

Unmasking Organizations' Security Postures: Insights from Phishing-Resistant Authentication

Fei Liu

Principal Emerging Technology Researcher, Okta

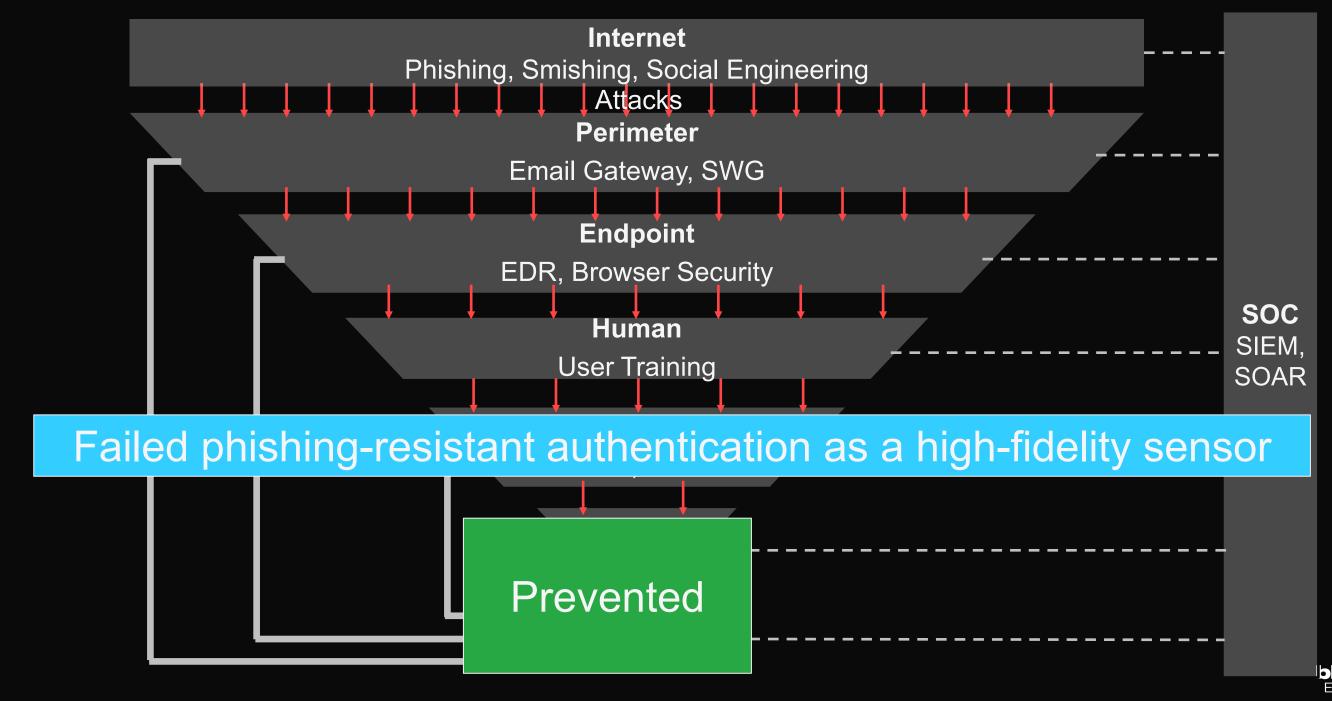
The Unknown Phishing Problem

The critical blind spot in enterprise security:

What is the scope of malicious adversary-in-the-middle (AiTM) phishing user engagements?

Agenda

- 1. The Signal: A New Methodology
- How to turn failed phishing-resistant authentication into a high-fidelity sensor



An Idea

What if we could find a sensor close to account takeovers and with minimal false negatives?

