
#BHEU @BlackHatEvents

Unsafe Code Detection Benchmark
Stress-Testing SAST & LLMs on Modern Web Backends

Andrew Konstantinov & Irina Iarlykanova

#BHEU @BlackHatEvents

How Do We Know Our Code is Secure?

https://www.virtasant.com/blog/sdlc-methodologies

Threat Modelling

SAST

Unit Tests & IAST

DAST

SIEM & Pentest

SCA RASP

https://www.virtasant.com/blog/sdlc-methodologies

#BHEU @BlackHatEvents

How Much Do We Spend On Securing Our Code?

https://www.virtasant.com/blog/sdlc-methodologies

💸
💸💸

💸💸💸

💸💸
💸💸

💸💸💸...

https://www.virtasant.com/blog/sdlc-methodologies

#BHEU @BlackHatEvents

The Promise of SAST

#BHEU @BlackHatEvents

The Promise of SAST

According to benchmarks, SAST is a solved problem

● OWASP Benchmark: 80%-100% detection rates

● Vendor claims: "Comprehensive coverage"

Green CI/CD pipeline = secure code. Right?

#BHEU @BlackHatEvents

0% – Detection Rate on Realistic Vulnerabilities

#BHEU @BlackHatEvents

0% – Detection Rate on Realistic Vulnerabilities

Did we do something wrong? 🤔💭

#BHEU @BlackHatEvents

Tools Found Easy Bugs, Missed Logic

Source: Query vs Body vs JSON merging

Authentication: Middleware vs Handler

Authorization: Permission check on X, action on Y

Cardinality: Validate one, process many

Normalization: "Krústy" ≠ "Krusty"

CONFUSION
VULNERABILITIES

33 examples across
5 categories,
Python/Flask

#BHEU @BlackHatEvents

Meet Authors

Andrew Konstantinov

ISO @Korsit
Source Code Auditor
Bug Bounty Hunter

Irina Iarlykanova

BSc @Maastricht University
SOC Analyst @DIVD
Open to work!

#BHEU @BlackHatEvents

Agenda

1. Unsafe Code Lab

2. Why Modern Code Breaks Detection
a. The “Clean Code” Trap
b. The Middleware Trap
c. The State Trap

3. Why SAST Fails

4. The AI Factor
a. Can LLMs save us?

5. The Path Forward

#BHEU @BlackHatEvents

Unsafe Code Lab

📚 Realistic vulnerable code

🌐 Vulns across frameworks

🪲 One concept at a time

Every vulnerability:
● Fits modern best practices

● Passes code review

● Is caused by “fixing” previous vuln

● Comes with exploit scenario

#BHEU @BlackHatEvents

Best practices can introduce and mask vulnerabilities:

● Separate concerns → Validation/Execution split

● Validate early → Middleware reads different source than

handler

● DRY → Shared helpers with implicit assumptions

Our thesis: security tools are not keeping up with modern
development patterns.

“The road to hell is paved with refactoring.”

#BHEU @BlackHatEvents

Financial Loss
Pay $0.01 for $1,000 order | Refund same item 5×

Real-World Business Impact

Account Takeover
Become manager | Hijack accounts | Session fixation

Data Breach
View competitor's orders | Enumerate all coupon codes

Business Disruption
Steal reviews | Make competitor's page show your content

#BHEU @BlackHatEvents

Our Corpus vs OWASP & API Top 10

OWASP Top 10 Web 2021 OWASP Top 10 API 2023

A01 Broken Access Control
A02 Cryptographic Failures
A03 Injection
A04 Insecure Design
A05 Security Misconfiguration
A06 Vulnerable and Outdated Components
A07 Identification and Authentication
A08 Software and Data Integrity
A09 Security Logging and Monitoring
A10 Server Side Request Forgery

Total: 5

API1 Broken Object Level Authorization
API2 Broken Authentication
API3 Broken Object Property Level Authz
API4 Unrestricted Resource Consumption
API5 Broken Function Level Authorization
API6 Unrestricted Access to Sensitive
Business Flows
API7 Server Side Request Forgery
API8 Security Misconfiguration
API9 Improper Inventory Management
API10 Unsafe Consumption of APIs
Total: 6

