Iﬂéﬂ%kduaf
BRIEFINGS

DECEMBER 10-11, 2025
EXCEL LONDON / UNITED KINGDOM

Unsafe Code Detection Benchmark
Stress-Testing SAST & LLMs on Modern Web Backends

Andrew Konstantinov & Irina Iarlykanova

0 |
blackhat \
BRIEFINGS \\’“

How Do We Know Our Code is Secure?

Threat Modelling DAST

SAST

Code

SCA RASP

Unit Tests & IAST SIEM & Pentest

https://www.virtasant.com/blog/sdlc-methodologies

#BHEU @BlackHatEvents

https://www.virtasant.com/blog/sdlc-methodologies

blgz:khat@
BRIEFINGS

https://www.virtasant.com/blog/sdlc-methodologies

BBBBBBBBBBBBBBBBBBBB

https://www.virtasant.com/blog/sdlc-methodologies

blgc’:khaf
BRIEFINGS

The Promise of SAST

100

75
o
i)
[0
™
(0]
ki

) 50
-
0
o]
[a¥]
[0]
¥

B 25

0

Semgrep CodeQL Sonar ShiftLeft Snyk

#BHEU @BlackHatEvents

blgc’:k hat ‘
BRIEFINGS =

The Promise of SAST

According to benchmarks, SAST is a solved problem

e OWASP Benchmark: 80%-100% detection rates
e Vendor claims: "Comprehensive coverage"

Green CI/CD pipeline = secure code. Right?

A

@ Checkmarx

#BHEU

@BlackHatEvents

blgz:khat
BRIEFINGS

0% - Detection Rate on Realistic Vulnerabilities

True Positive Rate

100

75

50

25

Semgrep CodeQL Sonar ShiftLeft Snyk

[OWASP Benchmark W Unsafe Code Benchmark

#BHEU @BlackHatEvents

e AP

blackhat : ” 2
BRIEFINGS e 4 % A y v /

- Detection Rate on Realistic Vulnerabilities

100

Did we do something wrong? &

True Pos]

25

0 — — — —
Semgrep CodeQL Sonar ShiftLeft Snyk

OWASP Benchmark Unsafe Code Benchmark

#BHEU @BlackHatEvents

bléakhat
BRIEFINGS =2

Tools Found Easy Bugs, Missed Logic

——a Source: Query vs Body vs JSON merging

CONFUSION ———a Authentication: Middleware vs Handler
VULNERABILITIES '
[a Authorization: Permission check on X, action on Y

33 examples across
5 categories,
Python/Flask

———a Cardinality: Validate one, process many

L = "Krusty" # "Krusty"

#BHEU @BlackHatEvents

tﬂgigkdmat

BRIEFINGS LN N

Meet Authors

Andrew Konstantinov

ISO @Korsit
Source Code Auditor
Bug Bounty Hunter

Irina Iarlykanova

BSc @Maastricht University
SOC Analyst @DIVD
Open to work!

@BlackHatEvents

(1)
blackhat ’
BRIEFINGS LN\

Agenda

1. Unsafe Code Lab

2. Why Modern Code Breaks Detection
a. The “Clean Code” Trap
b. The Middleware Trap
c. The State Trap

3. Why SAST Fails

4. The AI Factor
a. Can LLMs save us?

5. The Path Forward

#BHEU @BlackHatEvents

tﬂéﬁ%kdwatﬁ ¥ A
BRIEFINGS >

Unsafe Code Lab

(&
=

Realistic vulnerable code

&) Vulns across frameworks

% One concept at a time

Every vulnerability:

Fits modern best practices

Passes code review

Is caused by “fixing” previous vuln
Comes with exploit scenario

unsafe-code Public % Unpin ©®Watch 0 -~ ¥ For

P~ ¥ 8 Branches © 0 Tags Q Go to file t Add file . &

Irenchlk Update CONTRIBUTING.md with con... = ba412c6 - 5 days ago 186 Commits

B claude Housekeeping 3 weeks ago
B serena Add Al automation for consistent docs g... last month
B docs Fix index.yml regeneration and restore co... last week
B foundations Replace framework-specific reload with ... 3 weeks ago
B tools/docs Fix index.yml regeneration and restore co... last week
B vulnerabilities Fix index.yml| regeneration and restore co... last week
[.gitignore Update the typos and regenerate READM... 3 months ago
[3 .python-version Move to uv for python management 3 months ago
[3 CONTRIBUTING.md Update CONTRIBUTING.md with contrib... 5 days ago
0 README A Contributing & MIT license & Security =
Unsafe Code Lab

Unsafe Code Lab is a hands-on security training ground for code reviewers and penetration
testers. Learn to spot vulnerabilities in production-quality code by understanding why they
happen: refactoring drift, framework design patterns, and subtle APl misuse in modern web
frameworks like Flask, Django, FastAPI, and Express.js.