A New Signal

Phishing-Resistant Authentication

Core Principle: Origin-Binding

Legitimate Path

example.com → Authenticator →

Domain matches: 'example.com' = 'example.com' → Login succeeds

Phishing Path

phishing.com → Authenticator →

Domain mismatches: 'phishing.com' != 'example.com' or not exist→ Login fails

The Scale of the Study

1.5

Years Research

26

Months of Longitudinal Data

Thousands

Security-Mature Organizations

~3 Billion

Authentication Events Analyzed

Methodology: From Syslog to Final Dataset

Signal Identification

Querying for failed phishing-resistant authentication due to mismatched request origins

Malicious Validation

Classifying all unique origins as threat or noise

Data Scoping

Focusing on a highconfidence threat to establish a lower bound

Hunting for the Signal

Okta Syslog

Hunting Query

Outcome.reason eq 'FastPass declined phishing attempt'

eventType: user.authentication.auth via mfa

Critical Log Data

```
Outcome.Reason: FastPass declined phishing attempt
Outcome.Result: FAILURE

System.DebugContext.DebugData.Risk:
{reasons=Mismatched request origin:<phishing-
domain.com>; ... Application Name: <Targeted App> ...}
```

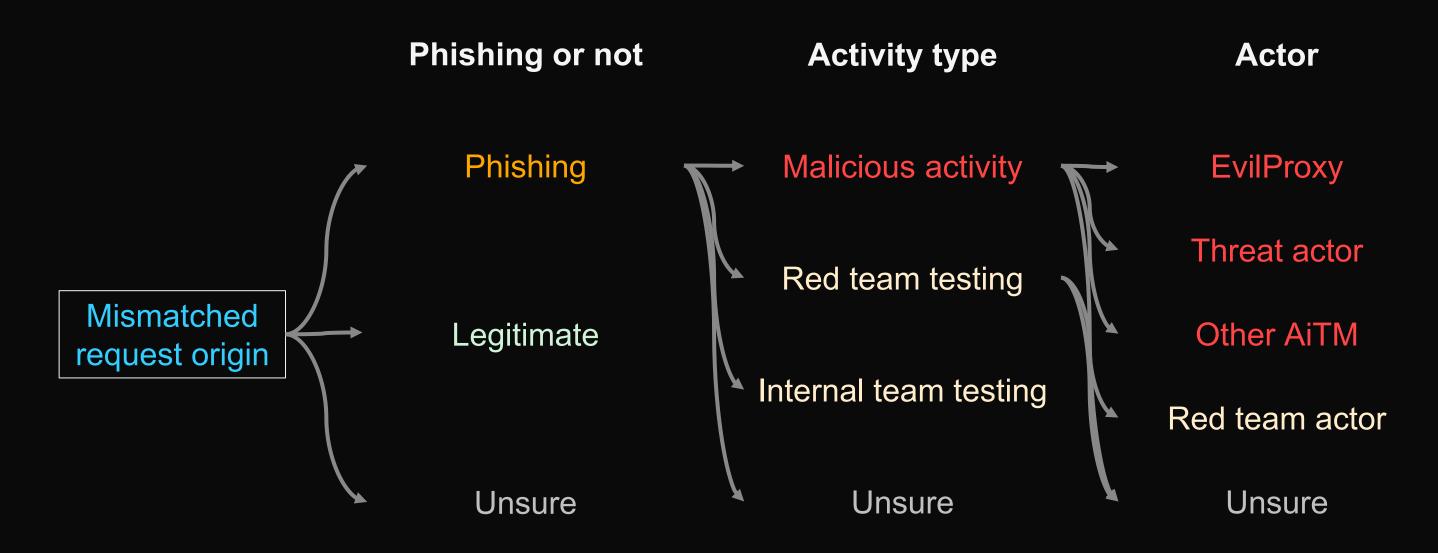

Malicious Validation

Threat or noise? A three-pronged analysis

Expert Analysis

The internal security team categorizes origins and enriches them with threat intelligence

Al-Assisted Classification


An LLM, fed with threat literature, labels origins, with human verification for accuracy

Customer Validation

Outreach via notifications and questionnaires provides classification from customers

Hierarchical Classification Schema

Approach 1: Expert Analysis

Intelligence from cyber defense operations

Platform Telemetry

Web traffic and phishing kit signatures

Global Infrastructure Context

Adversary infrastructure reconnaissance

A high-quality initial classification

Approach 2: Al-Assisted Classification

LLM was prone to hallucination

- Provided a grounding document *
- Required reason for classification to enable rapid human verification

