
Exploiting OPC-UA in Every Possible Way:
Practical Attacks Against Modern OPC-UA Architectures

Sharon Brizinov, Noam Moshe @ Claroty Research - Team82

$whoami

Sharon Brizinov
Vulnerability researcher - CTFs,
Pwn2Own, DEFCON
blackbadge, mostly breaking
PLCs

Noam Moshe
Vulnerability researcher -
Pwn2Own, mostly breaking IoT
clouds

* Special thanks to Claroty Team82 researchers:
Uri Katz, Vera Mens

Background

Researched dozens of OPC-UA protocol
stacks and products

Found core issues in protocol
implementations
~50 CVEs: DoS, Info leaks, RCE
~12 unique generic attacks

Open-source tools
• OPC-UA fuzzer
• OPC-UA exploitation framework

Three Pwn2Own ICS ~$200k 💰💰💰

How Did We Do That?

Agenda

• What is OPC-UA?

• Protocol Stack Implementations

• Bits and Bytes

• Research Methodology

• Vulnerabilities and Exploits

• OPC-UA Exploitation Framework

• Summary

What’s the Problem?

Water
level ?Proprietary

ICS Protocol
???

Water Tank HMI & SCADAPLC

What’s the Problem?

Water Tank PLC

Water
level

HMI & SCADA
OPC-UA
Server

Water Level
is 50%

Proprietary
ICS Protocol

OPC-UA Water Level
is 50%

What is OPC-UA?

Open Platform Communications -
Unified Architecture

Protocol for data exchange
between industrial devices and
systems
• Server: stores tags/variables
• Client: requests tags/variables

Widely accepted standard for
industrial communications
• Supported in Azure/AWS IoT cloud

OPC Foundation

OPC Foundation, specs first version ~2006
• opcfoundation.org

Lesson learned from “OPC Classic”
• Platform independent, scalable, secure

Detailed specifications
• Information Model: Object types, how to encode
• Services: Supported services such as read, write, etc
• Security: Authentication, authorization, encryption
• Many more

https://reference.opcfoundation.org/

Protocol Stacks and Frameworks

Agenda

• What is OPC-UA?

• Protocol Stack Implementations

• Bits and Bytes

• Research Methodology

• Vulnerabilities and Exploits

• OPC-UA Exploitation Framework

• Summary

OPC-UA Protocol Stacks

To expedite popularity,
OPC Foundation created
the first OPC-UA
protocol stacks

• ANSI C
• Java
• .NET

Operating System

Java Runtime .NET Runtime

Win / Linux API

Java Stack .NET Stack ANSI C Stack

JAVA API/SDK .NET API/SDK C/C++ API/SDK

OPC-UA Application (Server/Gateway/Client)

OPC-UA Supply Chain

With time, vendors integrated the base
stacks and modified some of its code

Currently, OPC Foundation lists more
than 500 different products

https://opcfoundation.org/products

https://opcfoundation.org/products

OPC-UA Supply Chain

The problem, is that
most products are
heavily relying on the
base protocol stacks
from OPC Foundation

Top Products

UA Automation
C++ Server

OPC Foundation
OPC UA .NET

Prosys OPC UA
SDK for JAVA

Softing Integration
Server KEPServerEx

Extended
Lib/SDK

Core lib

Proprietary

+

Proprietary

+

Proprietary

+

Proprietary

Focus on the Protocol Stacks

So we wanted to find
vulns in the base
protocol stacks

Protocol Stacks

We also researched popular products
such as:
• Softing Secure Integration Server
• PTC Kepware KEPServerEx
• Triangle Microworks SCADA Data

Gateway
• Honeywell Matrikon
• Inductive Automation Ignition

OPC-UA Protocol Stack
Programing

language
Is Open
Source?

node-opcua NodeJS Yes
open62541 C Yes
freeopcua (c++) C++ Yes

python-opcua Python Yes

opcua-asyncio Python Yes

eclipse-milo Java Yes

ASNeG OpcUaStack C++ Yes

locka99 Rust Yes

Unified Automation C++ No

OPC Foundation .NET Stack C# Yes

Softing OPC UA SDK C++ No

Prosys OPC UA Java No

OPC UA Legacy Java Stack Java Yes

S2OPC C Yes

LibUA C# Yes

https://github.com/node-opcua/node-opcua
https://github.com/open62541/open62541
https://github.com/FreeOpcUa/freeopcua
https://github.com/FreeOpcUa/python-opcua
https://github.com/FreeOpcUa/opcua-asyncio
https://github.com/eclipse/milo
https://github.com/ASNeG/OpcUaStack
https://github.com/locka99/opcua
https://www.unified-automation.com/
https://opcfoundation.org/
https://industrial.softing.com/products/opc-ua-and-opc-classic-sdks/opc-ua-c-sdks-for-windows.html
https://www.prosysopc.com/
http://opcfoundation.github.io/UA-Java-Legacy/
https://gitlab.com/systerel/S2OPC
https://github.com/nauful/LibUA

Bits and Bytes

Agenda

• What is OPC-UA?

