
Chained to hit: Discovering new
vectors to gain remote and root access

in SAP Enterprise Software
Pablo Artuso

Onapsis
partuso@onapsis.com

Yvan Genuer
Onapsis

ygenuer@onapsis.com

Abstract

At the core of every business on the planet
there will always be a mission critical applica-
tion system. Overlooking its security is sense-
less and at the same time dangerous as it will
result in putting your business at a high risk.

During 2022 multiple months-lasting re-
search projects were kicked off as part of the
Onapsis Research labs. Even though each
of them had their own important results, no
one was expecting that a combination of them
would end up in finding chains of exploitation
which could cause serious damage.

This documentation will begin with the
analysis of “P4”, a proprietary protocol based
on Remote Method Invocation (RMI), which is
uncommonly exposed to untrusted or public
networks and thus making it unreachable from
the Internet. Not only several critical and not-
so-critical vulnerabilities will be shared, but
most importantly the tactics & techniques used
to unveil them.

Then, it will continue with the exploration
of the Java Naming and Directory Interface
(JNDI) reference injections where usual ex-
ploitation techniques did not work. As a conse-
quence, a new and specific vector of attack was
developed which included a deep dive into
JNDI internals in SAP. Additionally, a reverse
connectionless exploitation will be explained.

Finally, where a widely used component
running as root or nt/system was targeted,

which concluded the discovery of a critical flaw
that may allow a local attacker to completely
compromise the whole system beyond applica-
tion’s boundaries.

This whitepaper paper will cover in detail
the analysis, processes and outcomes for each
of the projects mentioned. Additionally, it will
illustrate how it’s possible to chain findings in
order to empower the impact either in terms of
criticality or exposition: Turning local network
attacks to Internet-exploitable through tunnel-
ing protocols or taking root LPE to remote and
anonymously exploitable.

Keywords

P4CHAINS, JNDI Reference Injection, SAP,
Enterprise Software, RCE, root, P4, HTTP,
httpP4tunnel, JNDI, Solution Manager, SAP
Diagnostic Agent, Host Agent, Portal, RMI

1

mailto:partuso@onapsis.com
mailto:ygenuer@onapsis.com


1. Introduction

1.1. SAP SE

Enterprise software is one of the most impor-
tant topics when discussing a company’s assets.
They usually manage sensitive and critical in-
formation. It is because of this reason that
companies opt for experts in the field to trust
one of their most critical assets. SAP is one
of the largest vendors of Enterprise Software.
They have been successfully developing busi-
ness applications for 50 years now. With more
than 450k customers and presence in more than
180 countries, it is possible to believe that al-
most every mid to large company today is us-
ing SAP systems for keeping its business up
and running. The list of products that SAP
offers is very extensive. Customers may choose
which product to use based on their particular
needs. However, most of these products have
a common technical base: the SAP Netweaver
or more recently the S4/HANA. These tech-
nical basis layers offer various network ser-
vices, of which the most known are the Inter-
net Communication Manager (ICM), Gateway
service (GW), Message Server (MS) as well as
end users dialog service (DIAG).

1.2. P4 protocol

P4[1] is one of the several proprietary pro-
tocols provided by SAP. Based on the well-
known Java protocols RMI[2] and CORBA[3],
it provides necessary features to establish com-
munications between remote objects from dif-
ferent namespaces and hosts. This way P4
clients could perform different kinds of actions
against objects which are inside the remote
server’s scope. By default, P4 listens in port
5NN04 (NN being the System Number) and
it’s binded to every host’s interface where the
system is running. As a consequence, remote
access to this port is possible unless extra con-
figuration is carried out. Due to the fact that
its implementation resides inside the SAP Java
NetWeaver layer (section 3.4.2), this protocol is
present in several and widely-used SAP prod-
ucts and solutions such as: SAP Enterprise

Portal, SAP PI/PO, SAP Solution Manager and
more.

1.3. JNDI

The Java Naming and Directory Interface
(JNDI)[4], as the name suggests, is an Java stan-
dard implementation of a naming and direc-
tory service. In simple words it provides access
to common resources (e.g: objects) through
specifying a simple string. Its implementation
is divided in two main components:

• API: Application Programming Interface
used by Java applications to perform all
actions exposed by these services.

• SPI: Service Provider Interface which
handles the way these services connect to
external or internal resources to accom-
plish their task. Some of these providers
are: RMI, CORBA, LDAP, DNS and more.

Figure 1: JNDI Architecture

If further knowledge related to JNDI is needed
please refer to official documentation or to the
“JNDI 101” section of Alvaro Muñoz and Olek-
sandr Mirosh research[5][6].

1.4. SAP Products and Components

1.4.1 Solution Manager

In SAP landscapes, the SAP Solution Manager
(SolMan) could be compared to a domain con-
troller system in the Microsoft world. It is a
technical system that is highly connected with
powerful privileges to all other SAP systems.
Once an SAP system is connected to the so-
lution manager it receives the name of "man-
aged" or "satellite" system. As an administra-

2



tion solution, SolMan aims to centralize the
management of all systems within the land-
scape by performing actions such as imple-
menting, supporting, monitoring and main-
taining the enterprise solutions. If an SAP
customer wants to fully utilize the capabili-
ties of the Solution Manager, they must install
an application called Solution Manager Diag-
nostic Agent (SMDAgent) on each host where
an SAP system is running. This Agent man-
ages communications, instance monitoring and
diagnostic feedback to the Solution Manager.
From the operating system perspective, the
unique user involved in all SMDAgent activ-
ities is daaadm. Administrators or end users
never use P4 directly. They use HTTP or the
SAP client (SAPGui) to interact with Solman.
The P4 serice is used for technical and inter-
nal purposes only. Most interestingly, Solman
uses it for communication between itself and
all satellites systems through SMDAgent. The
following image shows that Solman (SOL) man-
ages 6 satellites (D01, Q01, P01 and D02, Q02,
P02). The yellow lines, communication from
SMDAgent to Solman, is done by the P4 ser-
vices handle in Solman.

Figure 2: Example architecture including SAP Solution
Manager and SMDAgents

1.4.2 NetWeaver Java

As mentioned above the SAP Netweaver is
the basis layer, or backbone, of SAP products.
This Netweaver is delivered with two different
technologies, which are called “Stacks”. They
are the ABAP Stack and the JAVA Stack[7].
This Netweaver JAVA Stack was developed
around 2000’s to initially replace the ABAP
Stack. But quickly SAP decided to keep both

Stacks and dedicated particular products for
each one. The JAVA Stack was used for prod-
ucts related to internet and http access. For
example the Enterprise Portal runs under a
JAVA Stack only. Several products, like the ERP,
work on ABAP Stack and also few products,
like Solution Manager or CRM, use both Stacks.
This JAVA technical basis layer provides com-
mon services for all products, like Gateway,
HTTP and P4 communication through the In-
ternet Communication Manager (ICM), etc. Be-
cause the Netweaver JAVA does not provide
the DIAG service, you cannot use the SAPGui
(SAP Client) to connect to the system. Usually,
end users use the SAP Fiori, an html5 inter-
face based on http communications, to work
on products that run under Netweaver JAVA.

1.4.3 Enterprise Portal

SAP Enterprise Portal[8] is the Web front-end
component for SAP JAVA NetWeaver. It works
as a “hub” to align people, information and
business processes across the company for a
large number of users who require access to
many different applications and services (SAP
or not). It usually does not contain a lot of
critical data, but it is a SAP system with a lot
of remote connection to other systems in the
company landscape. From a security perspec-
tive it is an important component because of
the number of connections as well as it is, most
of the time, an internet facing component and
could be an entry point for attackers.

1.4.4 Start Service

The SAP Start Service is a component installed
automatically during the installation of a new
SAP system. It is OS and database indepen-
dent, and it can accomplish several life-cycle
tasks such as: Monitoring, Start/Stop instances,
and Preparing for upgrade. It is implemented
as a service on Windows, and as a daemon
on UNIX. These services are provided on Host
Control SOAP Web Service, under different
namespaces like SAPOsCol, SAPHostControl
or SAPCCMS among others. The ports used
are 1128 (http) and 1129 (https). By default,

3



remotely only few SOAP services are accessi-
ble without authentication, and locally only
few more are also accessible anonymously. All
other SOAP services required high privileges
authentication.

