
ImageC2Gen: Customizing GenAI models to Conceal Commands in
Images for Command and Control (C2) Attacks

Qian Feng *1, Chris Navarrete †1, Yanhui Jia ‡1, Qi Deng §1, Durgesh Sangvikar ¶1, Iris Dai ||1, Haozhe
Zhang **1, Mickey Zhang ††1, and Shengming Xu ‡‡1

1Palo Alto Networks

March 24, 2025

Abstract

Command and Control (C2) attacks involve estab-
lishing an encrypted connection between victim
machines and C2 servers. Utilizing Image-based
C2 makes it more challenging for the network se-
curity and forensic analysis, even when firewalls
have decryption capabilities enabled. This is be-
cause C2 images can be designed to resemble
genuine pictures, causing the traffic generated by
C2 requests to appear as normal image requests.
Steganography techniques have been employed
to embed C2 instructions within images, but such
methods typically require a parser for decoding
the commands. Antivirus software can easily de-
tect this parser through code analysis, as the de-
coding logic is hard-coded.

In this paper, we propose to train a generative AI
(GenAI) model to encode and decode C2 com-
mands into or from arbitrary images. Instead of
using a hard-coded parser, we train genAI ML
models with arbitrary images. The output is an
image with C2 commands hiddeing in it, and a
decoder model which is used to decode the C2
commands from the image. This approach makes
it more challenging for traditional anti-virus de-
tection techniques. The malicious model used as
a C2 parser is a legitimate model, and it is not
code but a model file with weights. Therefore,
traditional code analysis would be ineffective for
detection. Additionally, signature-based detection

*qfeng@paloaltonetworks.com
†cnavarrete@paloaltonetworks.com
‡yjia@paloaltonetworks.com
§qdeng@paloaltonetworks.com
¶dsangvikar@paloaltonetworks.com
||ydai@paloaltonetworks.com

**haozhang@paloaltonetworks.com
††mzhang@paloaltonetworks.com
‡‡sxu1@paloaltonetworks.com

is also difficult since the hash value of the model
can be easily updated by the model retraining.

1. Introduction
Generative AI is a specialized field of artificial intelligence
that concentrates on generating novel and unique content.
Unlike conventional AI models, which merely recognize
patterns or make predictions, generative AI can produce en-
tirely new content. It has been used for various applications,
including text, image, and video generation. Numerous re-
searchers concentrate on utilizing GenAI models to improve
our lives or identifying weaknesses in GenAI models. In
this paper, we investigate the potential application of GenAI
for malicious purposes. Specifically, we aim to explore the
feasibility of training a malicious generative AI model to
serve attacks, specifically for C2 attacks.

Command and Control (C2) attacks function by establishing
an encrypted connection between victim machines and C2
servers. If the firewall enables the decryption feature, secu-
rity researchers still have the capability to extract features
from the C2 traffic for detection. Image based C2 makes this
analysis harder even if the firewall enables the decryption
feature. This because the network traffic itself is legitimate,
and all malicious contents are hidden in a actual picture.
Identifying malicious code buried behind a actual picture is
quite challenging and it is still an open research question.

Image based C2 could not be captured by the network detec-
tion, but the C2 decoding logic in its C2 stager still has some
patterns can be used for detection at the endpoint. This is
because that many of the existing Steganography techniques
used by attackers are rule-based. They embedded the pay-
load in the least significant bytes of an existing image so
that it looks like an actual picture. It could be hard to detect
an embedded image, but it would not be that hard to detect
the stager used to decode and extract the malicious payload
from the image. The decoding logic is hard coded in code,
so it can be easily detected via antivirus software by using

1

code analysis.

In this paper, we propose training Generative AI (GenAI)
models to encode and decode C2 commands into or from
arbitrary images. Instead of using a hard-coded parser, we
utilize ML models to encode and decode C2 commands.
This approach makes it more challenging for traditional anti-
virus detection techniques to identify malicious models via
code analysis. The model-based C2 parser is a legitimate
model, and it is not code but a model file with weights.
Therefore, traditional code analysis would be ineffective for
detection. Additionally, signature-based detection is also
difficult since the hash value of the model could be changed
due to the model-based C2 parser being easy to retrain. We
investigate the feasibility of utilizing AI models to generate
and decode C2 images, and we showcase its effectiveness
by providing a live demo.

