
#BHAS @BlackHatEvents

Remote Exploitation of Nissan Leaf:

Controlling Critical Body Elements

from the Internet

Mikhail Evdokimov

Radu Motspan

Agenda

1. Introduction

2. Testbench and anti-theft

3. Bluetooth RCE

4. Persistence and data exfiltration

5. CAN communication

6. Gateway filtering

7. Leaf-specific UDS commands

8. Vulnerability disclosure

2

Introduction

3

Who Are We?

Radu Motspan
@_moradek_

Reverse-Engineering
Vulnerability Research
Exploit Development

4

Polina Smirnova
@moe_hw

Reverse-Engineering
Vulnerability Research
Hardware Engineering

Mikhail Evdokimov
@konatabrk

Reverse-Engineering
Vulnerability Research
Exploit Development

… and our teammates

https://x.com/_moradek_
https://x.com/moe_hw
https://x.com/konatabrk?lang=hu

Target: Nissan Leaf ZE1

● Nissan Leaf 2nd Gen produced in 2020

● Gateway Unit: 284U15SN0A

○ CAN messages filtering

● Telematic Unit: 282755SN0E

○ Cellular communication

● Infotainment Unit: 259155SR0B

○ WLAN client mode only

○ Bluetooth (phonebook / calls)

○ USB (updates / communication)

○ Apple CarPlay / Android Auto

○ Navigation (Maps and GPS)

5

Testbench

● Bought several units from ebay

● Component mutual-authentication is enabled

● Went to the closest auto junkyard in Budapest

○ IVI, Gateway, BCM, IC, wiring harness

● The result is a working testbench

6

Anti-Theft: General Information

Anti-Theft protection is used to prevent theft of the IVI, or unauthorized access

to the vehicle’s systems

● Locking mechanisms

○ Firmware authentication

● VIN encoding

○ Disable if mismatch is detected

● Functionality reduction

○ Disturbance during usage

7

Anti-Theft: Nissan IVI Logic

● When IVI is switched on, the anti-theft challenge must be solved

● IVI communicates with the specific ECU over CAN bus
○ Error [GREEN]: No response received

○ Error [RED]: Incorrect response received

● If successful, the anti-theft is passed

8

CAN-ID Message

0x71e: IVI → ECU (seed) 14 03 f05bb5 17 ffff

0x72e: IVI ← ECU (solution) 14 c826e381 66 ffff

0x71e: IVI → ECU (fixed) 24 c76c9a98 89 ffff

0x72e: IVI ← ECU (fixed) 24 c76c9a98 89 ffff

Anti-Theft: CAN Message Structure

CAN Message from 0x71e (IVI → ECU)

9

Function Seed Constant Chksum Constant

14 01 f0 5b b5 15 ff ff

CAN Message from 0x72e (ECU → IVI)

Function Calculation result Chksum Constant

14 ef ef ef ef d0 ff ff

Checksum calc: (0x14 + 0x01 + 0xf0 + 0x5b + 0xb5) && 0x0ff = 0x15

Anti-Theft: Bypass

● Analyzed the runtime CAN communication between device and IVI

○ Could be done via the IVI firmware analysis but we respect our time

● Implemented a Python script based on the obtained information

○ Built a solution table for every seed

● The anti-theft protection is bypassed

○ IVI is completely functional

10

Infotainment: Hardware Analysis

11

OEM Part Number

FCC Identificator

Infotainment: Hardware Analysis: Internals #1

12

Renesas RH850/D1L
microcontroller

i.MX6 automotive

and infotainment

processor by NXP

Cypress SPI

memory chips
IV

I to
p

 la
ye

r

Infotainment: Hardware Analysis: Internals #2

13

Wi-Fi + Bluetooth

SoC by Alps Alpine

eMMC NAND

by Samsung

IV
I

b
o

tt
o

m
 l

a
ye

r
H

M
I to

p
 la

ye
r

Infotainment: Architecture and Connections

14

Infotainment: Architecture and Connections

15

Infotainment: Architecture and Connections

16

Infotainment: Architecture and Connections

17

Bluetooth

18

Bluetooth

19

Bluetooth: Bluedragon Evo Stack

● ARM 32-bit ELF executable

● Launched as root

● Bluetooth Stack - a proprietary implementation
○ BT logic is divided into multiple libraries

○ Other devices might be vulnerable

● Security mitigations:
○ Stack: No canary found

○ PIE: PIE enabled

○ ASLR: ASLR enabled

● Fixed library loading addresses!
○ Discards the enabled ASLR

● Partially contains symbols - simplifies reverse-engineering

20

ASLR is enabled

Bluetooth: Pairing

Pairing - an authentication mechanism for

Bluetooth devices

● Simple Secure Pairing or SSP (I/O caps)

○ Just Works

○ Numeric Comparison

○ Passkey Entry

● Legacy Pairing

○ Pin-code based

21

Bluetooth: Pairing: Nissan

● Accepts pairing requests only in Add New submenu

● Pairing can be completed without user interaction

● 0.5-click bluetooth communication:

○ 0-click if specific menu is opened

○ How to force a user to open it?

■ 2.4Ghz Jamming

● Link connections:

○ Can be established from any menu

22

Bluetooth: Hands-Free Profile (HFP)

HFP is used to place and receive audio

streams.