LLM failed on the large batch, silently dropping or combining URLs

 Manually verified all URLs by cross-referencing inputs against the LLM's final output

The LLM successfully achieved perfect alignment with expert analysis for EvilProxy classification

Approach 3: Customer Validation

Organizations

(Deep but Narrow)

- In-depth view of their own security posture
- Only see inside their organizations
- Limited by tools and capabilities

Vendors

(Broad but Uncertain)

- Wide visibility across customer base
- Limited by own product's telemetry
- Hard to provide an independent assessment

Approach 3: Customer Validation

Organizations

(Deep but Narrow)

- In-depth view of their own security posture
- Only see inside their organizations
- Limited by tools and capabilities

Investigation guidance

Vendors

(Broad but Uncertain)

- Wide visibility across customer base
- Limited by own product's telemetry
- Hard to provide an independent assessment

Threat confirmation

Benign context

Learnings from Customer Validation

Research Win Closing the Validation Gap

~20% response rate

- Confirmed malicious EvilProxy events
- Identified red team and internal security testing
- Understood reasons for legitimate origin domain mismatches

Learnings from Customer Validation

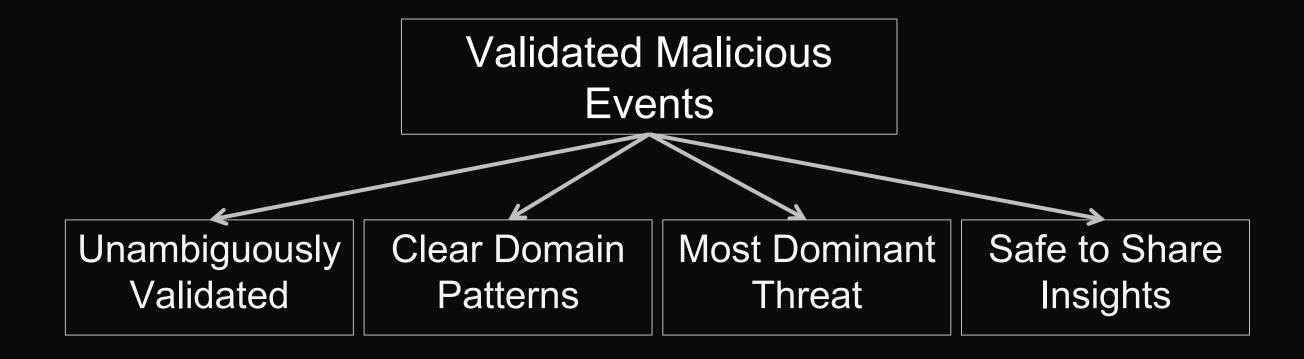
Research Win Closing the Validation Gap

~20% response rate

- Confirmed malicious EvilProxy events
- Identified red team and internal security testing
- Understood reasons for legitimate origin domain mismatches

Security Win Closing the Awareness Gap

5 of **7** EvilProxy incidents


- Admins reported they had not detected them until our notification
- Admins suggested using the signal for incident response, SIEM enhancement, and IP blocking

An ongoing feedback loop (active for 9 months)

