
Sharing is caring about an RCE attack
chain on Quick Share

Security Research Team Lead at SafeBreach

7֡ years in Security Research

Past research in Linux, embedded, Android

4 years Windows research

6֡ years in Security Industry

Past APT Malware Researcher

4֡ years Windows research

Why Quick Share

Protocol Overview

Fuzzing

Research Approach Shift ֡ Vulnerability Discovery

RCE Chain

Takeaways

GitHub ֡ Q&A

“we’re working with leading PC
manufacturers like LG to expand Quick Share

to Windows PCs as a pre-installed app.”

Google:

Various communication
methods

1st time by Google
on Windows

2019 by Daniele Antonioli, Nils Ole Tippenhauer,
Kasper Rasmussen:

“Nearby Threats: Reversing, Analyzing, and Attacking
Google’s ‘Nearby Connections’ on Android”
 About Nearby Connections API
 Only Android
 No CVEs

https://francozappa.github.io/publication/rearby/paper.pdf

Contain part of the code for Quick Share for Windows

New Windows App ա New App New vulns

Windows app will be pre-installed

Various communication methods ա Various attack vectors

Google’s first Windows app to use these APIs

Some of the code is open-source

No CVEs

Finding the communication functions ՟ Send & Recv:

offline_wire_formats.proto

st

Hooking Quick Share to sniff
sent and received Offline
Frames on Windows

Nearby Connections API

Quick Share Implementation

Protobuf Based

Encryption ՞ Google’s Ukey2

Advertisement based on Service ID

Multiple Connections Strategies
 P2P, Star, Cluster

CONNECTION _REQUEST

Ukey2 Client Init

Ukey2 Handshake Completed

CONNECTION _REQUEST

Ukey2 Server Init

Ukey2 Client Finish

Ukey2 Client Init

Ukey2 Key Exchange

Proprietary communication begins

CONNECTION _REQUEST

Connection Response

Connection Response

Ukey2 Key Exchange

Proprietary communication begins

CONNECTION _REQUEST

Connection Response

Connection Response

Enforces “Contacts” and “Your Devices” modes

Payload Transfer

???

Custom protobuf data in
Payload Transfer Payload

Custom protobuf data in
Payload Transfer OfflineFrame

Enforces “Contacts” and “Your Devices” modes

Paired Key Encryption

Paired Key Result

I N T R O D U C T I O N & AC C E P T

After paired Key Encryption:

 Introduction

I N T R O D U C T I O N & AC C E P T

After paired Key Encryption:

 Introduction

I N T R O D U C T I O N & AC C E P T

After paired Key Encryption:

Introduction

Accept

I N T R O D U C T I O N & AC C E P T

After paired Key Encryption:

 Introduction

Accept

Raw File
Payload Transfer

010100101101010101100010101101

Introduction & Accept

v

Stateless Stateful

Custom format to hold all packets of an entire session.

[DWORD Length] [Serialized Offline Frame]

4 non exploitable DoS vulnerabilities:

Invalid UTF8 continuation byte

Empty “Endpoint ID”

“Payload ID” set to 0

Fast 2 connections:
 same “nonce” in Connection Request
 UNKNOWN_VERSION set in Connection Response

// Break the string at the dot.

auto file_name1 = file_name.substr(0, first);

auto file_name2 = file_name.substr(first);

...

// While we successfully open the file, keep incrementing the count.

int count = 0;

while (!(file.rdstate() & std::ifstream::failbit)) {

 file.close();

 target = (folder + file_name1 + L" (" + std::to_wstring(++count) + L")" + file_name2);

 ...

 file.open(target, std::fstream::binary | std::fstream::in);

}

test.exe test(1).exe

Check if exists?
(trying open it)

test\x00.txt test\x00 (1).txt

File is being
transferred

Failure Success Adds an
index to the

file name

Create the new file

Fuzzer is running (slow but works)

Some unexploitable findings

Moving on to search for logic
vulnerabilities, instead of creating
the perfect fuzzer

Extremely generic

Handler class for each packet type

Code is full of thread creations all
over the place

Decline

Accept

I N T R O D U C T I O N & AC C E P T

After paired Key Encryption:

 Introduction

Accept

Raw File
Payload Transfer

010100101101010101100010101101

Introduction

Accept

Raw File
Payload Transfer

010100101101010101100010101101

I N T R O D U C T I O N & AC C E P T

After paired Key Encryption:

Bypasses all “Accept” in all visibility modes:

Your Devices

Contacts

Everyone

Connecting endpoints to
our own AP

Medium can be changed during the session.