● Based on RFCOMM

● Manages the communication process

● Signal control messages

● AT-commands based

● Audio goes through SCO channel

23

Bluetooth: Hands-Free Profile (HFP)

24

Bluetooth: Hands-Free Profile (HFP)

● Most of the AT-commands are standardized

● Vendor-specific AT-commands might be implemented:

○ Mobile phone specific: Android, IPhone

○ Voice Recognition: Siri

● Request example: AT+COMMAND=”AAAA”,”BBBB”
● Response example: +COMMAND: “CCCC”,“DDDD”

25

AT Command Comment

AT+APLSIRI? AT command to retrieve Siri status
information

AT+APLNRSTAT Obtains information about the state of
incoming audio

HFP: Stack Buffer Overflow

26

Bluetooth: HFP Vulnerability: Root cause

27

size_t __fastcall HF_ParseRsp(RfDlc *dlc, uint8_t *rxbf, size_t rxlen)

{

size_t params[10]; // [sp+8Ch] [bp-94h] BYREF

if (j_CmpBuffer(rxbf, "+ANDROID:"))

{

if (j_CmpBuffer(&rxbf[space_len + 11], "probe"))

{

param_cnt = j_GetParameters(

probe_bf,

(unsigned __int16)(probe_len - 2),

&probe_params,

probe_lens,

2u);

switch (param_cnt)

{

case 2:

if ((unsigned int)probe_lens[1] - 2 <= 0xC)

{

v40 = probe_lens[0];

memcpy(params, probe_params, probe_lens[0]);

}

}

size_t __fastcall HF_ParseRsp(RfDlc *dlc, uint8_t *rxbf, size_t rxlen)

{

size_t params[10]; // [sp+8Ch] [bp-94h] BYREF

if (j_CmpBuffer(rxbf, "+ANDROID:"))

{

if (j_CmpBuffer(&rxbf[space_len + 11], "probe"))

{

param_cnt = j_GetParameters(

probe_bf,

(unsigned __int16)(probe_len - 2),

&probe_params,

probe_lens,

2u);

switch (param_cnt)

{

case 2:

if ((unsigned int)probe_lens[1] - 2 <= 0xC)

{

v40 = probe_lens[0];

memcpy(params, probe_params, probe_lens[0]);

}

}

Bluetooth: HFP Vulnerability: Root cause

28

Bluetooth: HFP Vulnerability: Root cause

29

size_t __fastcall HF_ParseRsp(RfDlc *dlc, uint8_t *rxbf, size_t rxlen)

{

size_t params[10]; // [sp+8Ch] [bp-94h] BYREF

if (j_CmpBuffer(rxbf, "+ANDROID:"))

{

if (j_CmpBuffer(&rxbf[space_len + 11], "probe"))

{

param_cnt = j_GetParameters(

probe_bf,

(unsigned __int16)(probe_len - 2),

&probe_params,

probe_lens,

2u);

switch (param_cnt)

{

case 2:

if ((unsigned int)probe_lens[1] - 2 <= 0xC)

{

v40 = probe_lens[0];

memcpy(params, probe_params, probe_lens[0]);

}

}

Bluetooth: HFP Vulnerability: Root cause

30

size_t __fastcall HF_ParseRsp(RfDlc *dlc, uint8_t *rxbf, size_t rxlen)

{

size_t params[10]; // [sp+8Ch] [bp-94h] BYREF

if (j_CmpBuffer(rxbf, "+ANDROID:"))

{

if (j_CmpBuffer(&rxbf[space_len + 11], "probe"))

{

param_cnt = j_GetParameters(

probe_bf,

(unsigned __int16)(probe_len - 2),

&probe_params,

probe_lens,

2u);

switch (param_cnt)

{

case 2:

if ((unsigned int)probe_lens[1] - 2 <= 0xC)

{

v40 = probe_lens[0];

memcpy(params, probe_params, probe_lens[0]);

}

}

Bluetooth: HFP Vulnerability: Root cause

31

size_t __fastcall HF_ParseRsp(RfDlc *dlc, uint8_t *rxbf, size_t rxlen)

{

size_t params[10]; // [sp+8Ch] [bp-94h] BYREF

if (j_CmpBuffer(rxbf, "+ANDROID:"))

{

if (j_CmpBuffer(&rxbf[space_len + 11], "probe"))

{

param_cnt = j_GetParameters(

probe_bf,

(unsigned __int16)(probe_len - 2),

&probe_params,

probe_lens,

2u);

switch (param_cnt)

{

case 2:

if ((unsigned int)probe_lens[1] - 2 <= 0xC)

{

v40 = probe_lens[0];

memcpy(params, probe_params, probe_lens[0]);

}

}

size_t __fastcall HF_ParseRsp(RfDlc *dlc, uint8_t *rxbf, size_t rxlen)

{

size_t params[10]; // [sp+8Ch] [bp-94h] BYREF

if (j_CmpBuffer(rxbf, "+ANDROID:"))

{

if (j_CmpBuffer(&rxbf[space_len + 11], "probe"))

{

param_cnt = j_GetParameters(

probe_bf,

(unsigned __int16)(probe_len - 2),

&probe_params,

probe_lens,

2u);

switch (param_cnt)