• Protocol Stack Implementations

• Bits and Bytes

• Research Methodology

• Vulnerabilities and Exploits

• OPC-UA Exploitation Framework

• Summary

OPC-UA Nodes

Everything is a node
• Variable (e.g. “Water Level”)
• Type of the Variable value (e.g. Float)

Nodes are identified by [ns, i]
• NodeID (i=1)
• Namespace ID (ns=0)

Namespace is a container for nodes
• Namespace 0: default namespace and

contains the default nodes

Address Space provide a standard way for
servers to represent objects to clients

OPC-UA Services

Our interaction with the server is via request/response fashion. In
most cases we are doing some “action” on nodes.
Examples:

Service Set Service Name Description

Attribute
Read Service Read values from attributes of nodes

Write Service Write values to attributes of nodes

Method Call Service Call (invoke) a list of methods.

View Browse
Navigate through the AddressSpace - find Node

references

OPC 10000-4: UA Part 4: Services

https://reference.opcfoundation.org/Core/Part4/v104/docs/

Example

Node Name Node Class and Type

Fill Valve
Variable with

DataType Boolean

Discharge Valve
Variable with

DataType Boolean

Flow Meter
Variable with

DataType Float

Water Level
Variable with

DataType Float

Start/Stop Method

Tank (water level %50)

Nodes Encoding [ns=0, i=446]

Specifications

Binary Representation

Binary Parsing

Example: Read Service: Reading 12 Nodes

HEL

HEL: Hello message

HEL

HEL: Hello message

Endpoint URL

● Scheme - must be opc.tcp or opc.https
● Server address
● Port
● Discovery endpoint

opc.tcp://SERVER_IP:62541/UA/Server

OPN

HEL: Hello message

OPN: OpenSecureChannel message

OPN

SecurityPolicies supported by Prosys OPC-UA server

HEL: Hello message

OPN: OpenSecureChannel message

Security Mode

• None

• Sign

• Sign & Encrypt

OPN

Authentication settings for an OPC-UA client, shown using
UAExeprt

HEL: Hello message

OPN: OpenSecureChannel message

Authentication

• Anonymous

• Username/password

• Certificate

OPN

HEL: Hello message

OPN: OpenSecureChannel message

• Security Mode and Policy
• Authentication

OPC UA Secure Conversation MessageChunk

https://reference.opcfoundation.org/v104/Core/docs/Part6/6.7.2/

CreateSession

HEL: Hello message

OPN: OpenSecureChannel message

MSG: A generic message container. Some service
will be used.

CreateSession

HEL: Hello message

OPN: OpenSecureChannel message

MSG: A generic message container. Some service
will be used.

Create Session + Activate

• Configure the session (e.g. timeout,
message size, etc)

Full Session

HEL: Hello message

OPN: OpenSecureChannel message

MSG: A generic message container (secured with
the channel’s keys)

CLO: CloseSecureChannel message

Research Methodology

Agenda

• What is OPC-UA?

• Protocol Stack Implementations

• Bits and Bytes

• Research Methodology

• Vulnerabilities and Exploits

• OPC-UA Exploitation Framework

• Summary

Building Basic OPC-UA Client
Why?
• Hands-on
• Focus on logic
• Customizable to our vuln research

needs

How?
• Specification
• Protocol analysis + Wireshark

FreeOpcUa Python OPC-UA
(Python)
Prosys OPC-UA Browser (Java)
Unified Automation UaExpert
(C/C++)

https://github.com/FreeOpcUa/python-opcua
https://www.prosysopc.com/products/opc-ua-browser/
https://www.unified-automation.com/products/development-tools/uaexpert.html

Building the Setup

Intel NUC x 2
• Intel Core i7-1165G7
• 32 GB RAM

Installed VMware ESXi

Prepared a Windows 10 x64 Image
~10 machines per NUC

Installing & Configuring Targets
Protocol Stack Libraries
• Unified Automation - ANSI C Stack - C