Scope the Dataset

Establishing a conservative lower bound

The lower-bound dataset: EvilProxy campaigns

Validated Dataset

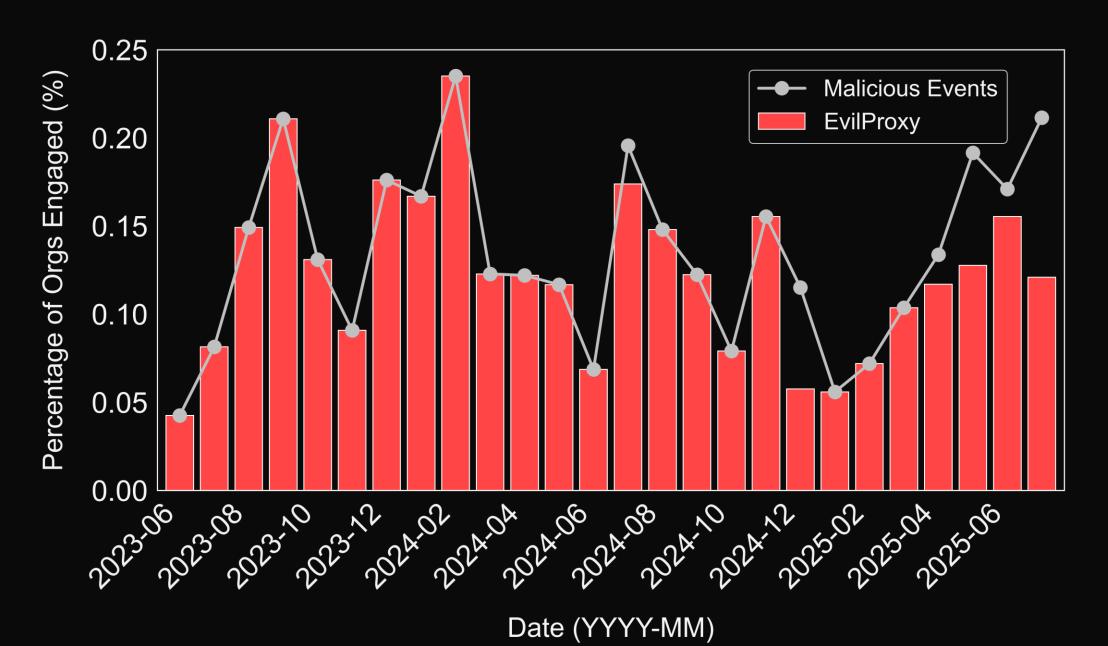
~3 Billion Phishing-Resistant Authentication Events

~44,000 Failed Phishing-Resistant Authentications with Mismatched Request Origins

512 Mismatched Request Origins

190 Malicious Origins369 User Engagement Events

170 EvilProxy Origins310 User Engagement Events



Agenda

- 1. The Signal: A New Methodology
- How to turn failed phishing-resistant authentication into a high-fidelity sensor
- 2. The Evidence: Empirical Insights
- What two years of malicious AiTM phishing reveals about enterprise threats

AiTM Phishing Threat is Persistent

What Did the Attackers Actually Do

Infrastructure: leveraging commercial cloud

- Top 10 ISPs in the syslog were cloud/VPS providers
 - 1. Akamai Connected Cloud (Linode)
 - 2. DigitalOcean

Authentication phishing domains: disposable

 Attackers used rapid rotation to evade blocklists, some had more engagments, e.g. kanakratna[.]com

Phishing kits: old still works

Older EvilProxy kit responsible for more user engagements

Who was Being Successfully Engaged

Geography: Americas-focused

Organizations in Americas were engaged more than in EMEA and APAC

Organization size: all sizes, but a higher rate for larger ones

Largest enterprises (20,000+) were most frequently engaged

Industry: broad industry coverage

Professional Services organizations were engaged at the highest rates

Application: O365 was the overwhelming lure

Successful engagements were largely redirected from Microsoft O365

Agenda

- 1. The Signal: A New Methodology
- How to turn failed phishing-resistant authentication into a high-fidelity sensor
- 2. The Evidence: Empirical Insights
- What two years of malicious AiTM phishing reveals about enterprise threats
- 3. The Implications: Defense in Precision
- How to apply these findings to your security practice