{

case 2:

if ((unsigned int)probe_lens[1] - 2 <= 0xC)

{

v40 = probe_lens[0];

memcpy(params, probe_params, probe_lens[0]);

}

}

Bluetooth: HFP Vulnerability: Root cause

32

Bluetooth: HFP Vulnerability: Root cause

33

if (j_CmpBuffer(rxbf, "+ANDROID:"))

{

if (j_CmpBuffer(&rxbf[space_len + 11], "audiosource"))

{

j_GetParameters(

v48,

(unsigned __int16)(v49 - 2),

tmp_params,

&tmp_lens,

1u

);

memcpy(params, tmp_params[0], tmp_lens);

}

}

if (j_CmpBuffer(rxbf, "+ANDROID:"))

{

if (j_CmpBuffer(&rxbf[space_len + 11], "vds"))

{

j_GetParameters(

v52,

(unsigned __int16)(v43 - 2),

tmp_params,

&tmp_lens,

1u

);

memcpy(probe_lens, tmp_params[0], tmp_lens);

}

}

if (j_CmpBuffer(rxbf, "+ANDROID:"))

{

if (j_CmpBuffer(&rxbf[space_len + 11], "vds"))

{

j_GetParameters(

v52,

(unsigned __int16)(v43 - 2),

tmp_params,

&tmp_lens,

1u

);

memcpy(probe_lens, tmp_params[0], tmp_lens);

}

}

if (j_CmpBuffer(rxbf, "+ANDROID:"))

{

if (j_CmpBuffer(&rxbf[space_len + 11], "audiosource"))

{

j_GetParameters(

v48,

(unsigned __int16)(v49 - 2),

tmp_params,

&tmp_lens,

1u

);

memcpy(params, tmp_params[0], tmp_lens);

}

}

Bluetooth: HFP Vulnerability: Root cause

34

Multiple Stack-based Buffer Overflows

HFP: Exploitation

35

Bluetooth: HFP Exploitation

● Trivial ROP chain to call system() and gracefully

continue BT stack execution

○ Restriction: 0x2c, 0x22 bytes are disallowed

36

Bluetooth: HFP Exploitation

● Trivial ROP chain to call system() and gracefully

continue BT stack execution

○ Restriction: 0x2c, 0x22 bytes are disallowed

● But where is the system payload stored?

37

Bluetooth: HFP Exploitation

● Trivial ROP chain to call system() and gracefully

continue BT stack execution

○ Restriction: 0x2c, 0x22 bytes are disallowed

● But where is the system payload stored?

○ Utilize AVCTP Bluetooth profile

○ AVCTP fragmentation message buffer

38

Bluetooth: HFP Exploitation

● Trivial ROP chain to call system() and gracefully

continue BT stack execution

○ Restriction: 0x2c, 0x22 bytes are disallowed

● But where is the system payload stored?

○ Utilize AVCTP Bluetooth profile

○ AVCTP fragmentation message buffer

● Content of the system payload?

39

Bluetooth: HFP Exploitation: Payload

● Problem:

○ Firewall restrictions based on the iptables rules

○ Limits outbound connections

40

Bluetooth: HFP Exploitation: Payload

● Problem:

○ Firewall restrictions based on the iptables rules

○ Limits outbound connections

● Solution:

○ Get rid of DROP rules to establish a reverse shell

41

Bluetooth: HFP Exploitation: Overview

42

Bluetooth: HFP Exploitation: Results

43

Bluetooth: HFP Exploitation: Results

44

What do we have so far?

● 1-click Remote Code Execution (~0.5-clicks)

○ HFP Stack Buffer Overflow

● Permissions: root

● Ability to load arbitrary kernel modules

○ Absence of a kernel module signature verification

System

45

System: Information

● Bootloader: U-boot 2013.01.01

● Kernel: Linux-3.14.49

● SELinux: No

● Processes hypervisor: systemd

● Filesystem: ext4

● Filesystem integrity control: dm-verity

● Firewall configuration: Enabled

● Intrusion detection systems: None

● tmpfs under /tmp: Executable

46

System: Debugging

To explore the system further we need debugging

47

System: Debugging

To explore the system further we need debugging

Problem:

● When connecting gdb to a process, IVI reboots

48

System: Debugging

To explore the system further we need debugging

Problem:

● When connecting gdb to a process, IVI reboots

● The target process has special signal handling?

49

System: Debugging

To explore the system further we need debugging

Problem:

● When connecting gdb to a process, IVI reboots

● The target process has special signal handling? No

50

System: Debugging

To explore the system further we need debugging

Problem:

● When connecting gdb to a process, IVI reboots

● The target process has special signal handling? No

● Kernel intercepts specific signals from processes?

51

System: Debugging

To explore the system further we need debugging

Problem:

● When connecting gdb to a process, IVI reboots

● The target process has special signal handling? No

● Kernel intercepts specific signals from processes? Yes

52

System: Debugging

To explore the system further we need debugging

Problem:

● When connecting gdb to a process, IVI reboots

● The target process has special signal handling? No

● Kernel intercepts specific signals from processes? Yes

53

Kernel: Obtaining an Image

Kernel image can be found in the extracted firmware, however:

● The image is obviously compressed (uImage)

● Can’t be decompressed via standard algorithms:

○ xz / lzma / gunzip / etc

● binwalk doesn’t give any clues either

54

Kernel: Obtaining an Image

Kernel image can be found in the extracted firmware, however:

● The image is obviously compressed (uImage)

● Can’t be decompressed via standard algorithms:

○ xz / lzma / gunzip / etc

● binwalk doesn’t give any clues either

55

Explore the u-boot bootloader!