2. Overview
In this paper, we provide a novel AI enhanced image based
C2 framework. Like the traditional C2 framework, the AI
enhanced image based C2 framework will also set up lis-
teners and generate stagers. The different part is that the
framework will have the imageGen component. This image-
Gen component will be used to generate an actual image
containing arbitrary C2 session keys or commands, and a
corresponding ML model which is used to extract C2 es-
sentials from the image. For each stager, the C2 server will
generate new images and models for it. Then it will publish
C2 models into huggingface or github. At the staging phase,
the stager will retrieve the corresponding image from the C2
server, and download the C2 model from model repositories.
The stager will use the C2 model to extract C2 keys and com-
mands for execution. Finally, it will encrypt the execution
results with the C2 key and send the result back to the C2
server. The figure 1 illustrates the whole C2 communication
process.

2.1. The AI enhanced C2 Server

The AI-enhanced C2 server will incorporate an AI compo-
nent, ImageGen, within its framework, which is responsible
for generating C2 images for C2 communication. When
attackers create a stager, the server initiates ImageGen to
produce the corresponding C2 images and their associated
C2 models. For each stager, the server maintains a staging
image and its corresponding staging model, used for the
handshake between the server and the stager. The server
retains the staging model locally, and incorporates the stag-
ing image into the stager. Additionally, the server holds a
session image and a variety of C2 images with different C2
commands along with a C2 model for C2 communication.
After creating a stager, the C2 server publishes the C2 model
for the stager to public repositories. When the C2 server

C2 Server

3. Post image to server for registeration

Victim Machine

5. Response

GitHub/huggingface

6. Download Model File

C2 model

2. Upload C2 model files

1. Traing
Models

C2 model 2

8. Encrypted results and send Encrypted Message

7. Extract C2 commands and session key
by using C2 model 2, execute the

command, and encrypt the result with the
key

Image with C2 commands
hidden inside

4. Extract the sessionID from the image
using c2 model 1, and send the image with
C2 command and session key to the victim
machine

2

Figure 1. The AI enhanced C2 Framework work flow.

receives a image, it will first extract the stager id from it
using the staging model. If it can be decryped successfully,
it will register the stager with the stager id and send the
corresponding session image of this stager to the victim
machine and wait for the response. If the stager responses
’ok’, then the C2 server will send C2 images to the victim
machine and wait the results. Finally, the results encrypted
with the session key will be returned. The C2 server will
decrypt the response with the session key and get the result.

2.2. The AI enhanced C2 Stager

The AI-enhanced C2 stager performs three main tasks. First,
it establishes a connection with the C2 server for a ”hand-
shake.” This handshake involves registering the stager on
the server-side and requesting a session key. The stager
sends the staging image embedded within itself back to the
server, including a unique stager ID, and awaits the server’s
response. The server extracts the stager ID using the stager
model stored on the server-side.

The server’s response to the victim machine is a session
image. The C2 stager downloads the stager model from
the public repository and extracts the session key from the
session image, marking the end of the handshake process.
Following this, the C2 stager waits for C2 commands from
the server.

When the server sends commands to the stager, it does so
through a C2 image. The stager extracts the C2 commands
from the image using the staging model and executes the
command. Once the command execution is complete, the
C2 stager encrypts the results with the session key and sends
the encrypted results back to the server.

2

3. Generating images with C2 commands
Generative AI models have already explored to hide secrete
data in actual pictures for the steganography and watermark-
ing purpose. They usually train a general model that can
extract any hidden data from arbitrary images. They shed
a light on this direction, but it has false positives and false
negatives. Therefore, it cannot be blindly reused in our C2
attack scenario. C2 attacker does not tolerate FP or FNs. We
do not want to extract wrong session keys or unrecognizable
commands from images for attack. In this case, we would
like to customize existing AI models to adapt them into our
use scenario. More specifically, we would like to customize
the training process used by these models to provide the
precise decoding capability and reduce the training time.

We train an encoder-decoder model jointly with an adversar-
ial discriminator. Specifically, the encoder receives a cover
image and a binary secret message and produces an encoded
image. The decoder is designed to retrieve the message from
an encoded image. The discriminator is trained to enable the
encoder network to produce fake images (encoded images)
that are indistinguishable from real images (cover images).
We find that training a generic model for arbitrary com-
mands often fails to achieve the accuracy level necessary to
be applicable. Therefore, we propose to train models using
pairs of images sampled from a finite subset, each paired
with a predefined list of commands. We demonstrate that
this produces images with the given commands which are
indistinguishable to the human eye: as shown in example
image1 and image2 below.

Figure 2 describes how our imageGen component works.
We will provide a set of training images where we would
like to hide C2 commands with a list of C2 secretes (C2
commands or C2 session keys). The model training process
will take input C2 secretes and cover images, and outputs
will be a visually indistinguishable encoded image, and a
decoder which can recover the original message. In this
paper, we adopted the model in () as our training model.
In this model, both the encoder and decoder networks are
trained simultaneously. Given an input message and a cover
image, the encoder generates an encoded image that is vi-
sually indiscernible from the original. Subsequently, the
decoder can extract and recover the original message from
this encoded image. We will use the encoded image as
our C2 or staging image, and the trained decoder model as
our C2 or staging model. In the future, we can use more
advanced latent diffusion models for our purpose.