Lower-Bound Estimate

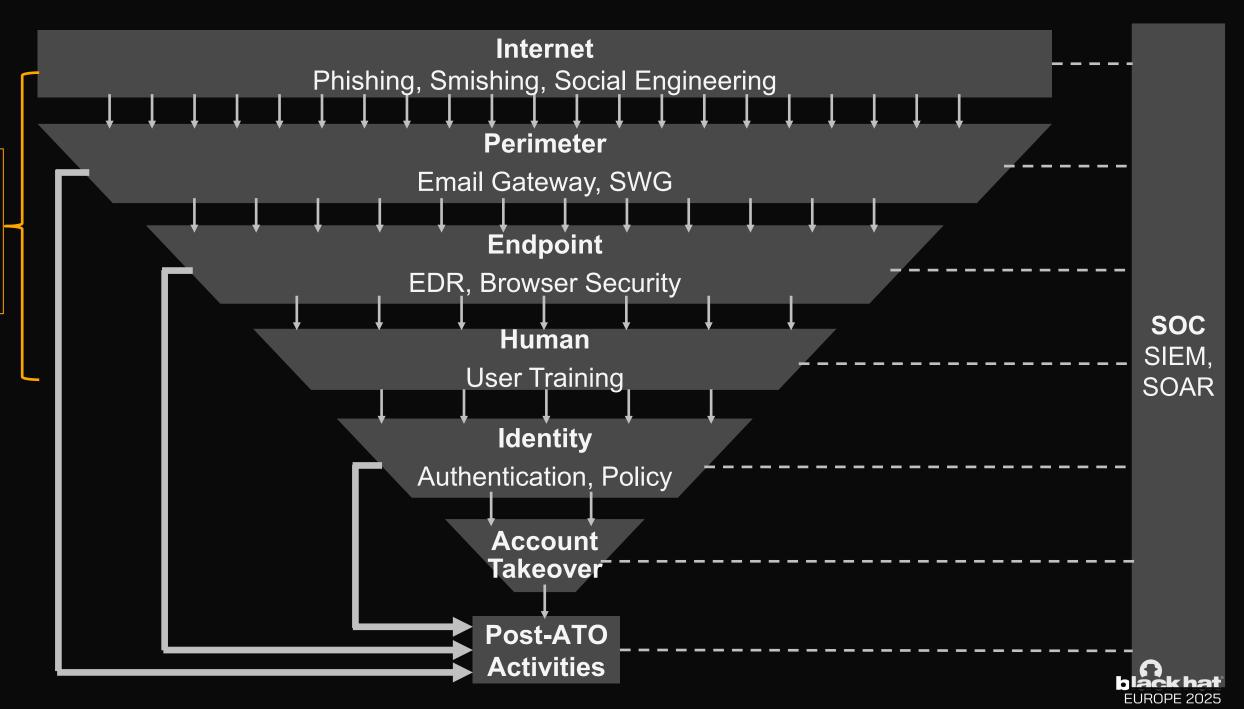
0.0%/Monthth

of organizations that have malicious AiTM phishing user engagements

Lower-Bound Estimate

0.12% /Month

of organizations that have malicious AiTM phishing user engagements


This number is intentionally conservative

- Strict conservatism in threat inclusion criteria
- An overestimation of the total number of protected organizations
- A bias toward security-mature organizations

Defense in Precision

Vast, difficultto-defend preauthentication attack surface

Defense in Precision

Internet Phishing, Smishing, Social Engineering **Perimeter** Vast, difficult-Email Gateway, SWG to-defend pre-**Endpoint** authentication EDR, Browser Security attack surface SOC Human SIEM, User Training SOAR Well-defined, Phishing-resistant controlled Policy enterprise SSO authentication domains Prevented

The Complete Picture

Attacker Reality

- AiTM PhaaS for just \$400/month *
- Broad target coverage with low effort
- Repeatable success

^{*} Resecurity EvilProxy Phishingas-a-Service with MFA Bypass Emerged in Dark Web

The Complete Picture

Attacker Reality

- AiTM PhaaS for just \$400/month *
- Broad target coverage with low effort
- Repeatable success

Defender Reality

- Pre-Authentication defenses insufficient
- MFA not fully adopted (70% **), and ineffective
- Phishing-resistant MFA adoption gaining momentum (14% **)

^{*} Resecurity EvilProxy Phishingas-a-Service with MFA Bypass Emerged in Dark Web