Kernel: uImage Header

56

00000000: 27 05 19 56 db 2f 53 e2 5d 10 9b be 00 50 59 94

00000010: 10 00 7f c0 10 00 80 00 93 c9 01 d1 05 02 02 4d

ih_os: Linux

ih_arch: ARM

ih_type: Kernel

ih_comp: ???

ih_magic ih_hcrc ih_time ih_size

ih_load

ih_ep

ih_dcrc

Kernel: U-boot bootloader

57

int __fastcall bootm_load_os(...)

{

if (comp == 1) {

// GUNZIP: uncompress

}

else if (comp) {

if (comp != 0x4d) {

printf("Unimplemented compression type %d\n", comp);

return -3;

}

v16 = lz77_decompress(

load_buf,

lzma_len,

image_buf,

image_len

);

}

}

Kernel: U-boot bootloader

58

int __fastcall bootm_load_os(...)

{

if (comp == 1) {

// GUNZIP: uncompress

}

else if (comp) {

if (comp != 0x4d) {

printf("Unimplemented compression type %d\n", comp);

return -3;

}

v16 = lz77_decompress(

load_buf,

lzma_len,

image_buf,

image_len

);

}

}

LZ77 - ???

Kernel: U-boot bootloader

What is LZ77?

● Lossless data compression algorithm

○ Published in 1977

● Basis for LZW, LZSS, LZMA and others

● Public implementations: cstdvd/lz77

○ Didn’t work for our kernel image

59

https://github.com/cstdvd/lz77

Kernel: U-boot bootloader

What is LZ77?

● Lossless data compression algorithm

○ Published in 1977

● Basis for LZW, LZSS, LZMA and others

● Public implementations: cstdvd/lz77

○ Didn’t work for our kernel image

Solution: Emulate lz77_decompress() via Qiling framework

60

https://github.com/cstdvd/lz77

Kernel: exchnd LKM

Exception Handler Driver (built-in):

● Catches exceptions (signals) from processes

○ Registers kprobes / jprobes at specific kernel procedures

● Does predefined actions when an exception event occurs

○ In our case, it’s IVI reboot for SIGTRAP

● Provides post-mortem data

61

Kernel: exchnd LKM

Exception Handler Driver (built-in):

● Catches exceptions (signals) from processes

○ Registers kprobes / jprobes at specific kernel procedures

● Does predefined actions when an exception event occurs

○ In our case, it’s IVI reboot for SIGTRAP

● Provides post-mortem data

Solution:

● Upload a custom LKM that removes the registered kprobes / jprobes

62

Kernel: exchnd LKM: Results

63

What do we have so far?

● Kernel-mode code execution

● Uncompressed Linux kernel image

● Disabled exception handler LKM

● Finally, we can debug any process on the system

Persistence and Data Exfiltration

64

Persistence

Possible ways to achieve persistence on IVI

● Find interesting writable configurations

● Compromise the secure boot chain

65

Partition Path Mode

/dev/mmcblk1p1 / ro

/dev/mmcblk1p3 /var/opt/bosch/persistent rw

/dev/mmcblk1p5 /var/opt/bosch/static ro

/dev/mmcblk1p6 /var/opt/bosch/dynamic rw

Persistence: SSH Server

ALD - Authorization Level Daemon, a

daemon for automatically switching

security levels in the system:

● sshd@.service

● firewall.service

66

Persistence: SSH Server

SSH server can be enabled on Wi-Fi or USB2Ethernet interfaces:

67

rm /var/opt/bosch/dynamic/ald/SSHdisabled

rm /var/opt/bosch/dynamic/ald/rootLogindisabled

touch /var/opt/bosch/dynamic/ald/SSHenabled

touch /var/opt/bosch/dynamic/ald/rootLogindenabled

rm /var/opt/bosch/dynamic/ald/FWdisabled

Persistence: SSH Server patch

A new service tty-ssh-checker is added as a dependency for sshd@.service:

68

#!/bin/bash

Marker_Path=/var/opt/bosch/dynamic/ald

ALD_Level=$(dbus-send --system --dest=com.adit.de.ALD ...)