4



2. Previous work

2.1. P4 Protocol

2.1.1 [2012] Arbitrary file read in P4 service

Initially found by Juan Pablo Perez Etchegoyen
and patched in 2012 with the SAP Security
Note (SSN) 1682613[9]. This vulnerability, with
Maximum CVSS score, allowed an unauthen-
ticated attacker to download any type of file
owned by SAP user administrator through P4.
Empowered by its exploiting easiness, it could
lead to a complete compromise of the system as
the attacker could retrieve the SAP Secure File
and further decrypt high privileged user cre-
dentials. This attack was presented as part of a
bigger research project in Ekoparty 2013[10].

2.1.2 [2014] Dissecting and attacking RMI
frameworks

Discovered and presented by Nahuel D.
Sánchez and Sergio Abraham in the EkoParty
conference of 2014[11]. They showed different
attacks in some specific services exposed by
the SAP Java NetWeaver layer. Their findings
were patched with SAP Security Notes: [12]
and [9].

2.1.3 [2017] Java deserialization attack
through P4

Discovered by Kai Ullrich and patched in 2017
with the SSN 2443673[13]. This is basically the
well known java deserialization attack found
and adapted to the SAP JVM. If exploited, this
finding could lead to a remote anonymous OS
command execution. In-depth Information[14]
and PoC[15] were shared by the author.

2.1.4 [2020] Communication hijacking

Found by Yvan Genuer and patched in 2020
with SAP Security Note [16], this flaw was iden-
tified as CVE-2020-6198 and given a CVSS score
of 9.8. Found as part of a bigger research affect-
ing the SAP Solution Manager[17], exploiting
this flaw could lead to arbitrary file download

or unauthenticated RCE (if combined with a
second vulnerability: CVE-2019-330).
Technically speaking, if a P4 communication
was in progress between two systems, it was
possible to remotely hijack the communication
by brute forcing a part of the security token,
even if P4S (SSL for P4) was enabled. Once
the attacker guessed this token, it was possible
to execute any P4 service without the need of
providing authentication.

2.1.5 [2021] P4 Service listing and analysis

Kai Ullrich wrote a very interesting blog post
[18] where he explained his journey into find-
ing a new Java deserialization gadget specif-
ically for SAP. Despite not being able to find
a gadget, he finally found an unrelated-to-
deserialization vulnerability with CVSS 9.6
identified as CVE-2021-21481 and patched with
SSN 3022422[19]. The analysis he carried is
strongly related to the research we present in
this paper. As a matter of fact, some of the
knowledge Kai shared was used to circumvent
some obstacles faced during the P4 analysis
phase.

2.2. Start Service

2.2.1 [2009] Missing authentication

The very first external security research about
Start Service was done by Jordan Santarsieri
from Onapsis late in 2009[20]. At this time
the administration functions provided by the
service were accessible locally and remotely.
Most of them without particular authorization.
Which could lead to critical information disclo-
sure as well as OS command execution.
From these findings SAP released the SSN
1439348[21] and integrated a new parame-
ter “service/protectedwebmethods” to enable
authentication for almost all functions and
let only few not dangerous functions accessi-
ble anonymously. Around 2011, Chris John
Riley from (in)Security delivered talks[22]
about it and also created several metasploit
modules[23] related to Start Service.

5



2.2.2 [2020] Multiple Privileges Escalation

Pablo Artuso and Yvan genuer analyzed the
Start Service as part of a bigger reserach project.
After a careful analysis of each of the functions
exposed, it was possible to identify several
(10+) of them that were vulnerable to command
injection. Although these functions required
OS authentication, they were finally execut-
ing commands as root or nt authority/system.
Therefore this injection led to a privilege esca-
lation.
They all were identified as CVE-2020-6234
and patched in SSN 2902645[24]. Three of
them, regarding functions ExecuteInstallation-
Procedure, ACOSPrepare and ExecuteOpera-
tion were highlighted during the BlackHat USA
2020 event[25].

2.3. JNDI

2.3.1 [2016] A journey from JNDI/LDAP ma-
nipulation to Remote Code Execution
Dream Land

This research, carried out by Alvaro Muñoz
and Oleksandr Mirosh, was presented at Black
Hat USA 2016[5] and further explained in its
whitepaper[6].
They present novel ways to lead to Remote
Code Execution attacks abusing unprotected
JNDI lookups through Reference injection. Be-
ginning with the basics of JNDI, Alvaro and
Oleksandr end up showing how through sev-
eral protocols (RMI, LDAP, IIOP, etc) it was pos-
sible to make vulnerable servers fetch attacker-
controlled resources and thus lead to RCE.

2.3.2 [2019] JNDI Reference injection
through Local Classes

In this post[26], Michael Stepankin showed a
way to achieve RCE in Apache through JNDI
Reference injection even when the JVM was
protected against loading external references
from untrusted sources.
The idea of the attack was to leverage local
classes (implemented inside the server). By
carefully crafting a specific JNDI Reference and

serving it in an attacker-controlled resource,
Michael found the way to achieve remote code
execution at the moment of the local class in-
stantiation.
Despite the fact that it was related to specific
software (Apache) and therefore not directly
applicable in the context of this research, the
idea of using local classes will be utilized.

6



3. Analysis

3.1. P4

3.1.1 Context

In order to analyze P4, several systems with
different versions were used. This gave us the
possibility not only to confirm that the find-
ings were present in several components but
also to find issues that were specific to certain
solutions. The following table highlights the
different versions used during this research.

Kernel Versions
7.50.3301.472568.20220902101413
7.50.3301.467525.20210601093523
7.50.3301.407179.20200416085516

SERVERCORE / CORE-TOOLS/ J2EE FRMW
1000.7.50.24.7.20221009183400
1000.7.50.22.0.20210804111800
1000.7.50.2.0.20160125191600

Figure 3: JAVA Kernel and CORE-TOOLS versions.

3.1.2 Initial connection and services listing

As mentioned in 1.2, P4 is based on RMI. In
addition, systems exposed services through
JNDI. As explained in SAP’s docs[27] this sim-
ple JNDI connection will execute a lookup:

1 public class P4Example {
2 private static InitialContext ctx = null;
3 public static void main(String [] args) {
4 init("P4://", "localhost", "50004",

"User", "Password", null);
5 }
6

7 public static void init(String schema ,
String host , String port , String user ,
String pass , String transportType) {

8 Properties p = new Properties ();
9 if (schema == null) {schema = "P4://";}

10 p.put("java.naming.factory.initial",
"com.sap.engine.services.jndi.

11 InitialContextFactoryImpl");
12 p.put("java.naming.provider.url", schema

+ host + ":" + port);
13 p.put("java.naming.security.principal",

user);
14 p.put("java.naming.security.credentials",

pass);
15 ctx = new InitialContext(p);
16 }

Listing 1: Example of simple JNDI connection to SAP’s
P4 port.

P4 default port follows the pattern 5XX04,
where XX is the SAP’s instance number.
Despite the fact that we knew how to perform
these lookups, at this point it was unknown
which names could be used. In order to find
the available JNDI names, the Telnet interface
that Java systems provide was used. According
to its documentation by adding the NAMING
set of commands and later executing “LS -l -f”
all the JNDI names together with its locations
will be listed.
The obtained list was large (around 4500 ser-
vices). Furthermore, some of these services
were not “lookupable” in a remote way. With
the idea of filtering out the ones that returned
errors or null objects, we developed a Java
script that finally led us with approximately
200 services. It was just time to roll up our
sleeves.

3.1.3 Strategy and Toolset

In order to analyze such a number of services
it was necessary to build a robust and system-
atic strategy. It is worth mentioning that this
strategy was finally built in an iterative fash-
ion while the analysis was being carried out.
As part of it, several tools and resources were
used:

• Custom Java scripts: Mainly to execute
the lookups, create instances of the ob-
jects referenced, invoke its methods, etc.
In this part, Kai Ullrich’s script[18] was
strongly leveraged to list the interfaces
that proxies classes were implementing.

• Live Debugging tools: Such as JDB.
• Server logs: With appropriate levels of

logging they are a key source of useful
information to understand what is going
on.

• Java Code Catalog: An internal tool de-
veloped by Onapsis’ Security Research
Team, more specificly by Ignacio Favro,
which is able to find classes based on the
method names or interface names that
they implement.

Making use of these tools and resources, the
following strategy (list of steps) was followed:

7



1. List all services: By using Kai Ullrich’s
script or/and other custom scripts, get a
list of all services remotely exposed.