• OPC Foundation - .NET Standard - .NET

• OPC Foundation - Java Legacy - Java

• Prosys OPC UA SDK for Java - Java

• FreeOpcUA opcua-asyncio Python

• Eclipse Milo - Java

• Node-opcua - Node JS

• Open62541 - C

• OPC UA rust – Rust

OPC UA Servers
• Inductive Automation Ignition

• Unified Automation UaGateway

• PTC Kepware KepServerEx

• Prosys OPC UA Simulation Server

• Softing edgeConnector

Gateways
Triangle Microworks SCADA Data Gateway

Softing Secure Integration Server

Clients
PTC Kepware KepServerEx

Prosys OPC UA Browser

Softing edgeAggregator

Inductive Automation Ignition

https://www.unified-automation.com/products/server-sdk/ansi-c-ua-server-sdk.html
https://github.com/OPCFoundation/UA-.NETStandard
https://github.com/OPCFoundation/UA-Java-Legacy
https://www.prosysopc.com/products/opc-ua-java-sdk/
https://github.com/FreeOpcUa/opcua-asyncio
https://github.com/eclipse/milo
https://github.com/node-opcua/node-opcua
https://github.com/open62541/open62541
https://github.com/locka99/opcua
https://inductiveautomation.com/
https://www.unified-automation.com/products/ua-runtime-software/uagateway.html
https://www.ptc.com/en/products/kepware/kepserverex
https://www.prosysopc.com/products/opc-ua-simulation-server/
https://industrial.softing.com/products/docker/edgeconnector-siemens.html
https://www.trianglemicroworks.com/products/scada-data-gateway/overview
https://industrial.softing.com/products/opc-opc-ua-software-platform/integration-platform/secure-integration-server.html
https://www.ptc.com/en/products/kepware/kepserverex
https://www.prosysopc.com/products/opc-ua-browser/
https://industrial.softing.com/products/docker/edgeaggregator.html
https://inductiveautomation.com/

Network Fuzzer

Released open-source OPC-UA
fuzzer, based on boofuzz

Found 2 heap/stack overflow

Fuzzing 6 Services
• Read Service
• Browse Service
• Browse Next Service
• Create Subscription Service
• Add Nodes Service
• History Read Service

https://github.com/claroty/opcua_network_fuzzer

https://github.com/claroty/opcua_network_fuzzer

Fuzzers: Coverage Based

Found old source-code for ANSI C
OPC-UA stack

Used both libFuzzer / AFL

Wrote small harness, mostly to fuzz the
decode routines
https://github.com/linshenqi/UA-AnsiC

AFL harness

libFuzzer burning CPUs

https://github.com/linshenqi/UA-AnsiC

Control the Fuzzers

Dozens of fuzzers running
• Network based: using boofuzz
• Memory/Coverage based: using AFL,

libfuzzer
• Closed binary: using WinAFL,

UnicornAFL (CPU Emulator)

Monitored everything through
Slackbot

Collected millions of corpus

Specs & RE

Looking for esoteric and complex features/mechanisms

What will developers overlook?

Reverse engineer and code review to observe different
implementations

Pre-auth (HEL, OPN) vs post-auth

Specs & RE

Looking for esoteric and complex
features/mechanisms

What will developers overlook?

Reverse engineer and code
review to observe different
implementations

Pre-auth (HEL, OPN) vs post-auth

What happens if we are not sending the Final flag?
https://reference.opcfoundation.org/v104/Core/docs/Part6/6.7.2/

https://reference.opcfoundation.org/v104/Core/docs/Part6/6.7.2/

Specs & RE

Looking for esoteric and complex
features/mechanisms

What will developers overlook?

Reverse engineer and code
review to observe different
implementations

Pre-auth (HEL, OPN) vs post-auth
What happens if we keep all

subscriptions alive?
https://reference.opcfoundation.org/Core/Part4/v104/docs/5.6.4

https://reference.opcfoundation.org/Core/Part4/v104/docs/5.6.4

Vulnerabilities and Exploits
Denial of Service - Servers

Agenda

• What is OPC-UA?

• Protocol Stack Implementations

• Bits and Bytes

• Research Methodology

• Vulnerabilities and Exploits

• OPC-UA Exploitation Framework

• Summary

OPC-UA Server - Denial of Service

OPC-UA
Server/Gateway

Proprietary
ICS Protocol

OPC-UA Water Level
is ???

Water Tank PLC OPC-UA Client

Attacker

OPC-UA

Denial of Service - Vectors

• Resource exhaustion: uncontrolled memory management

• Threads deadlock

• Use after free bugs

• Buffer overflows: heap/stack corruption

• Uncaught exceptions

• Busy loops / unlimited recursions: call-stack overflow

Denial of Service – Attack Concepts

Resource exhaustion - uncontrolled
memory management
• Chunk Flooding
• Unlimited ConditionRefresh Attack
• Unlimited Persistent Monitored

Subscriptions
• Unlimited Open Channels

Threads deadlock
• Worker Starvation

Use-after-free bugs
• Method Calling From Dead Session
• Add/Remove From Namespace

While Browsing

Buffer overflows - heap/stack corruption
• Unicode Conversion - OOB Write

Uncaught exceptions
• Parser Bug - Dissecting Malformed

OPC-UA Data Type
Busy loops / unlimited recursions –
call-stack overflow
• Complex Deep Nested Variants

(OTORIO)
• Certificate Chain Loop (Sector7)
• Unlimited Translate Browse Path (JFrog)

Denial of Service – Attack Concepts

Resource exhaustion - uncontrolled
memory management
• Chunk Flooding
• Unlimited ConditionRefresh Attack
• Unlimited Persistent Monitored