#BHEU @BlackHatEvents

One Root Cause → Many Symptoms

A01, API1,
API3, API5

A01, A04, API1,
API3, API6

A01, API4, API6
A01, A07, API2,
API5

A03, A04, A07,
A08, API1, API2,
API10

Authorization
Confusion

──────────
Financial,
Takeover,
Breach

Input Source
Confusion

──────────
Financial,
Takeover

Cardinality
Confusion

──────────
Financial,
Privesc

Authentication
Confusion

──────────
Financial,
Takeover,
Breach

Normalization
Confusion

──────────
Financial,
Takeover,
Breach

20, 89, 135, 176,
178, 180, 185,
200, 436, 706,
863

20, 285, 384,
639, 682, 799,
863, 1284

200, 284, 287,
639, 862, 863

284, 287, 302,
384, 650, 1390

20, 287, 346,
384, 602, 639,
706, 915, 1284

O
W
A
SP

C
W
E

#BHEU @BlackHatEvents

Case Study 1

The Clean Code Trap

#BHEU @BlackHatEvents

The Exploit

POST /cart/42/checkout
Content-Type: application/json

{
 "coupon_codes": [“SAVE50”, “30OFF”, “SAVE50”],
 "delivery_address": "124 Nowhere Road"
}

Result: 50% discount applied twice

#BHEU @BlackHatEvents

This Looks Obvious. Why Does It Reach Prod?

The vulnerable flow is split across “clean” refactors.

● Validator: Takes input, removes garbage, returns clean set.

● Executor: Takes validated context, performs action.

Everyone agrees the exploit is trivial once you see it, but the

code around it is exactly what we encourage in reviews.

#BHEU @BlackHatEvents

The Validation (Good Code?)

def extract_single_use_coupons(coupon_codes: list[str]) -> set[str]:
 valid_coupons = set()
 for code in coupon_codes:
 if is_valid_and_unused(code):
 valid_coupons.add(code)
 return valid_coupons

Input: ["PROMO1", "PROMO2", “PROMO1”]
Output: {"PROMO1", “PROMO2” } ← Deduplicated

#BHEU @BlackHatEvents

The Execution

def apply_coupons(order: Order, coupons: list[str], valid_c: set[str]):
 for code in coupons: # Iterates the ORIGINAL LIST
 if code in valid_c: # Checks against the SET
 apply_discount(order, code)

#BHEU @BlackHatEvents

Validation & Execution Flow: Expectation

📥 Input

⚙ Execution

for x in {“SAVE50”, “30OFF”}:
apply_coupon(x){“SAVE50”, “30OFF”}

🌈 Result: Single Use

🔎 Validation

 [“SAVE50”, “30OFF”, “SAVE50”]

#BHEU @BlackHatEvents

Validation & Execution Flow: Reality

📥 Input

⚙ Execution

for x in [“SAVE50”, “30OFF”, “SAVE50”]:
if x in {“SAVE50”, “30OFF”}:

apply_coupon(x)

 [“SAVE50”, “30OFF”, “SAVE50”]

{“SAVE50”, “30OFF”}

⚠ Result: Financial Loss

🔎 Validation

 [“SAVE50”, “30OFF”, “SAVE50”]

#BHEU @BlackHatEvents

Imagine if you could ask your SAST

Today's tools don't model collection semantics. They just see

"Data Flow".

They don’t see “Is the validated thing the same thing we’re

iterating over?”

"Show me everywhere a transformed collection (Set) differs
from its iteration target (List)."

#BHEU @BlackHatEvents

SAST Capability Levels

SAST Past SAST Present SAST Future

Security Linter Taint Analysis

???

Find code that will always
lead to vulnerabilities:
 eval()/exec()

Checks user input:
1) Does it reach sink?
2) Is it validated?

#BHEU @BlackHatEvents

Taint Analysis: What It Expects

🛡 Validation

💾 Sink

📥 Source

🛡 Validation

💾 Sink

📥 Source

✅ Valid Flow: ⚠ Problematic Flow:

#BHEU @BlackHatEvents

SAST Failure Mode #1

🛡 Validation

💾 Sink

📥 Source

🛡 Validation

💾 Sink

📥 Source

SAST expected: In our code:

#BHEU @BlackHatEvents

Naive SAST Approach

Hardcodes function and variable names.
Breaks if code is refactored.
Does not match semantically identical bugs.

- id: v403-naive-set-list-duplication
 patterns:
 - pattern-inside: |
 valid_single_use = extract_single_use_coupons($CODES)
 ...
 - pattern: |
 for $CODE in $CODES:
 if $CODE in valid_single_use:
 ...