Who this is for

tﬂéﬁ%k]mat
BRIEFINGS

“The road to hell 1is paved with refactoring.”

Best practices can introduce and mask vulnerabilities:

Separate concerns — Validation/Execution split
Validate early — Middleware reads different source than
handler

e DRY — Shared helpers with implicit assumptions

Our thesis: security tools are not keeping up with modern
development patterns.

#BHEU

@BlackHatEvents

blg’ck hat 5, ; 77,
BRIEFINGS L |

Real-World Business Impact

Financial Loss
Pay $0.01 for $1,000 order | Refund same item 5x

Account Takeover
Become manager | Hijack accounts | Session fixation

Data Breach
View competitor's orders | Enumerate all coupon codes

Business Disruption
Steal reviews | Make competitor's page show your content

#BHEU @BlackHatEvents

blgz:khat
BRIEFINGS

Our Corpus vs OWASP & API Top 10

A@1 Broken Access Control API1 Broken Object Level Authorization

A@2 Cryptographic Failures API2 Broken Authentication

A@3 Injection API3 Broken Object Property Level Authz

A@4 Insecure Design API4 Unrestricted Resource Consumption

A5 Security Misconfiguration API5 Broken Function Level Authorization

AG6 Vulnerable and Outdated Components API6 Unrestricted Access to Sensitive

A@7 Identification and Authentication Business Flows

A@8 Software and Data Integrity API7 Server Side Request Forgery

A@9 Security Logging and Monitoring API8 Security Misconfiguration

A10 Server Side Request Forgery API9 Improper Inventory Management
API10 Unsafe Consumption of APIs

Total: 5 Total: 6

#BHEU @BlackHatEvents

I)hgagl(lliit@ M X
BRIEFINGS

One Root Cause — Many Symptoms

Authorization
Confusion

Authentication
Confusion

Input Source
Confusion

Financial,
Takeover

Financial,
Takeover,
Breach

Financial,
Takeover,
Breach

tz AO0l1l, A4, API1, AOl1l, AO7, API2, Ao1l, API1,
= API3, API6 API5 API3, API5

(@]

u gg; 268372, ::g, 284, 287, 302, 200, 284, 287,
E ? ? ? 384, 650, 1390 639, 862, 863

706, 915, 1284

Cardinality
Confusion

Financial,
Privesc

AO1, API4, API6

20, 285,
639, 682,
863, 1284

384,
799,

Normalization
Confusion

Financial,
Takeover,
Breach

AG3, A@4, AO7,
AO8, API1, API2,
API10

20, 89, 135, 176,
178, 180, 185,
200, 436, 706,

863

#BHEU @BlackHatEvents

blgz:khat
BRIEFINGS

Case Study 1

€
blackhat 4
BRIEFINGS L N\

The Exploit

/cart/42 /checkout
Content-Type: application/json

{

"coupon_codes": [“ " “300FF”, “ N,

"delivery_address”: "124 Nowhere Road"

}

Result: 50% discount applied twice

#BHEU @BlackHatEvents

tﬂéﬁ%k]maf :
BRIEFINGS =

This Looks Obvious. Why Does It Reach Prod?

The vulnerable flow is split across “clean” refactors.

e Validator: Takes input, removes garbage, returns clean set.
e [Executor: Takes validated context, performs action.

Everyone agrees the exploit is trivial once you see 1it, but the
code around it is exactly what we encourage in reviews.

#BHEU @BlackHatEvents

l:hgagk{hﬁif -
BRIEFINGS .

