP

● Provides post-mortem data

61



Kernel: exchnd LKM

Exception Handler Driver (built-in):

● Catches exceptions (signals) from processes

○ Registers kprobes / jprobes at specific kernel procedures

● Does predefined actions when an exception event occurs

○ In our case, it’s IVI reboot for SIGTRAP

● Provides post-mortem data

Solution:

● Upload a custom LKM that removes the registered kprobes / jprobes
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Kernel: exchnd LKM: Results
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What do we have so far?

● Kernel-mode code execution

● Uncompressed Linux kernel image

● Disabled exception handler LKM

● Finally, we can debug any process on the system



Persistence and Data Exfiltration
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Persistence

Possible ways to achieve persistence on IVI

● Find interesting writable configurations

● Compromise the secure boot chain

65

Partition Path Mode

/dev/mmcblk1p1 / ro

/dev/mmcblk1p3 /var/opt/bosch/persistent rw

/dev/mmcblk1p5 /var/opt/bosch/static ro

/dev/mmcblk1p6 /var/opt/bosch/dynamic rw



Persistence: SSH Server

ALD - Authorization Level Daemon, a 

daemon for automatically switching 

security levels in the system:

● sshd@.service

● firewall.service
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Persistence: SSH Server

SSH server can be enabled on Wi-Fi or USB2Ethernet interfaces:
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rm /var/opt/bosch/dynamic/ald/SSHdisabled

rm /var/opt/bosch/dynamic/ald/rootLogindisabled

touch /var/opt/bosch/dynamic/ald/SSHenabled

touch /var/opt/bosch/dynamic/ald/rootLogindenabled

rm /var/opt/bosch/dynamic/ald/FWdisabled



Persistence: SSH Server patch

A new service tty-ssh-checker is added as a dependency for sshd@.service:
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#!/bin/bash

Marker_Path=/var/opt/bosch/dynamic/ald

ALD_Level=$(dbus-send --system --dest=com.adit.de.ALD ...)

...

if [ ${ALD_Level} -lt 30 ];

then

if [ -f ${Marker_Path}/SSHenabled ];

then

rm ${Marker_Path}/SSHenabled

touch ${Marker_Path}/SSHdisabled

fi

fi

sync

exit 0



Persistence: SSH Server patch bypass
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Persistence: Secure Boot Overview
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Persistence: HAB

● HAB code is located in the Boot ROM and is loaded at 0 address

● After the system boot, this memory is still loaded

● It can be dumped via accessing physical addresses 0x0 - 0x12000

○ Utilize /dev/mem
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Persistence: Secure Boot Bypass

● Known CVE-2017-7932 found by Quarkslab:
○ Stack Overflow in CSF certificate processing
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Persistence: Secure Boot Bypass

● Known CVE-2017-7932 found by Quarkslab:
○ Stack Overflow in CSF certificate processing

● Allows to disable signature check for DTB
● Patch arguments for dm-verity with extra value ignore_corruption
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Persistence: Secure Boot Bypass

● Modify the root filesystem:

● Patch the bash script /opt/bosch/base/bin/app_fcswupdate_wrapper.sh, 
which is executed on every boot
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Data exfiltration

● IVI has access to the Internet over TCU

● DNS requests are not filtered

● Requests to subdomains *.attacker-srv.com 

can be used for data exfiltration

● Use  dnscat21 to create a tunnel to the TCP 

server on IVI

75

1 https://github.com/iagox86/dnscat2

https://github.com/iagox86/dnscat2


CAN Communication
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CAN Communication

Possible ways to achieve arbitrary access to 

the CAN bus:

● Utilize legitimate interfaces and APIs

● Upload modified firmware to the RH850

● Exploit vulnerabilities in the 

communication protocol
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CAN Communication: Information Gathering

● OPKG - Open PacKaGe Management

● Grep for CAN word in package descriptions

● Found that services use inc-scc network service

● The network traffic on this interface is non-typical
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CAN Communication: Information Gathering for INC

● Source code in the SDK on the official website1

● Push request2

● /opt/bosch/base/bin/inc_send_out.out can be used as an example to test 

CAN communication on IVI

79

1https://oss.bosch-cm.com/download/Nissan_AIVI/2610_190620/OSS_DVD_Content.zip
2https://lwn.net/Articles/706002/

https://oss.bosch-cm.com/download/Nissan_AIVI/2610_190620/OSS_DVD_Content.zip
https://lwn.net/Articles/706002/