2. Activate debugging in the system: Al-
low the system to be debugged.

3. Choose a service: Select one of the JNDI
names (linked to services) to be analyzed.

4. Find implementing interfaces: Using
the Custom Java Scripts list all interfaces
that the object referenced by the JNDI
name implements. Furthermore, look for
the interface and its implementation.

5. Enable logs: Turn on the most detailed
level every source of logging that is re-
lated to the targeted service.

6. Begin the analysis: Both static and dy-
namic. Through the analysis of the
source code of the targeted service try
to discover security vulnerabilities.

7. Track Execution flow: By using Java
Code Catalog, Live debugging or sim-
ple greps try to trace the execution flow
and the calling stack when needed.

8. Documentation: Almost every step of
the analysis is documented. The creation
of a strong base of documentation was
key to step on firm ground, otherwise the
whole strategy becomes uncontrollable.

9. Continue with the next service: Go back
to step 3.

Executing this strategy and using the men-
tioned toolset and resources, we began with
the analysis of each of the exposed services.

3.1.4 Services inspection and findings

After analyzing every service that was found
exposed through P4, we reported 13 vulnerabil-
ities ranging from CVSS 5.3 to 10.0. Nonethe-
less, the following table gives a summary of all
the security flaws that were found:

Service Name Description CVSS CVE
Agent Simulation Pre-auth RCE in Diagnostic Agents

runnning Windows
10.0 CVE-2023-27497

Search Facade SQL injection + DoS 9.9 CVE-2022-41272
Locking DoS + Arbitrary OS File Read 9.9 CVE-2023-23857
Job Bean SQL injection + DoS 9.4 CVE-2022-41271

RFC Engine Anonymous RFC execution + password
disclosure

9.4 CVE-2023-0017

OSCommand Bridge Potential RCE in Diagnostic Agents 9.0 CVE-2023-27267
Remote Object Factory JNDI Reference injection (pre-auth start of

apps)
8.2 CVE-2023-30744

Agent Simulation HTTP Header Injection in Solution Man-
ager

7.2 CVE-2023-36921

Agent Simulation Unauthenticated blind SSRF in Solution
Manager

7.2 CVE-2023-36925

Cache Analyzer Information Disclosure 5.3 CVE-2023-26460
Classload Information Disclosure 5.3 CVE-2023-24526

Deploy Information Disclosure 5.3 CVE-2023-24527
Object Analyzer Information Disclosure 5.3 CVE-2023-27268

Table 1: P4 related vulnerabilities reported.

8



3.1.4.1 RFC engine

3.1.4.1.1 Analysis

• JNDI Name: rfcengine
• Interface: RFCRuntimeInterface_Stub

Within SAP’s world there exists a propri-
etary and heavily used protocol called Remote
Function Call (RFC). Usually used to establish
communication between systems, this protocol
provides an interface to execute functions in a
remote way.

In this specific case, the rfcengine service
is in charge of the implementation of the RFC
functions and communications that the SAP
Java system will support. In order to config-
ure and make use of this feature, the Jco RFC
Provider application was built[28].

As depicted in the cited documentation, the
RFC Engine allows to process both, outcoming
and incoming RFC function execution.

Figure 4: rfcengine architecture.
In order to be able to process incoming RFC
function calls, the Java system must accomplish
two requirements: Be connected to a repository
and be registered as an External Server in the
Gateway of the caller system. In order to make
use of a repository, credentials (user, password
and system properties) are required.
The RFC functions that are going to be able to
be executed and processed by the Java system,
will depend on the software installed.
All methods of interface RFCRuntimeInter-
face_Stub implemented by the rfcengine ob-
ject did not require neither authentication nor
authorization.

3.1.4.1.2 Findings

• SAP Security Patch: 3268093
• CVE: CVE-2023-0017

Unauthenticated execution of RFC functions
Through the execution of the addBundle()

method, it was possible to add a new connec-
tion to any arbitrary Gateway and repository.
Basically meaning that without authentication
an attacker could register the targeted Java sys-
tem as an External Server in the Gateway of an
attacker-controlled ABAP server.
Once this is carried out, the attacker could start
executing the RFC calls against the Java sys-
tem. As mentioned in the previous section,
the impact will depend on the functions im-
plemented, which will depend on the software
installed in the system. Based on our analysis:

• Enterprise Portal: It is possible to create
tasks with arbitrary content and assign
it to any arbitrary user using the func-
tion CREATE_AWF_TASK. This could be
used to impersonate users and to spread
phishing in an effective way.

• Solution Manager: Could lead
to RCE through using function
FM_MAI_SIMULATION_AGENT
(explained in following sec-
tions) or with very rarely using
FM_GPCR_OS_COMMAND.

Unauthenticated retrieval of configured Jco
plain passwords

As mentioned in the Analysis section, the
RFC Engine Service is directly related to the
configuration of JCo destinations. These desti-
nations are often configured when information
must be fetched from other systems. For in-
stance, when using the portal (EP), it needs to
consume information from internal systems.
Through the execution of method
getCon f igurations(), all the information
related to JCo connections will be retrieved
without authentication. However, for security
reasons, when the object containing all the
information is inspected, the password is

9



masqueraded. Nonetheless, due to being
executed through a remote protocol (P4),
analyzing the traffic it was possible to find that
the actual password is being sent by the server.
Therefore, as a summary, any anonymous at-
tacker with access to the P4 port of the Java
NetWeaver based system, will be able to extract
all the JCo destinations configuration informa-
tion (including plain passwords).

3.1.4.2 Search Facade

3.1.4.2.1 Analysis

• JNDI Name: com.sap.aii.af.search.api
.SearchFacadeRemote

• Interface: SearchFacade

This SearchFacade object seemed to be used to
retrieve information about very specific data
related to technical stuff. Filters, extractors,
components profiles are some of the keywords
that seemed to be involved.
From a more technical perspective, the Search-
Facade object had intensive interaction with
the database. There were several functions re-
motely exposed that would allow somebody
to insert, modify and delete some of the afore-
mentioned keywords, and thus interact with
the underlying database.

3.1.4.2.2 Findings

• SAP Security Patch: 3273480
• CVE: CVE-2022-41272

First and foremost, it was possible to remotely
obtain an instance of this object through P4
without providing authentication or authoriza-
tion.
However the biggest finding was related to the
fact that SearchFacade was interacting with the
database. Despite using prepared statements
and binding the variables in a correct way, a
function name delete was vulnerable to SQL
injection. The flaw resided in the fact that the
base query was dynamically built considering
unsanitized input. Therefore, at the moment
of dynamically binding the variables of the

prepared statement, the injection was already
present. This function didn’t have output and
thus the exploitation was blind.
This meant that every table of the vulnerable
system was able to be read and exfiltrated, by
an anonymous remote attacker.

3.1.4.3 Locking

3.1.4.3.1 Analysis

• JNDI Name: locking
• Interface: LockinRuntimeInterface_Stub

The main goal of this object seemed to be
the implementation of the lock mechanism
within the system. It provides functionality
not only to check which locks are already in
use and who has them, but also to acquire
new locks. Additionally, there is functional-
ity to read the profile (configuration file) of
the Enqueue Server, which is a specific SAP
component specifically in charge of managing
locks.

3.1.4.3.2 Findings

• SAP Security Patch: 3252433
• CVE: CVE-2023-23857

All functionalities and methods exposed by this
object were able to be called with the absence
of authentication or authorization. As a con-
sequence, any unauthenticated attacker could
start acquiring locks in a non-stop way, caus-
ing the whole system to be stuck. For example,
application locks may never be released by the
attacker and therefore nobody could make use
of them.
Additionally, a way to display the content of
any arbitrary file in the OS was found. Despite
the lack of authorization or authentication, the
“read” execution was being carried out with
<sid>adm privileges. Furthermore, there was
no restriction in the type of the targeted file.
As stated by the official documentation[29],
SAP systems always store credentials in an
encrypted way inside the OS. These files are
known as Secure Storage or SSFS. There exists

10



ways to decrypt these files. In fact, some of
them are publicly available[30].
Leveraging the OS file read, it is possible to
exfiltrate the Secure Storage of the targeted
system and later decrypt it. The final results
will be new plain text passwords, including the
credentials to connect to the database and the
well known Master Password.