—

The Validation (Good Code?)

def extract_single_use_coupons(coupon_codes: list[str]) -> set[str]:
valid_coupons = set()

for code in coupon_codes:
if is_valid_and_unused(code) :
valid_coupons.add(code)
return valid_coupons

#BHEU @BlackHatEvents

€
blackhat 4
BRIEFINGS L N\

The Execution

def apply_coupons(order: Order, coupons: list[str], valid_c: set[str]):
for code in coupons:
if code in valid_c:
apply_discount(order, code)

#BHEU @BlackHatEvents

€
blackhat 4
BRIEFINGS L N\

Validation & Execution Flow: Expectation

42 Input
[“SAVES0”, “300FF”, “SAVES50”]
i
® Validation # Execution
LSRR . for x in {“SAVE50”, “3@0FF”}:
{“SAVE50”, “300FF”} apply_coupon(x)

Result: Single Use

#BHEU

@BlackHatEvents

I:hé:%l(liirf
BRIEFINGS

[““SAVES50”, “300FF”, “SAVE50”] i [“SAVES50”, “300FF”, “SAVE50”]
i :
® validation ¥+ Execution

ST * for x in [“SAVE50”, “300FF”, “SAVE50”]:
{*“SAVE50”, “300FF”} if x in {*SAVE50”, “300FF”}:
apply coupon(x)

#BHEU @BlackHatEvents

tﬂéﬁ%k]maf ‘
BRIEFINGS S

Imagine if you could ask your SAST

"Show me everywhere a transformed collection (Set) differs
from its 1iteration target (List)."

Today's tools don't model collection semantics. They just see
"Data Flow".

They don’t see “Is the validated thing the same thing we’re
iterating over?”

#BHEU @BlackHatEvents

blackhat \ i
BRIEFINGS \\<\\Q s

SAST Capability Levels

Security Linter Taint Analysis

v
v
v

Find code that will always | Checks user input:
lead to vulnerabilities: 1) Does it reach sink?
eval()/exec() 2) Is it validated?

#BHEU @BlackHatEvents

blgz:khat
BRIEFINGS

Taint Analysis: What It Expects

W valid Flow: A Problematic Flow:

I
Y

@ validation @ validation |

#BHEU @BlackHatEvents

blgz:khat o
BRIEFINGS

SAST Failure Mode #1

SAST expected: In our code:

@ validation | @ validation |

#BHEU @BlackHatEvents

0
blackhat <
BRIEFINGS L N\

Naive SAST Approach

- id: v403-naive-set-list-duplication
patterns:
- pattern-inside: |
valid_single_use = extract_single_use_coupons(SCODES)

- pattern: |
for SCODE in SCODES:
if SCODE in valid_single_use:

Hardcodes function and variable names.
Breaks if code is refactored.
Does not match semantically identical bugs.

#BHEU

@BlackHatEvents

tﬂgigﬂ(rnaf > 2l
BRIEFINGS L N\

Pragmatic SAST Approach

- id: v403-pragmatic-enforce-reassignment
patterns:
- pattern: SRES = extract_single_use_coupons(SINPUT)
- pattern-not: SINPUT = extract_single_use_coupons(SINPUT)
message: |
Convention: Result must be assigned back to same variable.

Establishes contract: coupons = extract single use coupons(coupons)
Works regardless of downstream loop patterns.
Self-documenting the intent in the code structure.

#BHEU @BlackHatEvents

blgz:khat
BRIEFINGS

Case Study 2

tﬂéié#(hﬁif o
BRIEFINGS = .

The Exploit

/cart/42/checkout?tip=
Content-Type: application/json
{
Iltipll : - ,
"delivery_address": "124 Nowhere Road"
b
Result:

e Middleware validates tip=20
e Handler applies tip=-50
e Customer gets $50

#BHEU @BlackHatEvents

€
blackhat 4
BRIEFINGS L N\

The Validation Middleware

The team was fixing a Mass Assignment bug. They added
middleware to block dangerous params.

@before_request
def security_ check():

if get param("order id"):
abort(, "Mass assignment attempt detected")

tip = get param("tip")
if tip and int(tip) <
abort(, "Negative tip not allowed")

Textbook Defense in Depth.