...

if [${ALD_Level} -lt 30];

then

if [-f ${Marker_Path}/SSHenabled];

then

rm ${Marker_Path}/SSHenabled

touch ${Marker_Path}/SSHdisabled

fi

fi

sync

exit 0

Persistence: SSH Server patch bypass

69

Persistence: Secure Boot Overview

70

Persistence: HAB

● HAB code is located in the Boot ROM and is loaded at 0 address

● After the system boot, this memory is still loaded

● It can be dumped via accessing physical addresses 0x0 - 0x12000

○ Utilize /dev/mem

71

Persistence: Secure Boot Bypass

● Known CVE-2017-7932 found by Quarkslab:
○ Stack Overflow in CSF certificate processing

72

Persistence: Secure Boot Bypass

● Known CVE-2017-7932 found by Quarkslab:
○ Stack Overflow in CSF certificate processing

● Allows to disable signature check for DTB
● Patch arguments for dm-verity with extra value ignore_corruption

73

Persistence: Secure Boot Bypass

● Modify the root filesystem:

● Patch the bash script /opt/bosch/base/bin/app_fcswupdate_wrapper.sh,
which is executed on every boot

74

Data exfiltration

● IVI has access to the Internet over TCU

● DNS requests are not filtered

● Requests to subdomains *.attacker-srv.com

can be used for data exfiltration

● Use dnscat21 to create a tunnel to the TCP

server on IVI

75

1 https://github.com/iagox86/dnscat2

https://github.com/iagox86/dnscat2

CAN Communication

76

CAN Communication

Possible ways to achieve arbitrary access to

the CAN bus:

● Utilize legitimate interfaces and APIs

● Upload modified firmware to the RH850

● Exploit vulnerabilities in the

communication protocol

77

CAN Communication: Information Gathering

● OPKG - Open PacKaGe Management

● Grep for CAN word in package descriptions

● Found that services use inc-scc network service

● The network traffic on this interface is non-typical

78

CAN Communication: Information Gathering for INC

● Source code in the SDK on the official website1

● Push request2

● /opt/bosch/base/bin/inc_send_out.out can be used as an example to test

CAN communication on IVI

79

1https://oss.bosch-cm.com/download/Nissan_AIVI/2610_190620/OSS_DVD_Content.zip
2https://lwn.net/Articles/706002/

https://oss.bosch-cm.com/download/Nissan_AIVI/2610_190620/OSS_DVD_Content.zip
https://lwn.net/Articles/706002/

CAN Communication: INC Internals

80

CAN Communication: INC Client Example

CAN Communication: INC Ports

82

● All ports can be found in

include/linux/inc_ports.h

● The base port number - 0xc700

● For example, DOWNLOAD port

- (0xc700 | 11)

CAN Communication: Legit Way

● /opt/bosch/base/bin/csm_proc_out.out has functionality to send CAN

messages

○ Signals - one-time CAN message, used to notify ECU clients or receive

notifications from them

○ Requests - multiple CAN messages with the connection phase

● Uses NET_BROADCAST and NET_TP<0..8> INC ports for requests

83

CAN Communication: Legit Way

84

CAN Communication: Legit Way

85

bus type

internal address

CAN Communication: Legit Way

86

CAN ID: 0x767

bus type

internal address

CAN Communication: Legit Way

Summary:

● We can use the legit way to send CAN messages

● Payload of the message can be controlled

● We can use only whitelisted CAN IDs

Let check the update mechanism of RH850 for possible firmware modification

87

CAN Communication: RH850 Update Process

● IVI can update RH850 firmware:
○ Firmware is located in /ivi/firmware/v850/firmware/v850/aivi_s1_a

○ Utilizes /opt/bosch/base/bin/swu_common_v850_app_out.out to install update

● Firmware is delivered in DNL binary format

88

Block ID Name Comment

0x8300 boot according the mode load loader or app

0x4023 loader used during updating process

0x4024 app code for usual workflow

0x8000 signature used during updating and flashed to the memory for secure booting

CAN Communication: RH850 Update Process Protocol

Uses INC interface socket on DOWNLOAD port and utilizes UDS protocol:

1. Switch to loader: 10-60

2. Initiate download: 34-00-44-<address>-<size>

3. Transfer firmware: 36-00-...

4. Send signature: 2e-25-fd-...

5. End transfer: 37

6. Check CRC value: 22-...

89

CAN Communication: RH850 Signature Verification

Signature verification happens:

● While processing the End

Transfer command in update

mechanism

● During boot process

uint FUN_0000aac4(void) {

if (cRamfede96f0 == '\x01') {

cRamfede96f0 = '\x02';

loadCerts();

iVar1 = calcSha256ForTransfer();

if ((iVar1 == 1) ||

((((... || (iVar1 = validateSignature(pvRamfede5150), ...))

&& ((... || (iVar1 = validateSignature(pvRamfede5154), ...)))) &&

((... || (iVar1 = validateSignature(pvRamfede5158), ...)))))

) {

uVar2 = 1;

}

else {

uVar2 = FUN_00006dda(..., gsUnkStorageForTransferData1,0x10);

}

}

else {

uVar2 = (uint)(cRamfede96f0 != '\x02');

}

return uVar2;

}

90

CAN Communication: RH850 Update Process

Summary:

● Obtained RH850 firmware

● Identified security mechanisms that protect from firmware modification

It is time to check for vulnerabilities on RH850 side to achieve full code

execution

91

CAN Communication: RH850 Attack Surface

A lot of INC ports for requests -> A lot of handlers in firmware -> Huge attack surface

92

CAN Communication: RH850 Tracing

93

IVI has rich tracing functionality on both iMX.6 and RH850 side - very helpful for

research

CAN Communication: RH850 Stack Overflow Vulnerability

● Vulnerability exists during the requests processing over NET_BROADCAST

port with number (0xc700 | 15)

● The following callbacks are used Inside the firmware :