Subscriptions
• Unlimited Open Channels

Threads deadlock
• Worker Starvation

Use-after-free bugs
• Method Calling From Dead Session
• Add/Remove From Namespace

While Browsing

Buffer overflows - heap/stack corruption
• Unicode Conversion - OOB Write

Uncaught exceptions
• Parser Bug - Dissecting Malformed

OPC-UA Data Type
Busy loops / unlimited recursions –
call-stack overflow
• Complex Deep Nested Variants

(OTORIO)
• Certificate Chain Loop (Sector7)
• Unlimited Translate Browse Path (JFrog)

Denial of Service - Chunk Flooding

Denial of Service - Chunk Flooding

OPC-UA .NET Stack

Denial of Service - Chunk Flooding

Attacker

while !isFinalChunk:
add(chunk)

MSG
Final

OPC-UA
Server/Gateway

MSG
Chunk

MSG
Chunk

MSG
Chunk

MSG
Chunk

MSG
Chunk

MSG
Chunk MSG

Chunk

MSG
Chunk

MSG
Chunk

Denial of Service - Chunk Flooding

Attacker OPC-UA
Server/Gateway

MSG
Chunk

MSG
Chunk

MSG
Chunk

MSG
Chunk

MSG
Chunk

MSG
Final

while !isFinalChunk:
add(chunk)

Denial of Service - Chunk Flooding

Attacker

while
!isFinalChunk:

add(chunk)

OPC-UA
Server/Gateway

MSG
Final

MSG
Chunk

MSG
Chunk

MSG
Chunk

MSG
Chunk

MSG
Chunk

Denial of Service - Chunk Flooding

Attacker

while
!isFinalChunk:

add(chunk)

OPC-UA
Server/Gateway

MSG
Final

MSG
Chunk

MSG
Chunk

MSG
Chunk

MSG
Chunk

MSG
Chunk

CVE-2022-21208
CVE-2022-25761
CVE-2022-25304

CVE-2022-24381
CVE-2022-25888
CVE-2022-29864

Denial of Service – Attack Concepts

Resource exhaustion - uncontrolled
memory management
• Chunk Flooding
• Unlimited ConditionRefresh Attack
• Unlimited Persistent Monitored

Subscriptions
• Unlimited Open Channels

Threads deadlock
• Worker Starvation

Use-after-free bugs
• Method Calling From Dead Session
• Add/Remove From Namespace While

Browsing

Buffer overflows - heap/stack corruption
• Unicode Conversion - OOB Write

Uncaught exceptions
• Parser Bug - Dissecting Malformed

OPC-UA Data Type
Busy loops / unlimited recursions –
call-stack overflow
• Complex Deep Nested Variants

(OTORIO)
• Certificate Chain Loop (Sector7)
• Unlimited Translate Browse Path (JFrog)

Denial of Service - Method Calling From Dead Session

Example to exposed function (python-opcua)

https://reference.opcfoundation.org/v104/Core/docs/Part4/5.11.2/

https://reference.opcfoundation.org/v104/Core/docs/Part4/5.11.2/

Denial of Service - Method Calling From Dead Session

https://reference.opcfoundation.org/v104/Core/docs/Part4/5.11.2/

Example to exposed function (python-opcua)

https://reference.opcfoundation.org/v104/Core/docs/Part4/5.11.2/

Denial of Service - Method Calling From Dead Session

Did all stacks implement this
correctly?

Exploit:

• Sending many Call Method
Request

• And immediately close the session

Denial of Service - Method Calling From Dead Session

Attacker OPC-UA
Server/Gateway

MSG
Call Method 1
Call Method 2
 …
Call Method n

Denial of Service - Method Calling From Dead Session

Attacker OPC-UA
Server/Gateway

MSG
Call Method 1
Call Method 2
 …
Call Method n

Denial of Service - Method Calling From Dead Session

Attacker OPC-UA
Server/Gateway

MSG
Call Method 1
Call Method 2
 …
Call Method n

Denial of Service - Method Calling From Dead Session

Attacker OPC-UA
Server/Gateway

MSG
Call Method 1
Call Method 2
 …
Call Method n

Denial of Service - Method Calling From Dead Session

OPC-UA
Server/Gateway

MSG
Call Method 1
Call Method 2
 …
Call Method n

Denial of Service - Method Calling From Dead Session

MSG
Call Method 1
Call Method 2
 …
Call Method n

Softing Secure Integration Server

Denial of Service - Method Calling From Dead Session

Softing Secure Integration Server
MSG

Call Method 1
Call Method 2
 …
Call Method n

CVE-2022-1748

Vulnerabilities and Exploits
RCE - Servers

OPC-UA Server - RCE

OPC-UA
Server/Gateway

Proprietary
ICS Protocol

OPC-UA Water Level
is 50%

Water Tank PLC OPC-UA Client

Attacker

OPC-UA Server - RCE

OPC-UA
Server/Gateway

Proprietary
ICS Protocol

OPC-UA Water Level
is 50%

Water Tank PLC OPC-UA Client

Attacker

OPC-UA

PTC Kepware KepServerEx

• Industry’s leading OPC-UA server, used
in biggest manufacturing lines, oil rigs,
wind farms, etc.