#BHEU @BlackHatEvents

$)
blackhat ¥
BRIEFINGS L N\

The Helper Function

Flexible. Supports both URL and Body params.

def get_param(key):
"""Convenience helper for mobile + web support"""

if key in request.args:
return request.args.get(key)

return request.json.get(key,)

#BHEU @BlackHatEvents

€
blackhat 4
BRIEFINGS L N\

The Handler

Handlers usually prefer JSON body for POST requests.
Tip value is read directly from the body, bypassing helper.

def checkout():
data = request.get_json() or request.args

tip = data.get("tip")
charge_customer(amount + tip)

#BHEU @BlackHatEvents

'\\i\\\\:;
blgc’:k hat ¥ X \ iy
ERISENES L N\ . 3

Middleware: Expectation

42 RequestBody: {“tip”: 20}

v
Middleware

get request_parameter() Result: Customer tips $20
VALIDATED

v
Handler
request.json.get()
EXECUTED

v

tip = 20

#BHEU @BlackHatEvents

O S 0 A N
black hat | 2R e
BRIEFINGS \\ No.. 1o

Middleware: Reality

Middleware Handler
get _request_parameter() request.json.get()
: :
tip = 20 ¥ tip = -50 X
VALIDATED EXECUTED

Result: Attacker gets $50

#BHEU @BlackHatEvents

blgc’:k hat - s
BRIEFINGS Lo

Imagine if you could ask your SAST tool

"Find all cases where Validation reads from container X
but Execution reads from container Y, for the same field."

Examples:

e request.args vs request.json
e headers vs body
e form fields vs JSON

Today, most tools flatten this into just “user input”.

#BHEU @BlackHatEvents

biSekhat e e
BRIEFINGS Nl N

SAST Failure Mode #2

SAST tracks: single input at a time

Input #1 Input #2 Input #1 Input #2

@ validation @ validation

#BHEU @BlackHatEvents

biSekhat e e
BRIEFINGS Nl N

SAST Failure Mode #2

SAST tracks: single input at a time Exploit: both present

Input #1 Input #2 Input #1 Input #2

@ validation @ validation W Vvalidation

o

#BHEU @BlackHatEvents

blgc’zkhat@
BRIEFINGS S

Naive SAST Approach

- 1id: v104-naive-container-mismatch
pattern: |

request.args.get("tip")

request.json.get("tip", ...)

e Specific to ‘tip’.
® Requires same file and will miss middleware/handler split.
e No understanding of validate-vs-execute semantics.

#BHEU @BlackHatEvents

N\

$)
blackhat |
BRIEFINGS L N\

Flag Raw Access

{
"sources": |
{ "name": "DirectJsonAccess",
"comment": "Direct access to request.json" }
1,
"rules": [{
"name": "v104: Direct JSON Access",
"code": 50071,
"sources": ["DirectJsonAccess"],
"sinks": ["GeneralSink"],
"message_format": "Data from request.json accessed directly"
}]
}

e Only flags raw access, not the mismatch.

#BHEU @BlackHatEvents

blgc’zk hat
BRIEFINGS S

—

Pragmatic Approach: Ban Raw Container Access

- id: v104-pragmatic-ban-raw-access
patterns:

- pattern-either:
- pattern: request.json
- pattern: request.args
- pattern: request.form

- pattern-not-inside: |
def get_request_parameter(...):

e ALL parameter reads go through ONE function.
e Single source of truth for input handling
e Helper can validate, log, sanitize consistently

#BHEU @BlackHatEvents

I:IQ;ELI(I1EIt@ R
BRIEFINGS =

—

Pragmatic Approach: Annotation-based Convention

- id: v104-convention-undeclared-input-source
patterns:
- pattern-inside: |
@SBP.route(...)
def SHANDLER(...):

- pattern-either:
- pattern: request.args.get(...)
- pattern: request.json.get(...)
- pattern-not-inside: |
@input_source(...)
def SHANDLER(...):

e ALL parameter reads go through ONE function.
e Single source of truth for input handling
e Helper can validate, log, sanitize consistently

#BHEU @BlackHatEvents

blgz:khat
BRIEFINGS

Case Study 3

blgc’:k hat 4
BRIEFINGS =

Defense-in-depth: Database Level Scoping

def update_restaurant_menu_item(item_id, ...):
Safe-by-Design: Always scopes queries to the current tenant.
Prevents IDORs by forcing a check against the trusted context.