1. prepareNetBroadcastRequestBuffer - checks income size <= 0x65

2. fillNetBroadcastRequestBuffer - places input data into global memory

3. processNetBroadcastRequestBuffer - processes global memory,

accepts arguments i_pPacket and i_dPacketSize

94

CAN Communication: RH850 Stack Overflow Vulnerability

95

;

if (*i_pPacket == 0x50) {

_local_30 = 0;

uStack_2c = 0;

uStack_28 = 0;

uStack_24 = 0;

pCurLocalStackBuffer = &sLocalStackBuffer;

dID = *(uint32_t *)(i_pPacket + 8);

sLocalStackBuffer = 0;

local_34 = 0;

dPayloadSize = (i_dPacketSize - 0xdU);

uVar5 = 0;

if (dPayloadSize != 0) {

pPayload = i_pPacket + dPayloadSize + 0xc;

do {

bValue = *pPayload;

pPayload = pPayload + -1;

uVar5 = uVar5 + 1;

*pCurLocalStackBuffer++ = bValue;

} while (uVar5 < dPayloadSize);

}

CAN Communication: RH850 Stack Overflow Vulnerability

96

;

if (*i_pPacket == 0x50) {

_local_30 = 0;

uStack_2c = 0;

uStack_28 = 0;

uStack_24 = 0;

pCurLocalStackBuffer = &sLocalStackBuffer;

dID = *(uint32_t *)(i_pPacket + 8);

sLocalStackBuffer = 0;

local_34 = 0;

dPayloadSize = (i_dPacketSize - 0xdU);

uVar5 = 0;

if (dPayloadSize != 0) {

pPayload = i_pPacket + dPayloadSize + 0xc;

do {

bValue = *pPayload;

pPayload = pPayload + -1;

uVar5 = uVar5 + 1;

*pCurLocalStackBuffer++ = bValue;

} while (uVar5 < dPayloadSize);

}

CAN Communication: RH850 Stack Overflow Vulnerability

97

;

if (*i_pPacket == 0x50) {

_local_30 = 0;

uStack_2c = 0;

uStack_28 = 0;

uStack_24 = 0;

pCurLocalStackBuffer = &sLocalStackBuffer;

dID = *(uint32_t *)(i_pPacket + 8);

sLocalStackBuffer = 0;

local_34 = 0;

dPayloadSize = (i_dPacketSize - 0xdU);

uVar5 = 0;

if (dPayloadSize != 0) {

pPayload = i_pPacket + dPayloadSize + 0xc;

do {

bValue = *pPayload;

pPayload = pPayload + -1;

uVar5 = uVar5 + 1;

*pCurLocalStackBuffer++ = bValue;

} while (uVar5 < dPayloadSize);

}

CAN Communication: RH850 Stack Overflow Vulnerability

98

;

if (*i_pPacket == 0x50) {

_local_30 = 0;

uStack_2c = 0;

uStack_28 = 0;

uStack_24 = 0;

pCurLocalStackBuffer = &sLocalStackBuffer;

dID = *(uint32_t *)(i_pPacket + 8);

sLocalStackBuffer = 0;

local_34 = 0;

dPayloadSize = (i_dPacketSize - 0xdU);

uVar5 = 0;

if (dPayloadSize != 0) {

pPayload = i_pPacket + dPayloadSize + 0xc;

do {

bValue = *pPayload;

pPayload = pPayload + -1;

uVar5 = uVar5 + 1;

*pCurLocalStackBuffer++ = bValue;

} while (uVar5 < dPayloadSize);

}

CAN Communication: RH850 Stack Overflow Vulnerability

99

;

if (*i_pPacket == 0x50) {

_local_30 = 0;

uStack_2c = 0;

uStack_28 = 0;

uStack_24 = 0;

pCurLocalStackBuffer = &sLocalStackBuffer;

dID = *(uint32_t *)(i_pPacket + 8);

sLocalStackBuffer = 0;

local_34 = 0;

dPayloadSize = (i_dPacketSize - 0xdU);

uVar5 = 0;

if (dPayloadSize != 0) {

pPayload = i_pPacket + dPayloadSize + 0xc;

do {

bValue = *pPayload;

pPayload = pPayload + -1;

uVar5 = uVar5 + 1;

*pCurLocalStackBuffer++ = bValue;

} while (uVar5 < dPayloadSize);

}

CAN Communication: RH850 Exploitation

100

● Payload is fully controllable

● No stack canaries

● Global memory is RWX

● Put the shellcode payload into the DLT request

buffer in global memory

CAN Communication: RH850 Exploitation Issues

● Problems:

○ Only one client can connect to NET_BROADCAST port

○ Service csm_proc_out.out constantly communicates over it

○ If this service is killed, the watchdog is triggered and IVI reboots

● Solution:

○ Inject exploit code into the service

■ Disable signal handlers in the kernel using the “Absence of a kernel module signature

verification” vulnerability

101

CAN Communication: RH850 Arbitrary CAN Messages

102

Gateway Filtering

103

To CAN-IDs from IDT CAN

Vehicle CAN 0x3DC, 0x49F, 0x56E, 0x5FC - 0x5FE, 0x620 - 0x621, 0x6FA, 0x700 - 0x7FF