• Windows-based

• Custom OPC-UA protocol stack

• OPC-UA logic in server_runtime.exe
▪ 32bit, service (SYSTEM)
▪ Customized anti-debugging

Fuzzer Demo

Analyzing the Crash

OPC-UA Strings are UTF-8 Encoded

TANK_ID tag and it’s value
Unified Automation Client

Read tag’s value Wireshark

KepServerEx Conversion bug

KepServerEx is trying to convert UTF-8 to UTF-16

String Encoding is Hard

UTF-8 to UTF-16 is Hard

Whatever starts
with C3 is

probably 2 bytes
long

UTF-8: AAAÀ

 AAAÀ

UTF-8 to UTF-16 is Hard

41 41 41 c3 80 00 ……

Whatever starts
with C3 is

probably 2 bytes
long

UTF-8: AAAÀ

41 41 41 c3 80 00 ……

UTF-8 to UTF-16 is Hard

1 1 1 2

Whatever starts
with C3 is

probably 2 bytes
long

UTF-8: AAAÀ

UTF-8 to UTF-16 is Hard

Stop
41 41 41 c3 80 00 ……

1 1 1 2

Whatever starts
with C3 is

probably 2 bytes
long

UTF-8: AAAÀ

UTF-8 to UTF-16 is Hard

\x41\x41\x41\xC3\x80

Stop
41 41 41 c3 80 00 ……

1 1 1 2

Whatever starts
with C3 is

probably 2 bytes
long

UTF-8: AAAÀ

UTF-16:

UTF-8 to UTF-16 is Hard

\x41\x41\x41\xC3\x80

Stop
41 41 41 c3 80 00 ……

1 1 1 2

Whatever starts
with C3 is

probably 2 bytes
long

UTF-8: AAAÀ

UTF-16:

OK

UTF-8 to UTF-16 is Hard

Whatever starts
with C3 is

probably 2 bytes
long

UTF-8: AAA\xC3

 AAA\xC3

UTF-8 to UTF-16 is Hard

41 41 41 c3 00

Whatever starts
with C3 is

probably 2 bytes
long

UTF-8: AAA\xC3

UTF-8 to UTF-16 is Hard

41 41 41 c3 00

Whatever starts
with C3 is

probably 2 bytes
long

UTF-8: AAA\xC3

1

UTF-8 to UTF-16 is Hard

41 41 41 c3 00

Whatever starts
with C3 is

probably 2 bytes
long

UTF-8: AAA\xC3

1 1

UTF-8 to UTF-16 is Hard

41 41 41 c3 00

Whatever starts
with C3 is

probably 2 bytes
long

UTF-8: AAA\xC3

1 1 2

UTF-8 to UTF-16 is Hard

41 41 41 c3 00 XXXXXXXXX……00

Whatever starts
with C3 is

probably 2 bytes
long

UTF-8: AAA\xC3

1 1 2 1 1

UTF-8 to UTF-16 is Hard

41 41 41 c3 00 XXXXXXXXX……00

Whatever starts
with C3 is

probably 2 bytes
long

UTF-8: AAA\xC3

1 1 2 1 1
Stop

UTF-8 to UTF-16 is Hard

41 41 41 c3 00 XXXXXXXXX……00

UTF-8: AAA\xC3

1 1 2 1 1

\x41\x41\x41\xC3LEAKINGTHEHEAP

UTF-16:

Stop

UTF-8 to UTF-16 is Hard

41 41 41 c3 00 XXXXXXXXX……00

UTF-8: AAA\xC3

1 1 2 1 1

\x41\x41\x41\xC3LEAKINGTHEHEAP

UTF-16:

StopFAIL

Heap Overflow Primitive

The bug is triggered on both READ_TAG and WRITE_TAG functions

We have heap OOB (read+write)

• OOB read → leak pointers to defeat ASLR
• OOB write → construct ROP chain, RCE and PWN

Heap OOB Read

Leaking data via read tag

OOB Write

We have the pointers to start our ROP chain

But the bytes written are UTF-16 converted

To construct the ROP chain we need to control the whole payload.

UTF8 → UTF16
mspaint → \x00m\x00s\x00p\x00a\x00i\x00n\x00t

OOB Write

Not good for our ROP

UTF8 → UTF16
mspaint → \x00m\x00s\x00p\x00a\x00i\x00n\x00t

We have the pointers to start our ROP chain

But the bytes written are UTF-16 converted

To construct the ROP chain we need to control the whole payload.

OOB Write

UTF8 → UTF16
????? → mspaint

We have the pointers to start our ROP chain

But the bytes written are UTF-16 converted

To construct the ROP chain we need to control the whole payload.