^{**} Okta Secure Sign-in Trends Report 2025

The Complete Picture

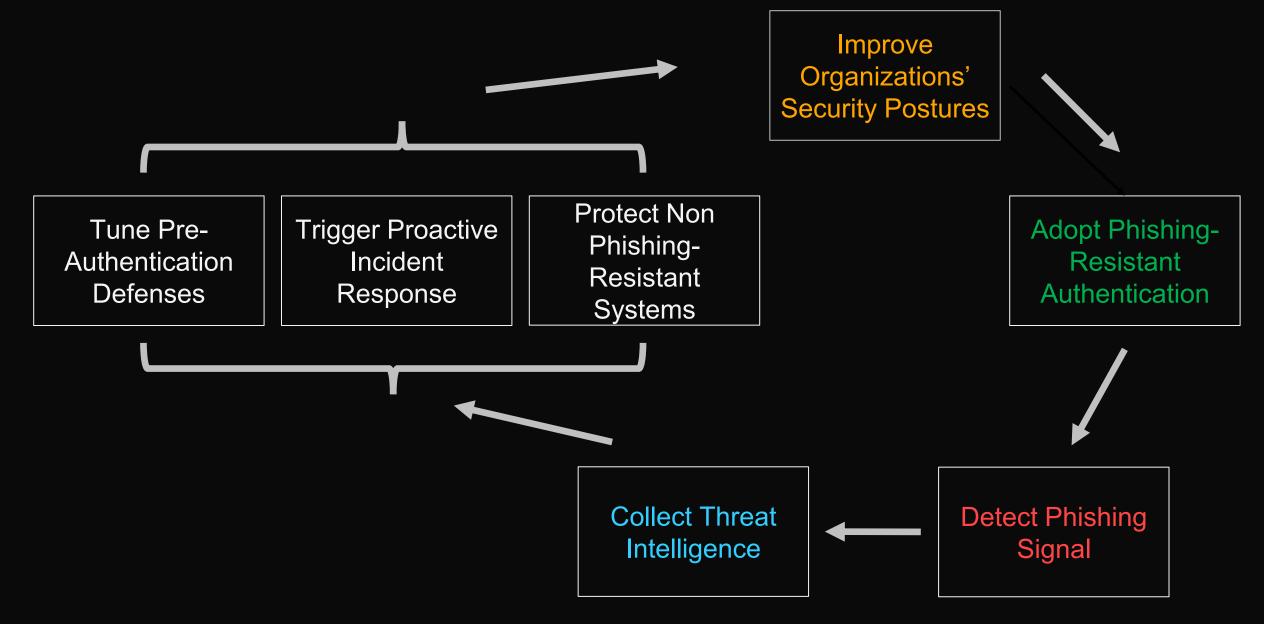
Attacker Reality

- AiTM PhaaS for just \$400/month *
- Broad target coverage with low effort
- Repeatable success

Defender Reality

- Pre-Authentication defenses insufficient
- MFA not fully adopted (70% **), and ineffective
- Phishing-resistant MFA adoption gaining momentum (14% **)

Defender Ideal


- Block the phishing attempt (shield)
- Identify the threat (sensor)
- Minimize identitybased phishing

^{*} Resecurity EvilProxy Phishingas-a-Service with MFA Bypass Emerged in Dark Web

^{**} Okta Secure Sign-in Trends Report 2025

Hope: A Sensor That Grows with Adoption

Agenda

- 1. The Signal: A New Methodology
- How to turn failed phishing-resistant authentication into a high-fidelity sensor
- 2. The Evidence: Empirical Insights
- What two years of malicious AiTM phishing reveals about enterprise threats
- 3. The Implications: Defense in Precision
- How to apply these findings to your security practice
- 4. The Playbook: Sound Bytes and Call to Action
- What you need to do next to enhance your organization's security posture

Sound Bytes

Your true phishing risk may be higher than you think.

Sophisticated attacks constantly exploit security gaps and user vulnerabilities.

Your current posture may have a blind spot.

Pre-authentication controls are insufficient, also need strong authentication.

Phishing-resistant authentication is both a shield and a sensor.

Prevent phishing but also provide timely and high-fidelity detection.

Call to Action

Enterprise security postures are insufficient.

Prioritize phishing-resistant authentication and integrate high-fidelity alerts to respond to phishing attacks you could miss.

It has been a Team Sport

Moussa Diallo

Yu Liu

Gabriel Marusic

Gary Khemani

Kelly Kern

Justin Bergez

Erik Kuhrman

Angie Yanez

Dave Case

Matt Egan

Karim Lalji

Justin Boots

THANK YOU

Fei Liu

fei.liu@okta.com

linkedin.com/in/fei-liu-pt/

Get the full research & demo