ADAS CAN 0x3E9, 0x49F, 0x620-0x621, 0x6FA, 0x700-0x7FF

Chassis CAN 0x49F, 0x620-0x621, 0x6FA, 0x700-0x7FF

ITS CAN 0x49F, 0x5FE, 0x620-0x621, 0x6FA, 0x700-0x7FF

Diagnostic CAN -

Nissan Specific UDS Commands

The easiest (but not the cheapest)

way to gain interesting UDS

commands:

● Buy diagnostic setup

(software and hardware)

● Explore UI for actions

● Capture the communication

traffic

104

Nissan Specific UDS Commands

105

Nissan Specific UDS Commands

● CONSULT III communicates with the adapter over USB

● UDS commands can be identified in USB traffic

106

Nissan Specific UDS Commands

107

ECU CAN ID Message Comment

BCM 745

0430690001000000 mirrors close

0430690002000000 mirrors open

0430070001000000 doors lock

0430070002000000 doors open

0430220001000000 horn

0430452003000000 wiper

04303b2002000000 light

ADAS 75D 0430252001000000 steering wheel

Attack Summary

108

Attack Summary #0: Initial State

109

Attack Summary #1: One-time Exploit via BT

110

Attack Summary #2: Persistence via N-day in HAB

111

Attack Summary #3: Remote Control via DNS

112

Attack Summary #4: Controlling Critical Body Elements

113

114

Attack Summary: Demonstration

youtu.be/56VreoKtStw

youtu.be/56VreoKtStw

List of Identified Vulnerabilities

115

● CVE-2025-32056 – Anti-Theft bypass

● CVE-2025-32057 – app_redbend: MiTM attack

● CVE-2025-32058 – v850: Stack Overflow in CBR processing

● CVE-2025-32059 – Stack buffer overflow leading to RCE [0]

● CVE-2025-32060 – Absence of a kernel module signature verification

● CVE-2025-32061 – Stack buffer overflow leading to RCE [1]

● CVE-2025-32062 – Stack buffer overflow leading to RCE [2]

● PCA_NISSAN_009 – Improper traffic filtration between IT CAN and other

CAN buses

● CVE-2025-32063 – Persistence for Wi-Fi network

● PCA_NISSAN_012 – Persistence through CVE-2017-7932 in HAB of i.MX 6

Disclosure Timeline

116

● 02.08.2023 – PCAutomotive sends the advisory to Nissan Cybersecurity Team
● 09.08.2023 - 11.12.2023 – Email discussion about the findings’ criticality
● 04.01.2024 – PCAutomotive sends a video demonstration of the full attack chain; asks about CVE

registration; notifies about publication plans
● 26.01.2024 – Nissan Cybersecurity Team confirms the vulnerabilities; starts planning their mitigations;

notifies us to register CVE by ourselves; accepted the publication plans
● 25.04.2024 – PCAutomotive requests CVE registration from MITRE
● 19.05.2024 – MITRE forwards us to Bosch PSIRT
● 10.09.2024 – PCAutomotive sends Bosch PSIRT a request to register CVE
● 11.09.2024 – Bosch PSIRT responds, that they didn’t receive any information about vulnerabilities from

Nissan Cybersecurity Team
● 12.09.2024 – PCAutomotive notifies Nissan Cybersecurity Team about the communication with Bosch

PSIRT
● 23.09.2024 – PCAutomotive sends the advisory to Bosch PSIRT
● 06.11.2024 – PCAutomotive notifies Bosch PSIRT about the publication plans
● 11.03.2025 – Bosch PSIRT accepts the publication, declines to register CVE and forwards us to ASRG
● 18.03.2025 – PCAutomotive requests CVE registration from ASRG

Thanks to Contributors

117

● Aleksei Stennikov

● Danila Parnishchev

● Artem Ivachev

● Anna Breeva

● Abdellah Benotsmane

● Balazs Szabo

● All PCAutomotive crew

Thank you for your attention!
Questions?