OOB Write

UTF8 → UTF16
????? → mspaint

UTF-8 UTF-16

? ms

We have the pointers to start our ROP chain

But the bytes written are UTF-16 converted

To construct the ROP chain we need to control the
whole payload.

OOB Write

UTF-8 UTF-16

獭 ms
UTF8 → UTF16
????? → mspaint

We have the pointers to start our ROP chain

But the bytes written are UTF-16 converted

To construct the ROP chain we need to control the
whole payload.

OOB Write

UTF8 → UTF16
????? → mspaint

UTF-8 UTF-16

獭 ms

慰 pa

湩 in

.. ..

We have the pointers to start our ROP chain

But the bytes written are UTF-16 converted

To construct the ROP chain we need to control the
whole payload.

OOB Write

UTF8 → UTF16
????? → mspaint
獭慰湩慭硥e → mspaint.exe

UTF-8 UTF-16

獭 ms

慰 pa

湩 in

.. ..

We have the pointers to start our ROP chain

But the bytes written are UTF-16 converted

To construct the ROP chain we need to control the
whole payload.

OOB Write

- We have the pointers to start our ROP chain
- But the bytes written are UTF-16 converted
- To construct the ROP chain we need to control the whole

payload.

UTF8 → UTF16
????? → mspaintUTF-8to16(?UTF-8) = ‘ms’

OOB Write

- We have the pointers to start our ROP chain
- But the bytes written are UTF-16 converted
- To construct the ROP chain we need to control the whole

payload.

UTF8 → UTF16
????? → mspaintUTF-8to16(?UTF-8) = ‘ms’ → \x6d\x73

OOB Write

- We have the pointers to start our ROP chain
- But the bytes written are UTF-16 converted
- To construct the ROP chain we need to control the whole

payload.

UTF8 → UTF16
????? → mspaintUTF-8to16(?UTF-8) = ‘ms’ → \x6d\x73

OOB Write

- We have the pointers to start our ROP chain
- But the bytes written are UTF-16 converted
- To construct the ROP chain we need to control the whole

payload.

UTF8 → UTF16
????? → mspaintUTF-8to16(?UTF-8) = ‘ms’ → \x6d\x73

OOB Write

- We have the pointers to start our ROP chain
- But the bytes written are UTF-16 converted
- To construct the ROP chain we need to control the whole

payload.

UTF8 → UTF16
????? → mspaintUTF-8to16(?UTF-8) = ‘ms’ → \x6d\x73

Unicode(\x6d\x73UTF-16) = 獭

OOB Write

- We have the pointers to start our ROP chain
- But the bytes written are UTF-16 converted
- To construct the ROP chain we need to control the whole

payload.

UTF8 → UTF16
????? → mspaint

UTF-8to16(?UTF-8) = ‘ms’ → \x6d\x73
Unicode(\x6d\x73UTF-16) = 獭
UTF-8(獭) = \xe7\x8d\xad

OOB Write

- We have the pointers to start our ROP chain
- But the bytes written are UTF-16 converted
- To construct the ROP chain we need to control the whole

payload.

UTF8 → UTF16
????? → mspaint

UTF-8to16(?UTF-8) = ‘ms’ → \x6d\x73
Unicode(\x6d\x73UTF-16) = 獭
UTF-8(獭) = \xe7\x8d\xad

UTF-8to16(\xe7\x8d\xadUTF-8) = ?

OOB Write

- We have the pointers to start our ROP chain
- But the bytes written are UTF-16 converted
- To construct the ROP chain we need to control the whole

payload.

UTF8 → UTF16
????? → mspaint

UTF-8to16(?UTF-8) = ‘ms’ → \x6d\x73
Unicode(\x6d\x73UTF-16) = 獭
UTF-8(獭) = \xe7\x8d\xad

UTF-8to16(\xe7\x8d\xadUTF-8) = \x6d\x73

OOB Write

- We have the pointers to start our ROP chain
- But the bytes written are UTF-16 converted
- To construct the ROP chain we need to control the whole

payload.

UTF8 → UTF16
????? → mspaint

UTF-8to16(?UTF-8) = ‘ms’ → \x6d\x73
Unicode(\x6d\x73UTF-16) = 獭
UTF-8(獭) = \xe7\x8d\xad

UTF-8to16(\xe7\x8d\xadUTF-8) = \x6d\x73 = ‘ms’

OOB Write

- We have the pointers to start our ROP chain
- But the bytes written are UTF-16 converted
- To construct the ROP chain we need to control the whole

payload.

UTF8 → UTF16
????? → mspaint

UTF-8to16(?UTF-8) = ‘ms’ → \x6d\x73
Unicode(\x6d\x73UTF-16) = 獭
UTF-8(獭) = \xe7\x8d\xad

UTF-8to16(\xe7\x8d\xadUTF-8) = \x6d\x73 = ‘ms’
\xe7\x8d\xadUTF-8 → msUTF-16

OOB Write

We have the pointers to start our ROP chain

But the bytes written are UTF-16 converted

To construct the ROP chain we need to control the
whole payload.