#BHEU @BlackHatEvents

Pragmatic SAST Approach

Establishes contract: coupons = extract_single_use_coupons(coupons)
Works regardless of downstream loop patterns.
Self-documenting the intent in the code structure.

- id: v403-pragmatic-enforce-reassignment
 patterns:
 - pattern: $RES = extract_single_use_coupons($INPUT)
 - pattern-not: $INPUT = extract_single_use_coupons($INPUT)
 message: |
 Convention: Result must be assigned back to same variable.

#BHEU @BlackHatEvents

Case Study 2

Validate Early, Fail Fast

#BHEU @BlackHatEvents

The Exploit

POST /cart/42/checkout?tip=20
Content-Type: application/json

{
 "tip": -50,
 "delivery_address": "124 Nowhere Road"
}

Result:
● Middleware validates tip=20
● Handler applies tip=-50
● Customer gets $50

#BHEU @BlackHatEvents

The Validation Middleware

The team was fixing a Mass Assignment bug. They added

middleware to block dangerous params.

Textbook Defense in Depth.

@before_request
def security_check():
 # Helper to find data anywhere (Query, Body, Form)
 if get_param("order_id"):
 abort(400, "Mass assignment attempt detected")

 # While we're here, validate the tip!
 tip = get_param("tip")
 if tip and int(tip) < 0:
 abort(400, "Negative tip not allowed")

#BHEU @BlackHatEvents

The Helper Function

Flexible. Supports both URL and Body params.

def get_param(key):
 """Convenience helper for mobile + web support"""
 # 1. Check Query String (Mobile app sends here)
 if key in request.args:
 return request.args.get(key)

 # 2. Check JSON Body (Web app sends here)
 return request.json.get(key, None)

#BHEU @BlackHatEvents

The Handler

Handlers usually prefer JSON body for POST requests.

Tip value is read directly from the body, bypassing helper.

def checkout():
 data = request.get_json() or request.args

 tip = data.get("tip")
 charge_customer(amount + tip)

#BHEU @BlackHatEvents

Middleware: Expectation

📥 RequestBody: {“tip”: 20}

Middleware
get_request_parameter()

VALIDATED

Handler
request.json.get()

EXECUTED

tip = 20

🌈 Result: Customer tips $20

#BHEU @BlackHatEvents

Middleware: Reality

📥 Request
Query: ?tip=20

Body: {“tip”: -50}

Middleware
get_request_parameter()

tip = 20 ✅
VALIDATED

Handler
request.json.get()

tip = -50 ❌
EXECUTED

🚩 Result: Attacker gets $50

#BHEU @BlackHatEvents

Imagine if you could ask your SAST tool

Examples:

• request.args vs request.json

• headers vs body

• form fields vs JSON

Today, most tools flatten this into just “user input”.

"Find all cases where Validation reads from container X

but Execution reads from container Y, for the same field."

#BHEU @BlackHatEvents

SAST Failure Mode #2

SAST tracks: single input at a time

🛡 Validation

💾 Sink

Input #1 Input #2

🛡 Validation

💾 Sink

Input #1 Input #2

#BHEU @BlackHatEvents

SAST Failure Mode #2

🛡 Validation

💾 Sink

Exploit: both presentSAST tracks: single input at a time

Input #1 Input #2

🛡 Validation

💾 Sink

Input #1 Input #2

🛡 Validation

💾 Sink

Input #1 Input #2

#BHEU @BlackHatEvents

Naive SAST Approach

● Specific to ‘tip’.

● Requires same file and will miss middleware/handler split.

● No understanding of validate-vs-execute semantics.

- id: v104-naive-container-mismatch
 pattern: |
 ...
 request.args.get("tip")
 ...
 request.json.get("tip", ...)

#BHEU @BlackHatEvents

Flag Raw Access

● Only flags raw access, not the mismatch.

{
 "sources": [
 { "name": "DirectJsonAccess",
 "comment": "Direct access to request.json" }
],
 "rules": [{
 "name": "v104: Direct JSON Access",
 "code": 5001,
 "sources": ["DirectJsonAccess"],
 "sinks": ["GeneralSink"],
 "message_format": "Data from request.json accessed directly"
 }]
}

#BHEU @BlackHatEvents

Pragmatic Approach: Ban Raw Container Access

● ALL parameter reads go through ONE function.