118

Contact us: info@pcautomotive.com

	Slide 1
	Slide 2: Agenda
	Slide 3: Introduction
	Slide 4: Who Are We?
	Slide 5: Target: Nissan Leaf ZE1
	Slide 6: Testbench
	Slide 7: Anti-Theft: General Information
	Slide 8: Anti-Theft: Nissan IVI Logic
	Slide 9: Anti-Theft: CAN Message Structure
	Slide 10: Anti-Theft: Bypass
	Slide 11: Infotainment: Hardware Analysis
	Slide 12: Infotainment: Hardware Analysis: Internals #1
	Slide 13: Infotainment: Hardware Analysis: Internals #2
	Slide 14: Infotainment: Architecture and Connections
	Slide 15: Infotainment: Architecture and Connections
	Slide 16: Infotainment: Architecture and Connections
	Slide 17: Infotainment: Architecture and Connections
	Slide 18: Bluetooth
	Slide 19: Bluetooth
	Slide 20: Bluetooth: Bluedragon Evo Stack
	Slide 21: Bluetooth: Pairing
	Slide 22: Bluetooth: Pairing: Nissan
	Slide 23: Bluetooth: Hands-Free Profile (HFP)
	Slide 24: Bluetooth: Hands-Free Profile (HFP)
	Slide 25: Bluetooth: Hands-Free Profile (HFP)
	Slide 26: HFP: Stack Buffer Overflow
	Slide 27: Bluetooth: HFP Vulnerability: Root cause
	Slide 28: Bluetooth: HFP Vulnerability: Root cause
	Slide 29: Bluetooth: HFP Vulnerability: Root cause
	Slide 30: Bluetooth: HFP Vulnerability: Root cause
	Slide 31: Bluetooth: HFP Vulnerability: Root cause
	Slide 32: Bluetooth: HFP Vulnerability: Root cause
	Slide 33: Bluetooth: HFP Vulnerability: Root cause
	Slide 34: Bluetooth: HFP Vulnerability: Root cause
	Slide 35: HFP: Exploitation
	Slide 36: Bluetooth: HFP Exploitation
	Slide 37: Bluetooth: HFP Exploitation
	Slide 38: Bluetooth: HFP Exploitation
	Slide 39: Bluetooth: HFP Exploitation
	Slide 40: Bluetooth: HFP Exploitation: Payload
	Slide 41: Bluetooth: HFP Exploitation: Payload
	Slide 42: Bluetooth: HFP Exploitation: Overview
	Slide 43: Bluetooth: HFP Exploitation: Results
	Slide 44: Bluetooth: HFP Exploitation: Results
	Slide 45: System
	Slide 46: System: Information
	Slide 47: System: Debugging
	Slide 48: System: Debugging
	Slide 49: System: Debugging
	Slide 50: System: Debugging
	Slide 51: System: Debugging
	Slide 52: System: Debugging
	Slide 53: System: Debugging
	Slide 54: Kernel: Obtaining an Image
	Slide 55: Kernel: Obtaining an Image
	Slide 56: Kernel: uImage Header
	Slide 57: Kernel: U-boot bootloader
	Slide 58: Kernel: U-boot bootloader
	Slide 59: Kernel: U-boot bootloader
	Slide 60: Kernel: U-boot bootloader
	Slide 61: Kernel: exchnd LKM
	Slide 62: Kernel: exchnd LKM
	Slide 63: Kernel: exchnd LKM: Results
	Slide 64: Persistence and Data Exfiltration
	Slide 65: Persistence
	Slide 66: Persistence: SSH Server
	Slide 67: Persistence: SSH Server
	Slide 68: Persistence: SSH Server patch
	Slide 69: Persistence: SSH Server patch bypass
	Slide 70: Persistence: Secure Boot Overview
	Slide 71: Persistence: HAB
	Slide 72: Persistence: Secure Boot Bypass
	Slide 73: Persistence: Secure Boot Bypass
	Slide 74: Persistence: Secure Boot Bypass
	Slide 75: Data exfiltration
	Slide 76: CAN Communication
	Slide 77: CAN Communication
	Slide 78: CAN Communication: Information Gathering
	Slide 79: CAN Communication: Information Gathering for INC
	Slide 80: CAN Communication: INC Internals
	Slide 81: CAN Communication: INC Client Example
	Slide 82: CAN Communication: INC Ports
	Slide 83: CAN Communication: Legit Way
	Slide 84: CAN Communication: Legit Way
	Slide 85: CAN Communication: Legit Way
	Slide 86: CAN Communication: Legit Way
	Slide 87: CAN Communication: Legit Way
	Slide 88: CAN Communication: RH850 Update Process
	Slide 89: CAN Communication: RH850 Update Process Protocol
	Slide 90: CAN Communication: RH850 Signature Verification
	Slide 91: CAN Communication: RH850 Update Process
	Slide 92: CAN Communication: RH850 Attack Surface
	Slide 93: CAN Communication: RH850 Tracing
	Slide 94: CAN Communication: RH850 Stack Overflow Vulnerability
	Slide 95: CAN Communication: RH850 Stack Overflow Vulnerability
	Slide 96: CAN Communication: RH850 Stack Overflow Vulnerability
	Slide 97: CAN Communication: RH850 Stack Overflow Vulnerability
	Slide 98: CAN Communication: RH850 Stack Overflow Vulnerability
	Slide 99: CAN Communication: RH850 Stack Overflow Vulnerability
	Slide 100: CAN Communication: RH850 Exploitation
	Slide 101: CAN Communication: RH850 Exploitation Issues
	Slide 102: CAN Communication: RH850 Arbitrary CAN Messages
	Slide 103: Gateway Filtering
	Slide 104: Nissan Specific UDS Commands
	Slide 105: Nissan Specific UDS Commands
	Slide 106: Nissan Specific UDS Commands
	Slide 107: Nissan Specific UDS Commands
	Slide 108: Attack Summary
	Slide 109: Attack Summary #0: Initial State
	Slide 110: Attack Summary #1: One-time Exploit via BT
	Slide 111: Attack Summary #2: Persistence via N-day in HAB
	Slide 112: Attack Summary #3: Remote Control via DNS
	Slide 113: Attack Summary #4: Controlling Critical Body Elements
	Slide 114: Attack Summary: Demonstration
	Slide 115: List of Identified Vulnerabilities
	Slide 116: Disclosure Timeline
	Slide 117: Thanks to Contributors
	Slide 118: Thank you for your attention! Questions?