Building the ROP Chain

PTC Kepware RCE - Leaking

PTC Kepware RCE - Overwriting Heap

PTC Kepware RCE - Triggering

PTC Kepware RCE CVE-2022-2848
CVE-2022-2825

Vulnerabilities and Exploits
RCE - Clients

Attacking OPC-UA Clients

OPC-UA

Malicious OPC-UA
Server OPC-UA Client

Read
Water Level

Tag

Web-Based OPC-UA Clients

Inductive Automation
Ignition

Softing
dataFEED edgeAggregator

XSS Over OPC-UA

XSS Over OPC-UA

Malicious OPC-UA
Server OPC-UA Client

OPC-UA

XSS Over OPC-UA

Malicious OPC-UA
Server OPC-UA Client

Read
Water Level

TagOPC-UA

XSS Over OPC-UA

Sure, here
is your tag!

Malicious OPC-UA
Server OPC-UA Client

Read
Water Level

TagOPC-UA

XSS Over OPC-UA

Malicious OPC-UA
Server OPC-UA Client

Read
Water Level

TagTag: “/><SCRIPT XSS>

Sure, here
is your tag!

OPC-UA

XSS Over OPC-UA

Malicious OPC-UA
Server OPC-UA Client

Read
Water Level

TagTag: “/><SCRIPT XSS> OPC-UA

XSS Over OPC-UA

Malicious OPC-UA
Server OPC-UA Client

Read
Water Level

Tag

Tag: “/><SCRIPT XSS>

OPC-UA

XSS Over OPC-UA

Malicious OPC-UA
Server OPC-UA Client

Tag: “/><SCRIPT XSS>

OPC-UA

XSS Over OPC-UA

OPC-UA

Malicious OPC-UA
Server OPC-UA Client

Tag: “/><SCRIPT XSS>

XSS Over OPC-UA

XSS Over OPC-UA

XSS Over OPC-UA

XSS Over OPC-UA to RCE

We are in the context of the OPC-UA client, how can
we leverage into RCE?

Chain with more vulnerabilities

XSS Over OPC-UA to RCE

XSS Over OPC-UA to RCE

XSS Over OPC-UA to RCE

XSS Over OPC-UA to RCE

XSS Over OPC-UA to RCE

Backup

XSS Over OPC-UA to RCE

Backup

Restore

XSS Over OPC-UA to RCE

Restore

XSS Over OPC-UA to RCE

Restore

XSS Over OPC-UA to RCE

Restore

OPC-UA Exploitation Framework
Open-Source

Agenda

• What is OPC-UA?

• Protocol Stack Implementations

• Bits and Bytes

• Research Methodology

• Vulnerabilities and Exploits

• OPC-UA Exploitation Framework

• Summary

Results: 12 concepts, ~50 CVEs

OPC-UA Exploit Framework

• Open source framework with all of our work

• Sharing after disclosed to all vendors + worked
closely with them

• Based on our OPC-UA client

• Highly customizable with 12 out-of-the-box
exploits

github.com/claroty/opcua-exploit-framework

https://github.com/claroty/opcua-exploit-framework

Claroty OPC Exploit Framework

Attack Name Description Vulnerability
Type

Function
Keyword

CVE and
Reference

Certificate Infinite Chain
Loop

Some servers implemented the
Certificate chain check by
themselves and forgot to protect
against a chain loop. Example:
CertA is signed by CertB which is
signed by CertA

Denial of Service certificate_inf_chain
_loop

CVE-2022-37013

Chunk Flooding Sending huge amount of chunks
without the Final chunk

Denial of Service chunk_flood CVE-2022-29864,
CVE-2022-21208,
CVE-2022-25761,
CVE-2022-25304,
CVE-2022-24381,
CVE-2022-25888

Open Multiple Secure
Channels

Flooding the server with many
open channel requests leads to a
denial of service

Denial of Service open_multiple_secur
e_channels

CVE-2023-32787

https://sector7.computest.nl/post/2022-09-unified-automation-opcua-cpp/
https://files.opcfoundation.org/SecurityBulletins/OPC%20Foundation%20Security%20Bulletin%20CVE-2022-29864.pdf
https://security.snyk.io/vuln/SNYK-JS-NODEOPCUA-2988723
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-25761
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-25304
https://security.snyk.io/vuln/SNYK-UNMANAGED-ASNEGOPCUASTACK-2988735
https://security.snyk.io/vuln/SNYK-RUST-OPCUA-2988751
https://nvd.nist.gov/vuln/detail/CVE-2023-32787

Claroty OPC Exploit Framework

Function Call Null
Dereference

Triggering an application crash
after several OPC UA methods
have been called and the OPC
UA session is closed before the
methods have been finished.