restaurant_id = get_trusted_restaurant_id()

query = select(MenuItem).where(
MenuItem.id == item_id,
MenuItem.restaurant_id == restaurant_id

#BHEU @BlackHatEvents

€
blackhat 4
BRIEFINGS L N\

Consume Once

def consume_param(name) :

Safe Accessor: Reads a value and REMOVES it.
Ensures the same parameter is never read twice.

return request.json.pop(name,)
def get_trusted_restaurant_id():
if g.get("authorized_restaurant"):
return g.authorized_restaurant.id

return consume_param("restaurant_id") or g.get("restaurant_manager")

#BHEU @BlackHatEvents

|:n§E§unher -4
BRIEFINGS =

The Safe Pattern

@bp.patch("/<int:restaurant_id>/menu/<int:item_id>")
@require_restaurant_manager
def update_menu_item(item_id):

update_restaurant_menu_item(item_id,)

def require_restaurant_manager(func):

require_condition(g.authorized_restaurant.id ==
return func()

g.authorized_restaurant = get_trusted_restaurant()

g.restaurant_manager)

#BHEU @BlackHatEvents

l:hgagk{hﬁif -
BRIEFINGS .

The Copy-Paste

@bp.patch("/menu/<int:item_id>")
def update_menu_item_route(item_id: int):
"""Update a menu item."""

restaurant_id = get_trusted_restaurant_id()
require_condition(restaurant_id == g.restaurant_manager)

menu_item = update_restaurant_menu_item(item_id,)

#BHEU

@BlackHatEvents

I:hgagk{hﬁ!f -
BRIEFINGS TN

Feature Update: Batch Support

def consume_param(name) :

Safe Accessor: Reads a value and REMOVES it.
Ensures the same parameter is never read twice with different

value = request.json.get(name)

if isinstance(value, list):
return value.pop(@) if value else

del request.json|[name]
return value

values.

#BHEU

@BlackHatEvents

tﬂéﬁ%k]matﬂ -
BRIEFINGS = .

How many consume_param’s?

@bp.patch("/menu/<int:item_id>")
def update_menu_item_route(item_id: int):
"""Update a menu item."""

restaurant_id = get_trusted_restaurant_id()
require_condition(restaurant_id == g.restaurant_manager)

menu_item = update_restaurant_menu_item(item_id,)

1 consume

2 consume

First call: authorization check
Second call: database scoping
Same parameter, different values after pop()

#BHEU

@BlackHatEvents

$)
blackhat |
BRIEFINGS D "

Exploit Development

(attacker owns restaurant 2, modifies menu for restaurant 1)

PATCH /menu/101 HTTP/1.1
X-API-Key: API-KEY-2
Content-Type: application/json

{
}

"price": 0.01

Blocked by DB

#BHEU @BlackHatEvents

N\

4]
blackhat . .
BRIEFINGS LT\

Exploit Development

(attacker owns restaurant 2, modifies menu for restaurant 1)

PATCH /menu/101 HTTP/1.1 PATCH /menu/101 HTTP/1.1
X-API-Key: API-KEY-2 AgnPIsRey: TARESKE =2
Content-Type: application/json | |Content-Type: application/json
{ { |

"price": 0.01 ‘price”: 0.01,
} } restaurant_id":

Blocked by DB

#BHEU @BlackHatEvents

blgc’zkhat@
BRIEFINGS

\\\\\\:;R

Exploit Development

(attacker owns restaurant 2, modifies menu for restaurant 1)

/menu/ /
X-API-Key:
Content-Type: application/json

{
}

"price":

/menu/ /
X-API-Key:
Content-Type: application/json

{
"price": ,
"restaurant_id":

Blocked by DB

Blocked by authz

#BHEU

@BlackHatEvents

blgc’zkhat@
BRIEFINGS

)N

Exploit Development

(attacker owns restaurant 2, modifies menu for restaurant 1)

/menu/ /
X-API-Key:
Content-Type: application/json
{
"price":
}

/menu/ /
X-API-Key:
Content-Type: application/json
{
"price"
restaurant 1d”'
}

/menu/ /
X-API-Key:
Content-Type: application/json
{
"price"
restaurant id" [2, 1]
}

Blocked by DB

Blocked by authz

2 in authz, 1 in DB

#BHEU @BlackHatEvents

tﬂéﬁ%k]maf :
BRIEFINGS =

Imagine if you could ask your SAST tool

"Show me where a stateful function (lLike pop) is called
multiple times in a single request Llifecycle.”