CAN Communication: INC Internals
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CAN Communication: INC Client Example



CAN Communication: INC Ports

82

● All ports can be found in 

include/linux/inc_ports.h

● The base port number - 0xc700

● For example, DOWNLOAD port 

- (0xc700 | 11)



CAN Communication: Legit Way

● /opt/bosch/base/bin/csm_proc_out.out has functionality to send CAN 

messages

○ Signals - one-time CAN message, used to notify ECU clients or receive 

notifications from them

○ Requests - multiple CAN messages with the connection phase

● Uses NET_BROADCAST and NET_TP<0..8> INC ports for requests

83



CAN Communication: Legit Way
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CAN Communication: Legit Way
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bus type

internal address



CAN Communication: Legit Way
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CAN ID: 0x767

bus type

internal address



CAN Communication: Legit Way

Summary:

● We can use the legit way to send CAN messages

● Payload of the message can be controlled

● We can use only whitelisted CAN IDs

Let check the update mechanism of RH850 for possible firmware modification
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CAN Communication: RH850 Update Process

● IVI can update RH850 firmware:
○ Firmware is located in /ivi/firmware/v850/firmware/v850/aivi_s1_a

○ Utilizes /opt/bosch/base/bin/swu_common_v850_app_out.out to install update

● Firmware is delivered in DNL binary format

88

Block ID Name Comment

0x8300 boot according the mode load loader or app

0x4023 loader used during updating process

0x4024 app code for usual workflow

0x8000 signature used during updating and flashed to the memory for secure booting



CAN Communication: RH850 Update Process Protocol

Uses INC interface socket on DOWNLOAD port and utilizes UDS protocol:

1. Switch to loader: 10-60

2. Initiate download: 34-00-44-<address>-<size>

3. Transfer firmware: 36-00-...

4. Send signature: 2e-25-fd-...

5. End transfer: 37

6. Check CRC value: 22-...
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CAN Communication: RH850 Signature Verification

Signature verification happens:

● While processing the End 

Transfer command in update 

mechanism

● During boot process

uint FUN_0000aac4(void) {

if (cRamfede96f0 == '\x01') {

cRamfede96f0 = '\x02';

loadCerts();

iVar1 = calcSha256ForTransfer();

if ((iVar1 == 1) ||

((((... || (iVar1 = validateSignature(pvRamfede5150), ...))

&& ((... || (iVar1 = validateSignature(pvRamfede5154), ...)))) &&

((... || (iVar1 = validateSignature(pvRamfede5158), ...) ))))

) {

uVar2 = 1;

}

else {

uVar2 = FUN_00006dda(..., gsUnkStorageForTransferData1,0x10);

}

}

else {

uVar2 = (uint)(cRamfede96f0 != '\x02');

}

return uVar2;

}
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CAN Communication: RH850 Update Process

Summary:

● Obtained RH850 firmware

● Identified security mechanisms that protect from firmware modification

It is time to check for vulnerabilities on RH850 side to achieve full code 

execution
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CAN Communication: RH850 Attack Surface

A lot of INC ports for requests -> A lot of handlers in firmware -> Huge attack surface

92



CAN Communication: RH850 Tracing

93

IVI has rich tracing functionality on both iMX.6 and RH850 side - very helpful for 

research



CAN Communication: RH850 Stack Overflow Vulnerability

● Vulnerability exists during the requests processing over NET_BROADCAST

port with number (0xc700 | 15)

● The following callbacks are used Inside the firmware :

1. prepareNetBroadcastRequestBuffer - checks income size <= 0x65

2. fillNetBroadcastRequestBuffer - places input data into global memory

3. processNetBroadcastRequestBuffer - processes global memory, 

accepts arguments i_pPacket and i_dPacketSize
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CAN Communication: RH850 Stack Overflow Vulnerability
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;

if (*i_pPacket == 0x50) {

_local_30 = 0;

uStack_2c = 0;

uStack_28 = 0;

uStack_24 = 0;

pCurLocalStackBuffer = &sLocalStackBuffer;

dID = *(uint32_t *)(i_pPacket + 8);

sLocalStackBuffer = 0;

local_34 = 0;

dPayloadSize = (i_dPacketSize - 0xdU);

uVar5 = 0;

if (dPayloadSize != 0) {

pPayload = i_pPacket + dPayloadSize + 0xc;

do {

bValue = *pPayload;

pPayload = pPayload + -1;

uVar5 = uVar5 + 1;