3.1.4.4 Agent Simulation

3.1.4.4.1 Analysis

• JNDI Name: FM_MAI_SIMULATION
_AGENT

• Interface: com.sap.sup.admin.connection.
factory.AbapFactoryBean

To analyze this specific JNDI service, first of all
we tried to retrieve involved jar files where this
lookup is implemented. Due to that, we search,
then download all the jar files from Solman
(around 2000 files for 1G) and simply search
for string patterns like “simulation” or “mai”.
This highlights the package abapconnector.jar.
Analyzing the package, we found
the exact JNDI service name,
FM_MAI_SIMULATION_AGENT, in the
class com.sap.sup.admin.connection.
factory.AbapFactoryBean which confirmed
that we dealt with the correct package. Dig
into it a little more then we found inputs and
outputs parameters name and type.

Name Type Direction
im_agent_name String input

im_collector_class String input
im_context_params JCO.Table input
im_input_params JCO.Table input
im_metric_params JCO.Table input

ex_metric_data JCO.Table output
exp_rc Char1 output

exp_rc_msg Char1024 output

Figure 5: FM_MAI_SIMULATION_AGENT parame-
ters.

We understand that the IM_AGENT_NAME is
the name of the satellite SAP system (see 1.4.1)
where you want to execute a “collector” class,
provided in IM_COLLECTOR_CLASS, inside

the function RunSimulation. This is where the
analysis was a bit tricky, because we didn’t
find these collector classes in Solman. . . but
we found them in the SMDAgent application.
To summarize, this P4 JNDI service handled by
Solman is like a wrapper to launch java class,
type “collector”, in remote SMDAgent.
Again we must retrieve the involved jar files for
this collector class in the SMDAgent this time.
Using the same technique and also searching
for logical string patterns we finally spot sev-
eral packages named “agelet e2emai*”. In one
of these 8 packages, we found what looks to
be collector’s classes. We extract around 90
classes that can be potentially called from the
initial JNDI service on Solman.
The following is a subset of the long list of col-
lectors found. All of them, were found under
the package com.sap.smd.mai.collector.

• HelloWorldCollector
• SAPPingHostCollector
• SimpleFileServiceCollector
• SimpleFileServiceCollector2
• SccCollector
• SAPControlWSCollector
• LicenseCollector
• FileServiceCollector
• FileContentScanCollector
• EventLogServiceCollector

After the firsts tests we concluded 4 facts:

• These classes were the correct ones to put
in parameter IM_COLLECTOR_CLASS

• Each collector class has their spe-
cific parameters name stored in ta-
ble input IM_CONTEXT_PARAMS,
IM_INPUT_PARAMS or
IM_METRIC_PARAMS.

• Some collectors implement authentica-
tion mechanisms. Which “break” the
anonymous access until this point.

• Everything is blind. We never get the
output from any collector.

At this point we start to study one-by-one each
collector class trying to dig up potential secu-
rity vulnerabilities. Some of the classes were

11



very simple or inputless, others quite compli-
cated or with several configuration prerequi-
sites and dependency.

3.1.4.4.2 Findings
All three vulnerabilities detailed below are

blind and can be exploited remotely without
authentication:

SSRF SAPPingHTTPCollector

• SAP Security Patch: 3352058
• CVE: CVE-2023-36925

This collector’s purpose is to perform “HTTP
ping”, so basically craft and send one
HTTP request to a remote system using

provided information from table parameters
IM_METRIC_PARAMS. The entry point is the
Solman through P4 but the request came from
the SMDAgent as described in following flow:

Attacker P4 Solution Manager P4 Remote

SAP system (SMDAgent) HTTP Anywhere

Figure 6: SSRF SAPPingHTTPCollector flow.

Attackers can specify target host, port, protocol
type, http method, url path, payload for POST
and the content-type. Despite being an issue
it isself to access to access this collector anony-
mously, we found an arbitrary header injection
that would allow an attacker to craft complex
requests with credentials, cookies or custom
SAP headers.

1 public String getHeaderContentType(IMetric metric) throws
ConfigCollectorException {

2 String _me = "getHeaderContentType";
3 try {
4 String contentType =

getMetricParamAsString(metric ,"HEADER_CONTENT_TYPE",false);
5 return contentType;
6 }

Listing 2: Metric parameter is not verified and therefore controlled by attacker

SSRF SAPGrmgClassicCollector

• SAP Security Patch: 3348145
• CVE: CVE-2023-36921

The purpose of this collector class is similar
to the SAPPingHTTPCollector (3.1.4.4.2). It
crafts and sends one HTTP request to a remote
system using information from a parameters
table (IM_INPUT_PARAMS). The entry point
is Solman but the request is performed from an
SMDAgent system (see figure 6). The attacker
can specify target host, port, protocol type,
http method, url path and payload. Also it was
possible to inject "\r\n" in the URL parameter,
giving the attacker the possibility to add any
arbitrary header in the request.

1 params.setValue("/aaa?
HTTP /1.1"+"\r\n"

2 + "Soapaction: " + "\r\n"
3 + "User -Agent: Ona Agent"+"\r\n"
4 + "Garbage: ", "VALUE" );

Listing 3: Headers injection example.

1 POST /aaa? HTTP /1.1
2 Soapaction:
3 User -Agent: Ona Agent
4 Garbage: HTTP /1.1
5 Host: somewhere :1234
6 Content -Length: 666
7 Content -Type: text/html
8 User -Agent: SAP HTTP CLIENT /6.40

Listing 4: Request result received by listener.

12



RCE EventLogServiceCollector

• SAP Security Patch: 3305369
• CVE: CVE-2023-27497

This collector’s purpose is to gather entries
stored in the Windows Event Log. To do this it
uses the tool wevtutil.exe through a command
line as shown in the following Listing.

1 protected static String wevtutil =
"cmd /q /c " + windir +
"\\ system32 \\ wevtutil.exe qe
AllEvents /rd:true /f:text
/q:\"<QueryList >

Listing 5: Injectable command line.
One of the parameters stored in the
IM_METRIC_PARAMS table is a variable con-
tained in the final command line and controlled
by the attacker. Even if the payload must avoid
"\t\n\r\f" characters, it is possible to execute
any OS command as user daaadm (owner of
SMDAgent, see 1.4.1).

Attacker P4 Solution Manager P4 Remote

SAP system (SMDAgent) on Windows cmd OS

Listing 6: RCE flow.

3.1.5 Impact

The components where most of the reported
vulnerabilities were found, are shared by al-
most every SAP Java based solution. This in-
cludes highly critical and widely used solu-
tions such as: Solution Manager, PI/PO, En-
terprise Portal, CRM, and many more. As a
consequence, it’s possible to state that almost
every company in the world with an SAP im-
plementation will most likely be affected.
The following actions are possible to be carried
out by an unauthenticated attacker leveraging
only the vulnerabilities depicted in this section:

• Read / Exfiltration of arbitrary OS files
• Read / Exfiltration of arbitrary tables

from the Database

• Registration of vulnerable system as Reg-
istered Server in arbitrary systems

• Execution of RFC Functions against vul-
nerable system

• Access to pre-configured (Jco) plain text
passwords

• Leakage of technical information
• SSRF attacks
• Complete and Partial services disruption

(DoS)
• Remote Code Execution (Windows only)

These actions could be later combined or
chained with further attacks to increase the
impact as shown in further sections.
The outcomes of this research project unveiled
not only several critical vulnerabilities, but also
strategies, processes and internal functionali-
ties that were unknown by us. They allowed us
to expand our knowledge and therefore keep
pushing and improving SAP Security in a holis-
tic way.

3.2. JNDI Reference injection in SAP
Java based systems

Following sections will detail our journey from
searching an unauthenticated endpoint up to
finding a way to exploit JNDI reference in-
jection in the SAP ecosystem. Even though
our case of study was the SAP Enterprise Por-
tal, the exploitation techniques found could be
replicated in any other Java NetWeaver based
solution.

3.2.1 Listing of unauthenticated endpoints

Automatic tools are a strong and efficient
source to perform research. While analyz-
ing hundreds of configuration files to filter
out some of them based on specific proper-
ties could take weeks, automation could save
valuable time and solve the same issue in a
couple of seconds or minutes. The big effort
is made only once: In the tool development
phase. Furthermore, manual analysis may be
more prompt to overlook details.
As part of previous research projects, an inter-
nal tool called Java Endpoint Analyzer (JEA)

13



was developed. This white-box tool will con-
nect to a system and analyze every interesting
configuration or deployment file. Once ana-
lyzed this tool will return the list of HTTP end-
points implemented inside the system, includ-
ing specific properties (such as the requirement
or not of authentication).
After running JEA against the latest Enterprise
Portal version, the “NavigationServlet” applica-
tion and “NavigationsWS” web service seemed
to be exposed without authentication. There-
fore, the analysis began.