● Single source of truth for input handling

● Helper can validate, log, sanitize consistently

- id: v104-pragmatic-ban-raw-access
 patterns:
 - pattern-either:
 - pattern: request.json
 - pattern: request.args
 - pattern: request.form
 - pattern-not-inside: |
 def get_request_parameter(...):
 ...

#BHEU @BlackHatEvents

Pragmatic Approach: Annotation-based Convention

● ALL parameter reads go through ONE function.

● Single source of truth for input handling

● Helper can validate, log, sanitize consistently

- id: v104-convention-undeclared-input-source
 patterns:
 - pattern-inside: |
 @$BP.route(...)
 def $HANDLER(...):
 ...
 - pattern-either:
 - pattern: request.args.get(...)
 - pattern: request.json.get(...)
 - pattern-not-inside: |
 @input_source(...)
 def $HANDLER(...):
 ...

#BHEU @BlackHatEvents

Case Study 3

The “Consume Once” Trap

#BHEU @BlackHatEvents

Defense-in-depth: Database Level Scoping

def update_restaurant_menu_item(item_id, ...):
 """
 Safe-by-Design: Always scopes queries to the current tenant.
 Prevents IDORs by forcing a check against the trusted context.
 """
 # 1. Resolve the Tenant ID
 restaurant_id = get_trusted_restaurant_id()

 # 2. Scoped Query
 query = select(MenuItem).where(
 MenuItem.id == item_id,
 MenuItem.restaurant_id == restaurant_id
)

 # ... executes update ...

#BHEU @BlackHatEvents

Consume Once

def consume_param(name):
 """
 Safe Accessor: Reads a value and REMOVES it.
 Ensures the same parameter is never read twice.
 """
 return request.json.pop(name, None)

def get_trusted_restaurant_id():
 if g.get("authorized_restaurant"):
 return g.authorized_restaurant.id

 return consume_param("restaurant_id") or g.get("restaurant_manager")

#BHEU @BlackHatEvents

The Safe Pattern

@bp.patch("/<int:restaurant_id>/menu/<int:item_id>")
@require_restaurant_manager
def update_menu_item(item_id):
 # Decorator already called get_trusted_restaurant_id()
 # Result cached in g.authorized_restaurant

 update_restaurant_menu_item(item_id, ...) # Uses cached value ✓

Inside decorator
def require_restaurant_manager(func):
 g.authorized_restaurant = get_trusted_restaurant()
 require_condition(g.authorized_restaurant.id == g.restaurant_manager)
 return func(...)

#BHEU @BlackHatEvents

The Copy-Paste

@bp.patch("/menu/<int:item_id>")
def update_menu_item_route(item_id: int):
 """Update a menu item."""
 # Copied from restaurants.py but without the decorator
 # Developer added manual authorization check instead.
 restaurant_id = get_trusted_restaurant_id()
 require_condition(restaurant_id == g.restaurant_manager)

 menu_item = update_restaurant_menu_item(item_id, ...)

#BHEU @BlackHatEvents

Feature Update: Batch Support

def consume_param(name):
 """
 Safe Accessor: Reads a value and REMOVES it.
 Ensures the same parameter is never read twice with different values.
 """
 value = request.json.get(name)

 # FEATURE: Batch Operation Support
 # If it's a list, we consume items one by one.
 if isinstance(value, list):
 return value.pop(0) if value else None

 del request.json[name]
 return value

#BHEU @BlackHatEvents

How many consume_param’s?

@bp.patch("/menu/<int:item_id>")
def update_menu_item_route(item_id: int):
 """Update a menu item."""
 # Copied from restaurants.py but without the decorator
 # Developer added manual authorization check instead.
 restaurant_id = get_trusted_restaurant_id() # 1 consume
 require_condition(restaurant_id == g.restaurant_manager)

 menu_item = update_restaurant_menu_item(item_id, ...) # 2 consume

First call: authorization check

Second call: database scoping

Same parameter, different values after pop()

#BHEU @BlackHatEvents

Exploit Development

PATCH /menu/101 HTTP/1.1
X-API-Key: API-KEY-2
Content-Type: application/json

{
 "price": 0.01
}

Blocked by DB

(attacker owns restaurant 2, modifies menu for restaurant 1)