Denial of Service function_call_null_
deref

CVE-2022-1748

Malformed UTF8 Triggering an application crash
after processing malformed UTF8
strings

Remote Code
Execution

malformed_utf8 CVE-2022-2825,
CVE-2022-2848

Race Change And
Browse Address
Space

Adding nodes to the server
address space and removing the
nodes in a loop while browsing
the entire address space.

Denial of Service race_change_and_
browse_address_s
pace

CVE-2023-32172

Unlimited Condition
Refresh

Sending many ConditionRefresh
method calls leads to uncontrolled
memory allocations and
eventually to a crash

Denial of Service unlimited_condition
_refresh

CVE-2023-27321

https://nvd.nist.gov/vuln/detail/CVE-2022-1748
https://nvd.nist.gov/vuln/detail/CVE-2022-2825
https://nvd.nist.gov/vuln/detail/CVE-2022-2848
https://www.zerodayinitiative.com/advisories/ZDI-23-777/
https://files.opcfoundation.org/SecurityBulletins/OPC%20Foundation%20Security%20Bulletin%20CVE-2023-27321.pdf

Claroty OPC Exploit Framework

Close Session With
Old Timestamp

Sending bad timestamp on
closing session leads to an
uncaught stacktrace with
sensitive information

Information
Leakage

close_session_w

ith_old_timesta

mp

CVE-2023-31048

Complex Nested
Message

Sending a complex nested variant
leads to a call stack overflow

Denial of Service /
Information
Leakage

complex_nested_

message

CVE-2022-25903,
CVE-2021-27432

Translate Browse Path
Call Stack Overflow

Triggering a stack overflow
exception in a server that doesn't
limit TranslateBrowsePath
resolving calls

Denial of Service translate_brows

e_path_call_sta

ck

CVE-2022-29866

Thread Pool Wait
Starvation

Thread pool deadlock due to
concurrent worker starvation

Denial of Service thread_pool_wai

t_starvation

CVE-2022-30551

Unlimited Persistent
Subscriptions

Flooding the server with many
monitored items with 'delete' flag
set to False leads to uncontrolled
memory allocation and eventually
to a denial of service

Denial of Service unlimited_persi

stent_subscript

ions

CVE-2022-25897,C
VE-2022-24375,CV
E-2022-24298

https://files.opcfoundation.org/SecurityBulletins/OPC%20Foundation%20Security%20Bulletin%20CVE-2023-31048.pdf
https://security.snyk.io/vuln/SNYK-RUST-OPCUA-2988750
https://nvd.nist.gov/vuln/detail/CVE-2021-27432
https://jfrog.com/blog/crashing-industrial-control-systems-at-pwn2own-miami-2022/
https://files.opcfoundation.org/SecurityBulletins/OPC%20Foundation%20Security%20Bulletin%20CVE-2022-30551.pdf
https://security.snyk.io/vuln/SNYK-JAVA-ORGECLIPSEMILO-2990191
https://security.snyk.io/vuln/SNYK-JS-NODEOPCUA-2988725
https://security.snyk.io/vuln/SNYK-JS-NODEOPCUA-2988725
https://security.snyk.io/vuln/SNYK-UNMANAGED-FREEOPCUAFREEOPCUA-2988720
https://security.snyk.io/vuln/SNYK-UNMANAGED-FREEOPCUAFREEOPCUA-2988720

Agenda

• What is OPC-UA?

• Protocol Stack Implementations

• Bits and Bytes

• Research Methodology

• Vulnerabilities and Exploits

• OPC-UA Exploitation Framework

• Summary

Summary

Pwn2Own ICS:
We participated
and demonstrated
our OPC-UA
exploits in three
Pwn2Own
competitions -
Pwn2Own ICS
2020, 2022, 2023

CVE: We found
and reported on
~50 OPC-UA
vulnerabilities/CVE
across ~15
protocol stacks
which affects
hundreds of
OPC-UA products.

Exploit Technique:
We developed ~12
unique exploit
techniques that are
universal and
affected multiple
vendors and
pushed to change
the specs.

Open-Source
Tools: We
released two OOS
tools including
OPC-UA network
fuzzer and
OPC-UA
exploitation
framework.

OPC-UA
Specifications:
we helped to
improve the
specifications
and pushed the
vendors towards
better and more
secure products.

https://www.zerodayinitiative.com/blog/2019/10/28/pwn2own-miami-bringing-ics-into-the-pwn2own-world
https://www.zerodayinitiative.com/blog/2021/10/22/our-ics-themed-pwn2own-contest-returns-to-miami-in-2022
https://www.zerodayinitiative.com/blog/2022/11/30/pwn2own-returns-to-miami-beach-for-2023
https://claroty.com/team82/research/team82-releases-homegrown-opc-ua-network-fuzzer-based-on-boofuzz
https://claroty.com/team82/research/team82-releases-homegrown-opc-ua-network-fuzzer-based-on-boofuzz
https://reference.opcfoundation.org/