3.2.2 Analysis of Navigation Service

Although being two different entry points and
requiring different parameters, both the “Navi-
gationServlet” and “NavigationWS” converged
to the same place. They are part of the imple-
mentation of the concept of Navigation inside
the Portal [31].
In a nutshell, the idea of this service is to man-
age the content that will be displayable by each
user. Depending on the user and their autho-
rizations, this service will create a specific nav-
igation tree. Each node of this tree could be a
specific content, a collection of them, a page,

etc.
In order to lookup the content to be displayed,
the Navigation implementation makes use of
JNDI 1.3.

3.2.2.1 Connectors and Redirectors
As explained in SAP’s

documentation[32][33], both Connectors
and Redirectors play a central role in Portal’s
Navigation service. Both are identified by
specific prefixes. For instance, as mentioned
in the quoted documentation, the PCD
(Portal Content Directory) redirector and the
ROLES connector are identified by “pcd:” and
“ROLES:” prefixes respectively.
Technically speaking, when a specific node
(object) name is being looked up, the Nav-
igation Service will delegate the search
to a specific class based on the prefix
used. For example, when an object with
name “pcd://xxxxx” is looked up, the class
“com.sapportals.portal.pcd.pcm.roles.
RoleNavigationPcdRedirector” will handle it.
Based on our investigation, the following Con-
nectors (C) and Redirectors(R) were found in a
basic and standard implementation:

Type Prefix Class
R pcd com.sapportals.portal.pcd.pcm.roles.RoleNavigationPcdRedirector
R pcdh com.sapportals.portal.pcd.pcm.roles.RoleNavigationHashRedirector
R TBN com.sap.portal.tbn.redirector.TBNRedirector
R OBN com.sap.portal.obn.redirector.OBNRedirector
C ROLES com.sapportals.portal.pcd.pcm.roles.RoleNavigationConnector
C gpn com.sap.portal.ivs.global.navigation.connector.GPNavigationConnector
C ModeledContent com.sap.portal.modeling.preview.navigation.PreviewNavConnector
C CollaborationConnector com.sapportals.portal.pcd.pcm.roles.RoleNavigationConnector

Table 2: Standard Redirectors and Connectors.

3.2.3 JNDI arbitrary lookup injection
points discovery

Our analysis started trying to find the function
that was in charge of delegating the node name
look up based on the provided prefix.
We found a candidate method which had the

following arity:
getNode(Hashtable env, String nodeName). By
carefully understanding how it worked, it was
possible to identify that this was what we were
looking for. When nodeName has the “pcd://”
prefix, getNode() will delegate the search to

14



the redirector class RoleNavigationPcdRedirec-
tor by executing its redirect() method (as ex-
plained by SAP in [29]).
The actual code that redirect() was a standard
JNDI lookup.

1 class RoleNavigationPcdRedirector{
2 public redirect(String pcdURL ,

HashTable env){
3 context obj =

getPersistenceRootContext(
4 env
5 ).lookup(pcdURL);
6 }
7 }

Listing 7: redirect() pseudo code example.
Once the JNDI context was created (in func-
tion getPersistenceRootContext and based on
the content of env) the lookup using node-
Name (pcdURL) was executed. Therefore, if
an attacker could control the nodeName it will
be able to perform a JNDI arbitrary lookup.
Turned out that, when a function named
getNavigationTree() was called, some of its
execution paths lead to getNode(). Addition-
ally, the former method was exposed indirectly
through the main two endpoints discovered
using JEA 3.2.1 which meant that its execution
did not require authentication. Moreover, the
parameters supplied by the calling entity will
end up as getNode()’s arguments and therefore
as RoleNavigationPcdRedirector’s redirect() ar-
guments too.
As a summary, we finally discovered that any
unauthenticated party, making use of Naviga-
tionServlet or NavigationWS, could have full
control over the parameters of RoleNavigation-
PcdRedirector’s redirect() and therefore exe-
cute a JNDI arbitrary lookup.
PCD’s redirector class was not the only one
vulnerable. Despite being the first finding, we
then realized that other connectors and redirec-
tors suffered the same consequences. In addi-
tion, it was also found that getNavigationTree()
was not the only entrypoint but there was a
second function named getSelectedPathTree()
that could be also used to achieve the same
results.

3.2.4 JNDI Reference injection Exploitation

So far we were only able to find JNDI lookup
injection points. It was about time we moved
to the exploitation phase.
As explained in section1.3 the JNDI archi-
tecture is based on several service providers
(also known as resolvers): DNS, LDAP, RMI,
CORBA, etc. Therefore, continuing with the
PCD scenario, we tried to force an RMI con-
nection to our own controlled server using as
nodeName something similar to:

pcd://rmi://<host>:<port>/foo

The socket server configured in server
<host>:<port> received the “JRMIK” magic
bytes confirming that the vulnerability was
present.
All techniques presented in Black Hat’s 2017
JNDI injection talk[5] were a bit old (which
make sense): Exploitation via Loading Classes
remotely was prohibited as almost every JVM
running an Enterprise Portal would have the
necessary protections to block it. The technique
illustrated by Michael from Veracode[26], using
a reference of a class that is in the current class-
path, was a good candidate to explore. Despite
the fact that it was not possible to leverage it
directly, as Michael’s class was not present in
our context, the idea of finding our own gadget
inside SAP class path was promising.

3.2.4.1 Finding an SAP gadget
Continuing with the RMI vector tested and

by live-debugging the process, it was possible
to identify the path of execution that is fol-
lowed whenever an JNDI reference is loaded.
Everything starts when the NamingMan-
ager object executes the getObjectInstance()
method. Based on our investigation and also
stated by Kai Ullrich in his document??, the
builder object is never null and therefore the
getObjectInstance() is executed. Is worth high-
lighting that the first argument received in this
method (refInfo) is the actual reference that is
served through the RMI server.

15



1 public Object
getObjectInstance(Object ref ,
...){

2 ObjectFactoryBuilder b =
getObjectFactoryBuilder ();

3 ObjectFactory f =
b.createObjectFactory(ref);

4 return
f.getObjectInstance(ref ,..);

5 }

Listing 8: getObjectInstance() pseudo code example.
There are three important behaviors
worth to highlight inside the factory’s
getObjectInstance():

1. A “factory class name” is extracted from

the reference object.

2. A function named f indObjectFactory is
called with the “factory name” obtained
from 1 as argument. As the name sug-
gests, this function will return an instance
of a factory class based on the name pro-
vided. Additionally, the class must be
loadable by thread loader. At the mo-
ment of returning that instance, it is cast
to the class ObjectFactory.

3. Finally, the getObjectInstance of the fac-
tory instance obtained from 2 is called.

The following pseudo code illustrates the ex-
plained behaviors:

1 private getObjectInstance(Object refInfo , ...) {
2 String factoryClassName = refInfo.getFactoryClassName ();
3 ObjectFactory fact = findObjectFactory(factoryClassName);
4 return fact.getObjectInstance ();
5 }
6

7 public ObjectFactory findObjectFactory(String factoryClassName) {
8 Class factoryClass = Class.forName(factoryClassName ,

thread.getContextClassLoader ());
9 return (ObjectFactory) factoryClass.newInstance ();

10 }

Listing 9: Necessary condintions pseudocode.

As outcome, in order to be able to successfully
instantiate a class through a JNDI reference,
there are some requirements that it must ac-
complish:

1. Be castable to ObjectFactory

2. Implement a method named
getObjectInstance()

3. Be interesting from an exploitation per-
spective. In other words, if the class just
returns a null, it will not be usable.

4. It must be loadable by the thread.

First, a list larger than 60 candidate classes
which fulfill the first two conditions was ob-
tained. The 4th one was harder as it required

dynamic analysis. Finally, it was possible to
identify a class that met all the necessary con-
ditions: EJBObjectFactory.