SAST is Static. It struggles with Temporal State.

#BHEU @BlackHatEvents

blackhat " Y n
BRIEFINGS \\A\e o

SAST Failure Mode #3

SAST expected: remove source after validation In our code: remove 1st

@ validation @ Vvalidation @ validation

i

#BHEU @BlackHatEvents

bléakhat
BRIEFINGS =2

—

Naive Approach: Detect Double Calls

- 1id: v405-naive-double-consumption
patterns:
- pattern-inside: |
def SFUNC(...):

- pattern: |
SA = get_trusted_restaurant_id(...)

SB = get_trusted_restaurant_id(...)

Only catches get trusted restaurant_id.
Doesn’t know about pop() inside or any other place where pop() is
used.

#BHEU @BlackHatEvents

blgc’:k hat 4
BRIEFINGS Lo

Detect Multiple Calls to Stateful Function

from Call c1, Call c2

where
c1.getFunc().(Name).getId()
c2.getFunc().(Name).getId()
cl != c2 and
c1.getScope() = c2.getScope() and
c1.getlLocation().getStartLine() < c2.getlLocation().getStartLine() and
c1.getArg(2).toString() = c2.getArg(9).toString()

select c2, "Second call to stateful function with same arguments.”

"get_trusted_restaurant_id" and
"get_trusted_restaurant_id" and

Tracks across calls in same scope.
Still hardcodes get trusted restaurant_id.

#BHEU

@BlackHatEvents

blgc’:k hat o
BRIEFINGS =T\

—

Pragmatic: Naming Convention for Side Effects

- 1id: v405-pragmatic-pure-getters
patterns:
- pattern-inside: |
def SFUNC(...):

- metavariable-regex:
metavariable: SFUNC
regex: “get_
- pattern-either:
- pattern: S$X.pop(...)
- pattern: consume_param(...)

Establishes private convention: 'get ' functions must be
pure/idempotent.

Avoids misleading names, but only works at a single function depth.

#BHEU @BlackHatEvents

bléakhat
BRIEFINGS =2

Pragmatic: Naming Convention for Side Effects

- id: v405-convention-consume-must-cache
patterns:
- pattern: |
def SFUNC(...):

- metavariable-regex:
metavariable: SFUNC
regex: Aconsume_

- pattern-not: |
def SFUNC(...):

if hasattr(g, SKEY):
return getattr(g, SKEY)

setattr(g, SKEY, ...)

Requires consume_* helpers cache their values, for example on g
global obj.

#BHEU @BlackHatEvents

blgc’zkhat@
BRIEFINGS

Why Can’t SAST Find Our Bugs?

BBBBBBBBBBBBBBBBBBBB

tﬂéﬁ%k]maf ‘
BRIEFINGS S

Vicious Circle: Low Expectations

Problem: We have complex vulns which SAST cannot find

Solution: DAST, Pentest, Bug Bounty

Taint analysis is not

///» effective for these vulns \\\\

No one expects taint .
analysis to find these Use other tools/methods:

vulns DAST, Pentest, Bug Bounty

w

#BHEU @BlackHatEvents

O S 0 A N
black hat | 2R e
BRIEFINGS \\\x&,\w VN

Recall SDLC Pipeline

DAST

SAST

SCA RASP

SIEM & Pentest

https://www.virtasant.com/blog/sdlc-methodologies

#BHEU @BlackHatEvents

https://www.virtasant.com/blog/sdlc-methodologies

blg%k hat
BRIEFINGS

*S\:fltkﬁ ; \Qiis

What We Can Find At Each Phase?