// Accompanies Medium.WIFI_HOTSPOT.
message WifiHotspotCredentials {
 optional string ssid = 1;
 optional string password = 2;
 optional int32 port = 3;
 optional string gateway = 4 [default = "0.0.0.0"];
 // This field can be a band or frequency
 optional int32 frequency = 5 [default = -1];
}

// Accompanies Medium.WIFI_LAN.
message WifiLanSocket {
 optional bytes ip_address = 1;
 optional int32 wifi_port = 2;
}

// Accompanies Medium.WIFI_AWARE.
message WifiAwareCredentials {
 optional string service_id = 1;
 optional bytes service_info = 2;
 optional string password = 3;
}

// Accompanies Medium.WEB_RTC
message WebRtcCredentials {
 optional string peer_id = 1;
 optional LocationHint location_hint = 2;
}

// Accompanies Medium.BLUETOOTH.
message BluetoothCredentials {
 optional string service_name = 1;
 optional string mac_address = 2;
}

Android devices forced to connect to a
WiFi network

֧30 seconds’ max

Mitigated by Google
 Android devices no longer connect to internet through

a Quick Share Bandwidth Upgrade WiFi network

Internet access is permitted through
a Bandwidth Upgrade WiFi network!

We can now sniff responder internet traffic

Internet access is permitted through
a Bandwidth Upgrade WiFi network!

Create files in “Downloads” without approval

WiFi MITM Մ30 sec max)

Crash Quick Share

Force Quick Share to continuously open a file

Encrypted application layer is a standard.
Leveraging MITM for straight forward RCE won’t

work for most use cases.

Quick Share’s files are placed
in “Downloads” - the
downloads folder for browsers

Needed Abilities:

Know downloaded
executable file names

Overwrite files
(not just create)

Goal:

Overwrite an executable downloaded
by a victim before it runs ?

?

VSCodeSetup.exe
User runs

the file

Overwrite VSCodeSetup.exe

Trying to bridge the gaps anyway, starting
with making the WiFi connection last

Force
WiFi

Connection

Crash

We’re now
MITM

TLS Client Hello ՞ Server Name Indication Extension

Installer Domain

Approximate Size

File Name Accurate Guess

code.visualstudio.com

95 MB

VSCodeUserSetup-x64՞1.91.0.exe

VSCodeUserSetup-x64՞1.91.0.exe

95 MB

code.visualstudio.com
Installer Domain

Approximate Size

File Name Accurate Guess

notepad-plus-plus.org

github.com/.../npp.8.6.9.Installer.x64.exe

notepad-plus-plus.org

github.com/.../npp.8.6.9.Installer.x64.exe

objects.githubusercontent.com

notepad-plus-plus.org

Map “Domain Paths” to executables + their sizes

Wait for “Domain Path” hit

Count TCP data

If ՞ TCP data <= actual executable size ֡ 15%ր
We know it’s the executable

Force
WiFi

Connection

Crash

Detect EXE
Download

Name

Needed Abilities:

Know downloaded
executable file names

Overwrite files
(not just create)

Goal:

Overwrite an executable downloaded
by a victim before it runs

?