3.2.4.2 EJBObjectFactory
As can be inferred from the name, this

class is devoted to searching and return-
ing an Enterprise Java Beans (EJB)[34] ob-
ject. Its getObjectInstance() method, after
some initial checks, calls a function named
resolveRe f erence() (implemented in a sepa-
rate class named DefaultRemoteObjectFac-
tory) providing the JNDI Reference object as
argument.
Based on the typical characteristics that an EJB
object could have (interfaceType, appName,

16



beanName, etc), resolveRe f erence() will gather
some of this information out of the reference
object provided. As part of its execution, it
will try to interact with the EJB container.
That is why it calls another function named
getEnterpriseBeansContainers() implemented
inside class DefaultContainerRepository.
getEnterpriseBeanContainers()’s main objec-
tive is to find the EJB objects that match with
the provided characteristics. As a first ap-
proach, it gets all applications that match
the application name provided by calling
getOrderedTargetApps(). In order to perform
the previously mentioned action, this latter
function extracts the application name from
the reference and searches inside the EJB con-
tainer if there is any application that matches
this name. However, before doing the actual
search inside the EJB container, a function
named startApp() with the provided applica-
tion name is called.
There is no need to explain what startApp()
does but it is worth remembering that until this
point neither authentication or authorization
were provided. In conclusion, it is possible to
turn on arbitrary applications anonymously.
In summary, the following pseudo code will

illustrate the path explained:

1 Object getObjectInstance(ref
jndiRef){

2 resolveReference(jndiRef);
3 }
4

5 Object resolveReference(ref
jndiRef){

6 getEnterpriseBeans(jndiRef);
7 }
8

9 Object getEnterpriseBeans(jndiRef){
10 getOrderedApps(jndiRef);
11 }
12

13 Object getOrderedApps(ref jndiRef){
14 ejbContainer = getEJBContainer ();
15 appName = jndiRef.getAppName ();
16 appName.startApp (); <-----
17 ejbContainer.getApp(appName);
18 }

Listing 10: Path to startApp()

3.2.4.3 Exploitation illustration
Leveraging this attack vector, the entire ex-

ploitation path could be represented with the
following illustration:

Figure 7: JNDI Exploitation illustration flow.

17



3.2.4.4 Findings and impact

• SAP Security Patch: 3289994
• CVE: CVE-2023-28761

This vulnerability was patched by SAP in April
2023 and despite having a medium CVSS of
6.5, it will be shown in future sections how this
flaw could be leveraged to further compromise
the targeted system.
The final impact of this exploitation will heav-
ily depend on what actions could be carried out
with the application that has been turned on.
Nonetheless, it opens the door to considering
vulnerabilities on stopped by default applica-
tions, increasing the attack surface. Further-
more, custom applications developed by SAP
clients should also be considered as a point of
attack.
It is known that, unfortunately, sometimes se-
curity by obscurity is a fact. Many times the
decision of turning off vulnerable applications
instead of patching them occurred. In that case,
this new vector of attacks could be catastrophic.
Based on our research, one application which
was stopped by default could allow unauthen-
ticated attackers to further compromise the tar-
geted system. This chained attack will be intro-
duced in further sections.

3.2.4.5 Exploitation variants
There are many ways to actually exploit the

findings presented. We will present them di-
vided in four groups:

1. Initial entrypoint: As explained in sec-
tion 3.2.2 two different types of entry
points were found: NavigationServlet (a
servlet) and NavigationWS (a SOAP ser-
vice). Both exposed through HTTP. One
key difference, while the former could be
exploited using GET requests, the latter
will require POST ones.

2. Main function: As explained in section
3.2.3, despite the entrypoint used there
are two different functions that could con-
verge in the same piece of vulnerable
code. Using either getNavigationTree()

or getSelectedPathTree() could allow a
successful exploitation.

3. Connectors/Redirectors: As depicted in
section 3.2.2.1 there are multiple JNDI
Reference injection points depending on
the class used. Several of them could lead
to a successful exploitation.

4. Resolvers: As explained briefly at the
beginning of section 3.2.4 the Java stan-
dard Naming package provides multi-
ple Service Providers (LDAP, RMI, IIOP,
etc). Each SP implements its own resolver.
During our investigation we only focus
on RMI exploitation, but we strongly be-
lieve that, at least, IIOP could also be
used. LDAP exploitation seemed not pos-
sible in this context because of how SAP
manages the JNDI NavigationPrincipal
object.

3.2.4.6 JNDI reverseless exploitation
Usually when dealing with JNDI arbitrary

lookup exploitation there is a need to create a
reverse connection. The reason resides in the
nature of how JNDI Service Providers (and its
resolvers) work. In fact, in our own exploita-
tion an RMI server exposing a JNDI Reference
object is needed.
This inner characteristic helps firewalls or other
security products to detect when attacks like
this occur. Clearly depending on the context,
most of the times a reverse connection thought
RMI could sound suspicious. Specifically in
the case of SAP systems, it will be hard to find
a scenario where an RMI is actually benign.
While performing the analysis for finding our
own gadget and how to exploit it, we came
across the different kinds of resolvers that were
possible to be used. By default, as explained in
section 3.3, RMI, DNS, IIOP were candidates.
However, SAP had specific classes that were
implementing their own JNDIResolvers. One
of these resolvers was the “EJB” JNDIResolver.
As any other JNDI Resolver, first it will create
a specific Context object. In this case its name
was JNDIejbResolverContext. Once the Con-
text is already defined, the next step will be

18



the execution of the lookup() function. After
analyzing this latter method, it was discovered
that it was performing two important and huge
steps:

1. Creating the JNDI reference from the
lookup string (by calling a function
named
createRe f erenceFromSchemeLookupString())

2. Calling EJBObjectFactory.
getObjectInstance() using the created ref-
erence as argument.

As pseudo code, this could be expressed like
this:

1 class JNDIejbResolverContext {
2 Object lookup(jndiName){
3 ref = createReferenceFromScheme
4 LookupString(jndiName);
5 EJBObjectFactory.
6 getObjectInstance(ref);
7 }
8 }

Listing 11: lookup pseudo code example.
As the name suggests,
createRe f erenceFromSchemeLookupString will
grab every possible EJB characteristics (app-
Name, interfaceType, etc) out of the jndiName
and create a reference with that information.
So far, in order to have a successful exploitation,
it was necessary to build a reference linked
to the EJBObjectFactory class, containing spe-
cific EJB characteristics (appName) and serve
it through the RMI server. This way, when
the system performs the lookup() function it
will load this class from the server and call the
getObjectInstance() with the built reference. It
is exactly what this EJB Resolver was doing.
In other words, by using the EJB resolver and
crafting the EJB characteristics carefully inside
the looked up name, it is possible to get rid
of the reverse connection. As a consequence,
applications may be turned on exploiting JNDI
reference injections without the need of a re-
verse connection.
Finally, the new exploitation illustration could
be:

Figure 8: Reverseless exploitation illustration.

3.3. Start Service

3.3.1 Definition and tasks

This component used several binaries from the
SAP Kernel as tools for administrators to per-

form a task directly as well as a service to
receive administration request tasks from Web
Service.
Two of these binaries are saposcol and saphos-
texec, which runs as a service under root or nt

19



authority/system. It is possible to interact with
these binaries locally or remotely on port 1128
(http) and 1129 (https) through SOAP Services
under the namespace SAPOsCol and SAPHost-
Control.

3.3.2 Findings

3.3.2.1 Buffer Overflow

• SAP Security Patch: 3275727
• CVE: CVE-2023-27498

Two of the SOAP Web methods under the
namespace SAPOsCol, SendRequestAsync and
SendRequest can be accessed locally without
authentication or authorization. They don not
correctly handle one parameter which leads
to a memory corruption vulnerability, Stack
Based Buffer Overflow, on saposcol Unix bi-
nary through these methods.
The exploitability of this vulnerability is quite
easy due to the following 4 facts:

1. The crash is reliable and appears during
a ret mnemonic with controlled RSP reg-
istry.

2. It is possible to leak the libc version using
another SOAP method, GetHwCon f Text,
in the same namespace also without au-
thentication locally.

3. Using the same method GetHwCon f Text,
it is also possible to bypass ASLR because
the output of this method leaks the cur-
rent RIP address of the currently running
saposcol.

4. Only NX security feature is enabled on
saposcol binary.

1 [*] ’/usr/sap/hostctrl/exe/saposcol ’
2 Arch: amd64 -64- little
3 RELRO: No RELRO
4 Stack: No canary found
5 NX: NX enabled
6 PIE: No PIE (0 x400000)

Listing 12: checksec output of Saposcol binary.