SAST

SQLi, XSS

SCA
known CVEs, vuln
dependencies

SIEM & Pentest

Auth bypass, IDOR

https://www.virtasant.com/blog/sdlc-methodologies

DAST
HPP, CSRF, SSRF

RASP
0-day exploit

attempts

#BHEU @BlackHatEvents

https://www.virtasant.com/blog/sdlc-methodologies

tﬂéﬁ%k]maf ‘
BRIEFINGS =

Vicious Circle: Business Impact

You don’t expect SAST to do DAST/pentester job

These vulns can’t be

/////* found in the early phases §\\\\\

You don’t expect vendors
to improve

_ There 1s no benchmarks 4/////

that have these vulns

Vendors don’t improve

#BHEU @BlackHatEvents

blgc’:khat@
BRIEFINGS

...or this was the case
until November 2022 g

BBBBBBBBBBBBBBBBBBBB

blgc’:k hat :
BRIEFINGS =

With AI tools, common knowledge changes

Before:
e “These bugs are too hard for static analysis”
e “We’ll catch them with pentests and bug bounties”

Now:

e LLMs can often reason about these flows in natural language
e They can walk the exploit path we just followed manually

These vulns can be found in early phases.

The question is: how do we make that reliable and scalable?

#BHEU @BlackHatEvents

tﬂéﬁ%k]uaf S
BRIEFINGS S

What AI Gets Right

e Understands business logic context
e (Can reason about multi-file flows
e Finds authorization confusion patterns

But at what cost?

#BHEU @BlackHatEvents

blsaik hat & oA

2

BRIEFINGS LN

How AI Performs on Our Benchmark?

100

s v
V]
14
[0
K
P 50
-
n
(o]
[a V]
5 25
“
=
0

GPT-5.1 Codex Gemini 3 Pro Opus 4.5

#BHEU @BlackHatEvents

blgc’zk hat A
BRIEFINGS S .

Should We Just Switch to AI?

Al SAST

tﬂgigkdmat
BRIEFINGS

Real-World Business Impact

Cost
100K+ lines repos -> Naive “scan with AI” scales poorly

Reliability
Prompt sensitivity, non-deterministic results

Coverage
Will it find other vulnerability types?

#BHEU @BlackHatEvents

tﬂéigkdmatg 4
BRIEFINGS =

How Does SAST Fit Into the Picture?

e We cannot replace SAST with AI alone
e Today, SAST is underused and under-ambitious
e But SAST has one superpower AI doesn’t:

o Precise, fast, repeatable - at scale

#BHEU @BlackHatEvents

blgc’zk hat
BRIEFINGS S

The Practical Path Forward

BBBBBBBBBBBBBBBBBBBB

tﬂéﬁ%k]maf ~
BRIEFINGS =

Our Thesis

e We built this corpus as basic security training
o It does not try to fool SAST, AI, or humans
o It uses normal “clean code” patterns

e Existing SAST engines:
o Fail to find these bugs with built-in rules
o Make it unreasonably hard to write custom rules

#BHEU @BlackHatEvents

N\

4]
blackhat S |
BRIEFINGS LT\

Achievable Gap

e Yet we can describe every failure using the same vocabulary SAST
already uses for taint analysis:
o Inputs, validations, containers, sinks, flows
e We don’t need entirely new math to do better

Y i l i JY

Validation | Validation | Validation

Sink oo Sink +————-----i Sink IR

#BHEU @BlackHatEvents

I:hgagkﬂhzrf
BRIEFINGS

I“Just because it is SAST, it does not have to be static”

Security Linter Taint Analysis Security LSP

e A long-running service, not a one-off CI job
e Exposes:
o Call graphs, data-flow, and control-flow
e Powers:
o AI agents that understand your codebase
o Dynamic investigations and behavior modeling

#BHEU @BlackHatEvents

tﬂéigkdmat
BRIEFINGS

IELGENENES

L

Write custom
SAST rules for
first party code

Generic rules find
generic bugs

Use SAST as a
security model,
not a gate

Think “security LSP”
not “static checkbox”

If you can't
write rules for
it, simplify
your code

Complexity that
confuses SAST also
confuses humans & AI

#BHEU @BlackHatEvents

blgc’:k hat - s
BRIEFINGS ST\

Contact Us

Andrew Konstantinov

B :ndrew@konst.lv
(:) https://github.com/execveat

Irina Iarlykanova

Bl irina.iarlvkanova@gmail.com

(:) https://github.com/Irenchlk

&% Open to work!

Unsafe Code Lab

#BHEU

@BlackHatEvents

mailto:andrew@konst.lv
https://github.com/execveat
mailto:irina.iarlykanova@gmail.com
https://github.com/Irench1k