As demonstrated by the two images generated by our model
in Figure 3, they appear indistinguishable from conventional
web images to the untrained eye. However, they are uniquely
engineered to embed a C2 command (“whoami” in image1)
and an encryption key (“62220ccff5”). The decoder model
will be the part of the stager of the C2 at the client side,

AI M odel
Training

Clean Image

Whoami

C2 commands

C2 model.pt

whoami 62220ccff5

Figure 2. The overview of ImageGen component.

aiding in the retrieval of commands and encryption keys
from images that are transmitted by the C2 server. The
client will then execute these commands, encrypt the results
of the execution using the encryption key, and subsequently
send them back to the server.

Figure 3. The two demos of encoded images.

4. Evaluation
We evaluated our AI-enhanced C2 framework on one of the
coco datasets(Lin et al., 2014). To evaluate the decoding
efficiency of the AI-enhanced C2 framework, we randomly
selected 10,000 images for testing purposes.

We conducted 2 sets of experiments. In the first set-
ting, we train model for each image with arbitrary C2
commands. C2 commands include tasks, whoami, upload
/opt/tools/bypassuac.exe etc.. For each pair of cover image and a
C2 command, we train the model on it until that the bit error of
the encoded image is zero. Then we will conduct the validation
on the encoded image. For each encoded image, we will use the
decoder model generated by the training process to extract the C2
command from the encoded image. If the extracted C2 command
matches the original C2 command, then we think the cover image
and the decoder model functions correctly. Otherwise, we think it
fails. The output is 1000 decoder models for 1000 images.

In the second setting, we train the model for all of the images with
a list of C2 commands in the single training process. In this case,
we also reuse the same validation strategy used in the setting 1.
The output is the only 1 decoder model, and it can decode C2

3

commands from 1000 images.

The experiments show that our model can successfully encode 15
C2 commands into 1000 images. The TPR is 100% in the experi-
ment I. The 15 C2 commands can also be successfully extracted by
using 1000 generated decoder models. The training time is around
5min per decoding model.

The results of Experiment II demonstrate that our model training
requires one hour and is able to effectively encode 15 C2 com-
mands into 1000 images. However, the True Positive Rate (TPR)
for decoding is close to zero.

Overall, it means that in AI-enhanced C2 framework, it is more
practical to train a C2 model per a cover image with C2 command.

5. Related Work
C2 attacks are increasingly using the steganography to con-
ceal their activities. Invoke-PSImage (psimage) as one famous
steganography tools, has been used by many attacks to hide infor-
mation. Besides, some other attacks such as the OilRig-associated
tool (link) to hide commands and data within bitmap images for C2
communication. However, the existing steganography technique in
this attack merely involves hardcoding C2 command information
into bitmap images, which makes them easy to detect. Recently,
advanced generative AI techniques have revolutionized steganog-
raphy, creating a fully trainable framework for data hiding. This
presentation will introduce a new method by repurposing recent
generative AI techniques for generating indiscernible images that
can conceal arbitrary C2 commands.

There are existing efforts to embed arbitrary data into images using
neural network models, such as the ECCV paper titled “HiDDeN:
Hiding Data With Deep Networks” (Zhu et al., 2018). However,
these methods cannot be directly applied to our C2 attacks because
the methods lack sufficient accuracy for embedding and extracting
messages for our C2 attacks. Building on existing work, we intro-
duce new training techniques and model designs that significantly
improve accuracy, making it suitable for our use scenario.Our
current model design utilizes the encoder-decoder architecture;
however, the method can be adapted to more recent generative
techniques, such as latent diffusion models.

References
Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D.

Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva
Ramanan, Piotr Doll’a r, and C. Lawrence Zitnick. Microsoft
COCO: common objects in context. CoRR, abs/1405.0312,
2014. URL http://arxiv.org/abs/1405.0312.

Jiren Zhu, Russell Kaplan, Justin Johnson, and Li Fei-Fei. Hidden:
Hiding data with deep networks. CoRR, abs/1807.09937, 2018.
URL http://arxiv.org/abs/1807.09937.

4

https://github.com/peewpw/Invoke-PSImage
https://unit42.paloaltonetworks.com/oilrig-novel-c2-channel-steganography/
http://arxiv.org/abs/1405.0312
http://arxiv.org/abs/1807.09937