Check if
VSCodeSetup.exe exists

Check if
VSCodeSetup.exe exists

Unconfirmed
550383.crdownload

Check if
VSCodeSetup.exe exists

Unconfirmed
550383.crdownload

VSCodeSetup.exe

Check if
VSCodeSetup.exe exists

Unconfirmed
550383.crdownload

VSCodeSetup.exe

Hold last TCP packet VSCodeSetup.exe
Send malicious

Check if
VSCodeSetup.exe exists

Unconfirmed
550383.crdownload

VSCodeSetup.exe

.crwd is renamed and our file is deleted

Can we maybe prevent our file from being deleted?

1. Send malicious
VSCodeSetup.exe

2. Make Quick Share continuously open
VSCodeSetup.exe

Result:

Chrome deletes the .crdownload file

Leaves our malicious file in place

Reports successful download completion

Refers to our malicious file

Send a File
Without
Approval

Force
Continuous

Open

QuickShell
RCE

Force
WiFi

Connection

Crash

Detect EXE
Download

Name

Remote Unauthorized File Write
in Quick Share for Windows 1.

Remote Unauthorized File Write
in Quick Share for Android 2.

Remote Forced WiFi Connection
in Quick Share for Windows 3.

Remote Directory Traversal in
Quick Share for Windows 4.

Remote DoS in Quick Share for
Windows ՟ Endless Loop 5.

Remote DoS in Quick Share for
Windows ՟ Assert Failure 6.

Remote DoS in Quick Share for
Windows ՟ Assert Failure 7.

Remote DoS in Quick Share for
Windows ՟ Unhandled Exception 8.

Remote DoS in Quick Share for
Windows ՟ Unhandled Exception 9.

Remote DoS in Quick Share for
Windows ՟ Unhandled Exception 10.

Remote Unauthorized File Write
in Quick Share for Windows 1.

Remote Unauthorized File Write
in Quick Share for Android 2.

Remote Forced WiFi Connection
in Quick Share for Windows 3.

Remote Directory Traversal in
Quick Share for Windows 4.

Remote DoS in Quick Share for
Windows ՟ Endless Loop 5.

Remote DoS in Quick Share for
Windows ՟ Assert Failure 6.

Remote DoS in Quick Share for
Windows ՟ Assert Failure 7.

Remote DoS in Quick Share for
Windows ՟ Unhandled Exception 8.

Remote DoS in Quick Share for
Windows ՟ Unhandled Exception 9.

Remote DoS in Quick Share for
Windows ՟ Unhandled Exception 10.

Reported to Google about Invalid UTF8 continuation
bytes crashing Quick Share

Example we provided – “\x00FileName”

Google’s patch ՟ Verifies file names don’t start with “\x00”

Instead of “\x00”, setting a different invalid UTF8
continuation byte in file names

Example – “\xc5\xffFileName”

Result:

Quick Share crashes again

Files are still written
to disk on Windows
but are later deleted.

Google calls them:

“Unknown Files”

Send two FILE Payload Transfer Frame with the same
Payload ID

Result:

Only the first file is deleted

"We greatly appreciate research from the security community that helps
keep our users safe. We have deployed fixes for all of the reported
vulnerabilities. To our knowledge, these vulnerabilities have not been
exploited in the wild. No action is required by Quick Share users. The fixes
will be automatically applied.

Developers using the open source repository can refer to the CVEs for further
information on how to apply the fixes:

CVE-2024-38271
CVE-2024-38272

July 23rd, 2024

CVE՞2024՞38271 – Forcing a lasting WiFi connection

CVE՞2024՞38272 – File approval dialog bypass

CVE՞2024՞10668 ՞ Fix Bypass for CVE՞2024՞38272

Standard stones may sometimes be forged into deadly drones

Standard stones may sometimes be forged into deadly drones

It's crucial for vendors and organizations not to
underestimate seemingly simple bugs or known issues

It’s crucial to not fixate solely on memory corruption and
fuzzing techniques when examining a program's security

It's crucial for vendors and organizations not to
underestimate seemingly simple bugs or known issues

Standard stones may sometimes be forged into deadly drones

@oryair1999

https://www.linkedin.com/in/or-yair/

@_BinWalker_

https://www.linkedin.com/in/the-shmuel-cohen/

QuickShell