*pCurLocalStackBuffer++ = bValue;

} while (uVar5 < dPayloadSize);

}



CAN Communication: RH850 Stack Overflow Vulnerability

96

;

if (*i_pPacket == 0x50) {

_local_30 = 0;

uStack_2c = 0;

uStack_28 = 0;

uStack_24 = 0;

pCurLocalStackBuffer = &sLocalStackBuffer;

dID = *(uint32_t *)(i_pPacket + 8);

sLocalStackBuffer = 0;

local_34 = 0;

dPayloadSize = (i_dPacketSize - 0xdU);

uVar5 = 0;

if (dPayloadSize != 0) {

pPayload = i_pPacket + dPayloadSize + 0xc;

do {

bValue = *pPayload;

pPayload = pPayload + -1;

uVar5 = uVar5 + 1;

*pCurLocalStackBuffer++ = bValue;

} while (uVar5 < dPayloadSize);

}



CAN Communication: RH850 Stack Overflow Vulnerability

97

;

if (*i_pPacket == 0x50) {

_local_30 = 0;

uStack_2c = 0;

uStack_28 = 0;

uStack_24 = 0;

pCurLocalStackBuffer = &sLocalStackBuffer;

dID = *(uint32_t *)(i_pPacket + 8);

sLocalStackBuffer = 0;

local_34 = 0;

dPayloadSize = (i_dPacketSize - 0xdU);

uVar5 = 0;

if (dPayloadSize != 0) {

pPayload = i_pPacket + dPayloadSize + 0xc;

do {

bValue = *pPayload;

pPayload = pPayload + -1;

uVar5 = uVar5 + 1;

*pCurLocalStackBuffer++ = bValue;

} while (uVar5 < dPayloadSize);

}



CAN Communication: RH850 Stack Overflow Vulnerability

98

;

if (*i_pPacket == 0x50) {

_local_30 = 0;

uStack_2c = 0;

uStack_28 = 0;

uStack_24 = 0;

pCurLocalStackBuffer = &sLocalStackBuffer;

dID = *(uint32_t *)(i_pPacket + 8);

sLocalStackBuffer = 0;

local_34 = 0;

dPayloadSize = (i_dPacketSize - 0xdU);

uVar5 = 0;

if (dPayloadSize != 0) {

pPayload = i_pPacket + dPayloadSize + 0xc;

do {

bValue = *pPayload;

pPayload = pPayload + -1;

uVar5 = uVar5 + 1;

*pCurLocalStackBuffer++ = bValue;

} while (uVar5 < dPayloadSize);

}



CAN Communication: RH850 Stack Overflow Vulnerability

99

;

if (*i_pPacket == 0x50) {

_local_30 = 0;

uStack_2c = 0;

uStack_28 = 0;

uStack_24 = 0;

pCurLocalStackBuffer = &sLocalStackBuffer;

dID = *(uint32_t *)(i_pPacket + 8);

sLocalStackBuffer = 0;

local_34 = 0;

dPayloadSize = (i_dPacketSize - 0xdU);

uVar5 = 0;

if (dPayloadSize != 0) {

pPayload = i_pPacket + dPayloadSize + 0xc;

do {

bValue = *pPayload;

pPayload = pPayload + -1;

uVar5 = uVar5 + 1;

*pCurLocalStackBuffer++ = bValue;

} while (uVar5 < dPayloadSize);

}



CAN Communication: RH850 Exploitation

100

● Payload is fully controllable

● No stack canaries

● Global memory is RWX

● Put the shellcode payload into the DLT request 

buffer in global memory



CAN Communication: RH850 Exploitation Issues

● Problems:

○ Only one client can connect to NET_BROADCAST port

○ Service csm_proc_out.out constantly communicates over it

○ If this service is killed, the watchdog is triggered and IVI reboots

● Solution:

○ Inject exploit code into the service

■ Disable signal handlers in the kernel using the “Absence of a kernel module signature 

verification” vulnerability
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Gateway Filtering
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To CAN-IDs from IDT CAN

Vehicle CAN 0x3DC, 0x49F, 0x56E, 0x5FC - 0x5FE, 0x620 - 0x621, 0x6FA, 0x700 - 0x7FF

ADAS CAN 0x3E9, 0x49F, 0x620-0x621, 0x6FA, 0x700-0x7FF

Chassis CAN 0x49F, 0x620-0x621, 0x6FA, 0x700-0x7FF

ITS CAN 0x49F, 0x5FE, 0x620-0x621, 0x6FA, 0x700-0x7FF

Diagnostic CAN -



Nissan Specific UDS Commands

The easiest (but not the cheapest) 

way to gain interesting UDS 

commands:

● Buy diagnostic setup

(software and hardware)

● Explore UI for actions

● Capture the communication 

traffic
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Nissan Specific UDS Commands

● CONSULT III communicates with the adapter over USB

● UDS commands can be identified in USB traffic
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Nissan Specific UDS Commands
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ECU CAN ID Message Comment

BCM 745

0430690001000000 mirrors close

0430690002000000 mirrors open

0430070001000000 doors lock

0430070002000000 doors open

0430220001000000 horn

0430452003000000 wiper

04303b2002000000 light

ADAS 75D 0430252001000000 steering wheel



Attack Summary
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Attack Summary #0: Initial State
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Attack Summary #1: One-time Exploit via BT
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Attack Summary #2: Persistence via N-day in HAB
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Attack Summary #3: Remote Control via DNS
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Attack Summary #4: Controlling Critical Body Elements
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Attack Summary: Demonstration

youtu.be/56VreoKtStw

youtu.be/56VreoKtStw


List of Identified Vulnerabilities
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● CVE-2025-32056 – Anti-Theft bypass

● CVE-2025-32057 – app_redbend: MiTM attack

● CVE-2025-32058 – v850: Stack Overflow in CBR processing

● CVE-2025-32059 – Stack buffer overflow leading to RCE [0]

● CVE-2025-32060 – Absence of a kernel module signature verification

● CVE-2025-32061 – Stack buffer overflow leading to RCE [1]

● CVE-2025-32062 – Stack buffer overflow leading to RCE [2]

● PCA_NISSAN_009 – Improper traffic filtration between IT CAN and other 

CAN buses

● CVE-2025-32063 – Persistence for Wi-Fi network

● PCA_NISSAN_012 – Persistence through CVE-2017-7932 in HAB of i.MX 6



Disclosure Timeline
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● 02.08.2023 – PCAutomotive sends the advisory to Nissan Cybersecurity Team
● 09.08.2023 - 11.12.2023 – Email discussion about the findings’ criticality
● 04.01.2024 – PCAutomotive sends a video demonstration of the full attack chain; asks about CVE 

registration; notifies about publication plans
● 26.01.2024 – Nissan Cybersecurity Team confirms the vulnerabilities; starts planning their mitigations; 

notifies us to register CVE by ourselves; accepted the publication plans
● 25.04.2024 – PCAutomotive requests CVE registration from MITRE
● 19.05.2024 – MITRE forwards us to Bosch PSIRT
● 10.09.2024 – PCAutomotive sends  Bosch PSIRT a request to register CVE
● 11.09.2024 – Bosch PSIRT responds, that they didn’t receive any information about vulnerabilities from 

Nissan Cybersecurity Team
● 12.09.2024 – PCAutomotive notifies Nissan Cybersecurity Team about the communication with Bosch 

PSIRT
● 23.09.2024 – PCAutomotive sends the advisory to Bosch PSIRT
● 06.11.2024 – PCAutomotive notifies Bosch PSIRT about the publication plans
● 11.03.2025 – Bosch PSIRT accepts the publication, declines to register CVE and forwards us to ASRG
● 18.03.2025 – PCAutomotive requests CVE registration from ASRG



Thanks to Contributors
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● Aleksei Stennikov

● Danila Parnishchev

● Artem Ivachev

● Anna Breeva

● Abdellah Benotsmane

● Balazs Szabo

● All PCAutomotive crew



Thank you for your attention!
Questions?
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Contact us: info@pcautomotive.com
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