#BHEU @BlackHatEvents

Exploit Development

PATCH /menu/101 HTTP/1.1
X-API-Key: API-KEY-2
Content-Type: application/json

{
 "price": 0.01
}

PATCH /menu/101 HTTP/1.1
X-API-Key: API-KEY-2
Content-Type: application/json

{
 "price": 0.01,
 "restaurant_id": 1
}

Blocked by DB

(attacker owns restaurant 2, modifies menu for restaurant 1)

#BHEU @BlackHatEvents

Exploit Development

PATCH /menu/101 HTTP/1.1
X-API-Key: API-KEY-2
Content-Type: application/json

{
 "price": 0.01
}

PATCH /menu/101 HTTP/1.1
X-API-Key: API-KEY-2
Content-Type: application/json

{
 "price": 0.01,
 "restaurant_id": 1
}

Blocked by DB

(attacker owns restaurant 2, modifies menu for restaurant 1)

Blocked by authz

#BHEU @BlackHatEvents

Exploit Development

PATCH /menu/101 HTTP/1.1
X-API-Key: API-KEY-2
Content-Type: application/json

{
 "price": 0.01
}

PATCH /menu/101 HTTP/1.1
X-API-Key: API-KEY-2
Content-Type: application/json

{
 "price": 0.01,
 "restaurant_id": 1
}

Blocked by DB

(attacker owns restaurant 2, modifies menu for restaurant 1)

Blocked by authz

PATCH /menu/101 HTTP/1.1
X-API-Key: API-KEY-2
Content-Type: application/json

{
 "price": 0.01,
 "restaurant_id": [2, 1]
}

2 in authz, 1 in DB

#BHEU @BlackHatEvents

Imagine if you could ask your SAST tool

SAST is Static. It struggles with Temporal State.

"Show me where a stateful function (like pop) is called

multiple times in a single request lifecycle."

#BHEU @BlackHatEvents

SAST Failure Mode #3

🛡 Validation

💾 Sink

In our code: remove 1stSAST expected: remove source after validation

Input #1 Input #2

🛡 Validation

💾 Sink

📥 Source

🛡 Validation

💾 Sink

📥 Source❌ ❌

#BHEU @BlackHatEvents

Naive Approach: Detect Double Calls

Only catches get_trusted_restaurant_id.

Doesn’t know about pop() inside or any other place where pop() is

used.

- id: v405-naive-double-consumption
 patterns:
 - pattern-inside: |
 def $FUNC(...):
 ...
 - pattern: |
 $A = get_trusted_restaurant_id(...)
 ...
 $B = get_trusted_restaurant_id(...)

#BHEU @BlackHatEvents

Detect Multiple Calls to Stateful Function

Tracks across calls in same scope.

Still hardcodes get_trusted_restaurant_id.

from Call c1, Call c2
where
 c1.getFunc().(Name).getId() = "get_trusted_restaurant_id" and
 c2.getFunc().(Name).getId() = "get_trusted_restaurant_id" and
 c1 != c2 and
 c1.getScope() = c2.getScope() and
 c1.getLocation().getStartLine() < c2.getLocation().getStartLine() and
 c1.getArg(0).toString() = c2.getArg(0).toString()
select c2, "Second call to stateful function with same arguments."

#BHEU @BlackHatEvents

Pragmatic: Naming Convention for Side Effects

Establishes private convention: 'get_' functions must be

pure/idempotent.

Avoids misleading names, but only works at a single function depth.

- id: v405-pragmatic-pure-getters
 patterns:
 - pattern-inside: |
 def $FUNC(...):
 ...
 - metavariable-regex:
 metavariable: $FUNC
 regex: ^get_
 - pattern-either:
 - pattern: $X.pop(...)
 - pattern: consume_param(...)

#BHEU @BlackHatEvents

Pragmatic: Naming Convention for Side Effects

Requires consume_* helpers cache their values, for example on g

global obj.

- id: v405-convention-consume-must-cache
 patterns:
 - pattern: |
 def $FUNC(...):
 ...
 - metavariable-regex:
 metavariable: $FUNC
 regex: ^consume_
 - pattern-not: |
 def $FUNC(...):
 ...
 if hasattr(g, $KEY):
 return getattr(g, $KEY)
 ...
 setattr(g, $KEY, ...)

#BHEU @BlackHatEvents

Why Can’t SAST Find Our Bugs?