Indeed this method, GetHwCon f Text, executes
the sapsysinfo.sh[20] on OS side, as root, then
sends back the whole output to the requester.
One of these information is the result of the
command line “cat /proc/[1-9]*/stat” (line
2654 of script) where it is possible to filter on
“saposcol” and get the process status file con-
tent on the running saposcol. The following
output is an example of a Process status file of
the saposcol service.

2998 (saposcol) S 1 2998 2998 0 -1
1077944640 9008285 117854845 1 78 15505
37835 30224 54924 20 0 1 0 4916206973
27897856 946 18446744073709551615 4194304
6643541 140721156071872 140721156059176
140567129181712 0 65536 162533383 17920
18446744071680322219 0 0 17 0 0 0 111 0 0
7692288 7766592 24748032 140721156079070
140721156079147 140721156079147
140721156079577 0

The 28th number is the current address of the
RIP register, 140721156071872 (0x7ffc328521c0)
in the previous example. Having this infor-
mation, knowing the libc version and also
that most of the time the service waits on
“__nanosleep_nocancel+7”, it is possible to cal-
culate offset for the libc base then perform a
ret2libc type exploitation.

1 $ python3 libc_leaks.py -t saphost -p 1129
2 [+] Opened conn to saphost on port 1129: Done
3 [+] Receiving all data: Done (385.01 KB)
4 [*] Closed conn to saphost port 1129
5 Target information : Linux
6 Libc version found : glibc 2.17
7 Saposcol leak : 0x7f8d7e9c6e10
8 Libc base : 0x7f8d7e902000
9 Libc system : 0x7f8d7ecde4c0

10 Libc /bin/sh : 0x7f8d7ea88f89
11 Libc gadget : 0x7f8d7e944fd8
12 Libc pop rdi : 0x7f8d7e924ac8
13 Payload : b’AAAAAAAAAAAAA <redacted >’
14 [+] Opened conn to saphost port 1129: Done
15 [+] Receiving all data: Done (871B)
16 [*] Closed conn to saphost port 1129

Listing 13: Libc base leak example.

3.3.2.2 OS command injection

• SAP Security Patch: 3285757
• CVE: CVE-2023-24523

20



The buffer overflow explained in section 3.3.2.1
was an important finding but only exploitable
on Unix type systems and also could re-
quire payload adaptation depending on the
libc version and target. We also found a
more reliable and OS independent vulnera-
bility which is an OS command injection in
a method, Con f igureOutsideDiscovery, under
namespace SAPHostControl. One of the pa-
rameters is used by the application in com-
mand “move/mv” to transfer a configuration
file from temporary directory to the final di-
rectory. It was possible to inject arbitrary OS
commands in this parameter. The command is
executed as OS administrator user : root or nt
authority/system.

1 [Thr 140226482845568] received CommandData:
status=1,pid =4294967295 , timeout=0,

2 cancellation_time =0,options=0, envhandling =0
3 [Thr 140226482845568]

CommandManager :: StartOSCommand: start
/bin/sh

4 [Thr 140226482845568] Current environment
will be used

5 [Thr 140226482845568] Environment:
6 [Thr 140226482845568] XDG_SESSION_ID =1719
7 [Thr 140226482845568] HOSTNAME=saphost
8 [Thr 140226482845568] SHELL=/bin/bash
9 [Thr 140226482845568] USER=root

10 ...
11 [Thr 140226482845568]

LD_LIBRARY_PATH =/usr/sap/hostctrl/exe
12 [Thr 140226482845568] PID 89259: root:

Executing command "/bin/sh -c mv -f
/usr/sap/hostctrl/work/tmpslddest.cfg
/usr/sap/hostctrl/exe/config.d/

13 slddest_INJECTION.cfg"

Listing 14: “dev_saphostexec” trace highlight the in-
jectable command as root.

21



4. Vulnerability Chaining

4.1. The importance of vulnerabilities
sequences

It is rare to find one critical vulnerability to
gain high privilege access remotely without
authentication. When it happens, it’s easy to
recognize the danger behind it as usually the
CVSS score is around 10. Under these circum-
stances, companies can react quickly to it.
However, there are more tricky-to-spot ways
to achieve the same impact by linking several
less critical vulnerabilities. This situation de-
mands much more knowledge for companies
in order to understand which flaws could be
chained and how to prevent them. Further-
more, weaknesses exposed only to internal
networks could also be underestimated when
compared against those ones affecting Internet
facing systems.
The following section will show how chaining

attacks could be impactful in the SAP envi-
ronment. Additionally, it will pursue raising
awareness about why it is crucial to also take
into account this “less” critical type of vulnera-
bilities.

4.2. Root RCE on SAP system through
Solman P4

Because the LPE to root or nt authority/sys-
tem vulnerability3.3.2.2 can be exploited lo-
cally without authentication through a SOAP
Web Service, it is possible to trigger it
from the SSRF and header injection vul-
nerability found in SAPPingHTTPCollector
3.1.4.4.2 on all SMDAgent managed by Sol-
man. The unauthenticated access to the ser-
vice FM_MAI_SIMULATION_AGENT3.1.4.4,
through the P4 service, will be the only entry
point required to compromise all SAP systems
connected to the targeted Solman. The follow-
ing illustration depicts the attack chain.

Figure 9: Global view of P4 attack from Solman to all satellites systems.

Attacker P4 Solution Manager P4 Remote SAP system (SMDAgent) HTTP localhost:1128 (SAP Host

Control) cmd OS as root

22



4.3. P4 exploitation through HTTP

As already mentioned, although being a re-
mote protocol, P4 is not usually exposed to
external networks. This does not translate into
more security, but it helps understanding that
customers’ exposure to Internet bad actors is
usually low. Nonetheless, this is not totally
true.
The P4 port is not the only way to interact using
P4 with a Java-based system. Java NetWeaver
comes with a stopped-by-default application
called tc je p4tunelling app. As the name sug-
gests, this application allows encapsulation of
P4 traffic inside HTTP requests. It will be ex-
tremely rare to find a real scenario where this
app is turned on. Nevertheless, because of our
findings explained in section 3.2 it is possible
to turn it on anonymously. Once turned on,

unauthenticated bad actors could exploit P4
vulnerabilities shown in section 3.1.4 and per-
form tasks such as: Read all database tables,
exfiltrate OS files including the Secure Store,
leak of pre-configured plain passwords, exe-
cute RFC functions against the system, perform
denial of service attacks, technical information
disclosure, etc. As a consequence, the whole
attack presented in section 3.1.4.3.2 could be
finally abused through HTTP.
Enterprise Portal, the type of systems affected
by this chain of attacks, are usually Internet
facing. In other words, they are heavily threat-
ened to be compromised as the level of exposi-
tion is wide.
The following illustrations depicts in 4 steps
how this chain of vulnerabilities could give an
anonymous bad actor the power to harm the
system using P4 attacks:

Figure 10: Full HTTP + P4 illustration part 1. Attacker cannot reach P4 port of Enterprise Portal.

Figure 11: Full HTTP + P4 illustration part 1. Attacker cannot reach P4 port of Enterprise Portal.

23



Figure 12: Full HTTP + P4 illustration part 1. Attacker cannot reach P4 port of Enterprise Portal.

Figure 13: Full HTTP + P4 illustration part 1. Attacker cannot reach P4 port of Enterprise Portal.

4.4. From unauthenticated HTTP ac-
cess to root: Combining ‘em all!

It is possible to actually chain all the attacks
and techniques developed in this whitepaper
plus already known techniques, in order to get
root privileges starting from HTTP access.
Step by step the full real world chain exploita-
tion could work like this:

1. As shown in section 4.3, an unauthen-
ticated attacker turns on the P4 tunnel-
ing app through HTTP using CVE-2023-
28761.

2. As explained in 3.1.4.3.2 the attacker re-
trieves the Secure Store files using CVE-
2023-23857.

3. Locally and using public exploit[35], the
attacker decrypts Secure Store files which
could contain several credentials like,
but not limited to, the Master Key and
database user and password.

4. The attacker uses these credentials to lo-
gin into the SAP Portal. Our experience
highlights that the combination of Ad-
ministrator/<Master Key> often works.

5. With this high privilege access, the at-
tacker may use the WS Navigation ap-
plication, a SOAP client embedded in-
side the Netweaver Administration dash-
board, to initiate communication with the
internal SOAP service of the HostCon-
trol.