#BHEU @BlackHatEvents

Vicious Circle: Low Expectations

Problem: We have complex vulns which SAST cannot find

Solution: DAST, Pentest, Bug Bounty

Taint analysis is not
effective for these vulns

Use other tools/methods:
DAST, Pentest, Bug Bounty

No one expects taint
analysis to find these

vulns

#BHEU @BlackHatEvents

Recall SDLC Pipeline

https://www.virtasant.com/blog/sdlc-methodologies

SAST
DAST

SIEM & Pentest

SCA RASP

https://www.virtasant.com/blog/sdlc-methodologies

#BHEU @BlackHatEvents

What We Can Find At Each Phase?

https://www.virtasant.com/blog/sdlc-methodologies

SAST
SQLi, XSS

DAST
HPP, CSRF, SSRF

SIEM & Pentest
Auth bypass, IDOR

SCA
known CVEs, vuln

dependencies

RASP
0-day exploit

attempts

https://www.virtasant.com/blog/sdlc-methodologies

#BHEU @BlackHatEvents

Vicious Circle: Business Impact

You don’t expect SAST to do DAST/pentester job

These vulns can’t be
found in the early phases

You don’t expect vendors
to improve

Vendors don’t improve

There is no benchmarks
that have these vulns

#BHEU @BlackHatEvents

...or this was the case
until November 2022 ⌛

#BHEU @BlackHatEvents

With AI tools, common knowledge changes

Before:

• “These bugs are too hard for static analysis”

• “We’ll catch them with pentests and bug bounties”

Now:

• LLMs can often reason about these flows in natural language

• They can walk the exploit path we just followed manually

These vulns can be found in early phases.

The question is: how do we make that reliable and scalable?

#BHEU @BlackHatEvents

What AI Gets Right

● Understands business logic context

● Can reason about multi-file flows

● Finds authorization confusion patterns

But at what cost?

#BHEU @BlackHatEvents

How AI Performs on Our Benchmark?

#BHEU @BlackHatEvents

Should We Just Switch to AI?

AI SAST

#BHEU @BlackHatEvents

Cost
100K+ lines repos -> Naive “scan with AI” scales poorly

Real-World Business Impact

Reliability
Prompt sensitivity, non-deterministic results

Coverage
Will it find other vulnerability types?

#BHEU @BlackHatEvents

How Does SAST Fit Into the Picture?

● We cannot replace SAST with AI alone

● Today, SAST is underused and under-ambitious

● But SAST has one superpower AI doesn’t:

○ Precise, fast, repeatable – at scale

#BHEU @BlackHatEvents

The Practical Path Forward

#BHEU @BlackHatEvents

Our Thesis

● We built this corpus as basic security training

○ It does not try to fool SAST, AI, or humans

○ It uses normal “clean code” patterns

● Existing SAST engines:

○ Fail to find these bugs with built-in rules

○ Make it unreasonably hard to write custom rules

#BHEU @BlackHatEvents

Achievable Gap

● Yet we can describe every failure using the same vocabulary SAST

already uses for taint analysis:

○ Inputs, validations, containers, sinks, flows

● We don’t need entirely new math to do better

Validation

Sink

Validation

Sink

Input #1 Input #2

Validation

Sink

Input #1 Input #2❌Source

#BHEU @BlackHatEvents

● A long-running service, not a one-off CI job

● Exposes:

○ Call graphs, data-flow, and control-flow

● Powers:

○ AI agents that understand your codebase

○ Dynamic investigations and behavior modeling

“Just because it is SAST, it does not have to be static”

SAST Past SAST Present SAST Future

Security Linter Taint Analysis Security LSP

#BHEU @BlackHatEvents

Takeaways

❸❷❶
Write custom

SAST rules for

first party code

Generic rules find

generic bugs

Use SAST as a

security model,

not a gate

Think “security LSP”

not “static checkbox”

If you can't

write rules for

it, simplify

your code

Complexity that

confuses SAST also

confuses humans & AI

#BHEU @BlackHatEvents

Contact Us

Andrew Konstantinov

✉ andrew@konst.lv
https://github.com/execveat

Irina Iarlykanova

✉ irina.iarlykanova@gmail.com
https://github.com/Irench1k

󰠁 Open to work! Unsafe Code Lab

mailto:andrew@konst.lv
https://github.com/execveat
mailto:irina.iarlykanova@gmail.com
https://github.com/Irench1k