6. The attacker exploits CVE-2023-24523
through this access to and executes OS
commands as root.

7. By nature the SAP Portal is largely con-
nected to internal SAP Systems. This
connection information is stored in ta-
ble J2EE_CONFIGENTRY. The attacker
could query this table, in order to gather
information about the SAP Solution Man-
ager system of the company.

24



8. From this SAP Portal root access attacker
starts the same attack shown in section
4.2 to “root” all SAP systems inside the
whole SAP implementation.

25



5. Staying protected

5.1. SAP Security Patches

From December 2022 to April 2023, SAP re-
leased 12 patches involving JNDI, P4 and Start

Service. These patches provided protection
against all vulnerabilities covered in this docu-
ment.

CVE CVSS Patch Description
CVE-2023-27497 10 3305369 Multiple vulnerabilities in SAP Diagnostics Agent (OSCommand

Bridge and EventLogServiceCollector)
CVE-2023-23857 9.9 3252433 Improper Access Control in SAP NetWeaver AS for Java
CVE-2022-41272 9.9 3273480 Improper access control in SAP NetWeaver AS Java (User Defined

Search)
CVE-2022-41271 9.4 3267780 Improper access control in SAP NetWeaver AS Java (Messaging

System)
CVE-2023-0017 9.4 3268093 Improper access control in SAP NetWeaver AS for Java

CVE-2023-24523 8.8 3285757 Privilege Escalation vulnerability in SAP Host Agent (Start Ser-
vice)

CVE-2023-36921 7.2 3348145 Header Injection in SAP Solution Manager
CVE-2023-36925 7.2 3352058 Unauthenticated blind SSRF in SAP Solution Manager
CVE-2023-27498 7.2 3275727 Memory Corruption vulnerability in SAPOSCOL
CVE-2023-28761 6.5 3289994 Missing Authentication check in SAP NetWeaver Enterprise Por-

tal
CVE-2023-26460 5.3 3288096 Improper Access Control in SAP NetWeaver AS Java (Cache

Management Service)
CVE-2023-24526 5.3 3288394 Improper Access Control in SAP NetWeaver AS Java (classload)
CVE-2023-27268 5.3 3288480 Improper Access Control in SAP NetWeaver AS Java (Object

Analyzing Service)
CVE-2023-24527 5.3 3287784 Improper Access Control in SAP NetWeaver AS Java for Deploy

Service

Table 3: All findings related to these paper and their patches.

5.2. P4 Protection

SAP devoted big effort into securing their sys-
tems against these vulnerabilities. As a con-
sequence to help their customers, besides the
patches for each vulnerability, they also pub-
lished two extra notes: 3273729 and 3299806.
These notes add extra information about P4
vulnerabilities and also share general recom-
mendations in regards to how to be protected.
The general recommendation is always to re-
strict and monitor P4 access as much as possi-
ble. Avoid exposing it to untrusted networks.
Furthermore, the possibility of using other se-

curity measures like monitoring or prevention
systems (IPS, IDS, Firewalls, etc) are always en-
couraged. Restriction of RMI-like traffic could
block and stop an attacker from performing
their exploitation. Note 3299806 details the
process on how to add specific rules to the
ICM component in order to block access to the
HTTP P4 tunneling application.
If the system’s NetWeaver version is lower than
7.5 (which means that is no longer officially
supported) most probably it will be vulnerable
and it will not have any patch available. The
only possibility in this case, will be to update

26



to NetWeaver 7.5

27



6. Conclusions

Throughout this document it was demon-
strated how multiple research subjects affect-
ing SAP systems could be combined in order
to empower the impact of exploitation. As a
side effect, it also highlighted the heterogeneity
of the findings due to being present in areas
which, at first glance, seemed completely unre-
lated: A proprietary network protocol, a local
service and a standard and well known Java
API called JNDI.
P4 seems to be a protocol that still needs to be
analyzed. It was identified that several services
were exposed through this protocol without
enforcing any type of authentication mecha-
nism. We believe that with our own efforts
and previous ones done by other researchers,
P4 will keep moving towards a more secure
state. However, it seems to be still a long road
to drive and research to perform.
In regards to JNDI we do believe that inter-
esting results were achieved. Being able not
only to find a new way of exploitation but also
unveiling the internals of JNDI in SAP, could
help future researchers with new ideas get into
these topics in an easier manner.

Start Service is maybe one of the most impor-
tant and critical components of SAP systems.
As such, it keeps demonstrating that when
vulnerabilities affecting it are found, the im-
pact is automatically high. Additionally, due
to being a component present almost in every
implementation, its surface of attack is large.
We suspect that research projects around this
component will continue to appear and there-
fore customers should carefully monitor who
interacts with it.
Protecting SAP systems is complex, and thus
it requires time, effort and careful attention.
Even though its security has been improving
towards a more secure state during the last
years, its nature makes it harder. Their highly
hyperconnected landscape, where an SAP sys-
tem must work with several other systems in-
ternally or over the internet, the numbers of
involved applications, software or protocols are
just a few reasons behind its complexity. Addi-
tionally, due to being related to the most core
and critical company’s business processes, they
require several steps in the workflow each time
an update or change is to be introduced. There-
fore, the patching process becomes tough.

28



References

[1] https://help.sap.com/saphelp_ewm900/helpdata/en/48/295738a14558d8e10000000a421937/
content.htm?no_cache=true

[2] https://docs.oracle.com/javase/7/docs/technotes/guides/rmi/

[3] https://docs.oracle.com/cd/E12531_01/tuxedo100/CORBA_ref/index.html

[4] https://docs.oracle.com/javase/8/docs/technotes/guides/jndi/index.html

[5] https://www.blackhat.com/docs/us-16/materials/us-16-Munoz-A-Journey-From-JNDI-LDAP-Manipulation-To-RCE-wp.
pdf

[6] https://www.blackhat.com/docs/us-16/materials/us-16-Munoz-A-Journey-From-JNDI-LDAP-Manipulation-To-RCE-wp.
pdf

[7] https://help.sap.com/docs/SAP_NETWEAVER_750/ff18034f08af4d7bb33894c2047c3b71/
c6040065b1d34e75bdb21d2771e144f6.html?version=7.5.21

[8] https://community.sap.com/topics/portal/enterprise-portal

[9] https://me.sap.com/notes/1682613

[10] https://www.slideshare.net/sproctor05/onapsis-ekopartyerp-securityhowhackerscanopenthesafeandtakethejewels

[11] https://www.slideshare.net/sproctor05/dissecting-and-attacking-rmi-frameworksekoparty

[12] https://me.sap.com/notes/1819822

[13] https://me.sap.com/notes/2443673

[14] https://codewhitesec.blogspot.com/2017/05/sap-customers-make-sure-your-sapjvm-is.
html

[15] https://github.com/codewhitesec/sap-p4-java-deserialization-exploit/blob/
master/sapwn-disarmed.py

[16] https://me.sap.com/notes/2845377

[17] https://conference.hitb.org/hitblockdown002/materials/D2T1%20-%20SAP%20RCE%
20-%20The%20Agent%20Who%20Spoke%20Too%20Much%20-%20Yvan%20Genuer.pdf

[18] https://codewhitesec.blogspot.com/2021/06/about-unsuccessful-quest-for.html

[19] https://me.sap.com/notes/3022422

[20] https://vulners.com/securityvulns/securityvulns:doc:25500

[21] https://me.sap.com/notes/1439348

[22] https://blog.c22.cc/2011/12/11/seczone-2011-sap-insecurity-slides/

[23] https://github.com/rapid7/metasploit-framework/tree/master/modules/auxiliary/
scanner/sap

[24] https://me.sap.com/notes/2902645

29

https://help.sap.com/saphelp_ewm900/helpdata/en/48/295738a14558d8e10000000a421937/content.htm?no_cache=true
https://help.sap.com/saphelp_ewm900/helpdata/en/48/295738a14558d8e10000000a421937/content.htm?no_cache=true
https://docs.oracle.com/javase/7/docs/technotes/guides/rmi/
https://docs.oracle.com/cd/E12531_01/tuxedo100/CORBA_ref/index.html 
https://docs.oracle.com/javase/8/docs/technotes/guides/jndi/index.html
https://www.blackhat.com/docs/us-16/materials/us-16-Munoz-A-Journey-From-JNDI-LDAP-Manipulation-To-RCE-wp.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Munoz-A-Journey-From-JNDI-LDAP-Manipulation-To-RCE-wp.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Munoz-A-Journey-From-JNDI-LDAP-Manipulation-To-RCE-wp.pdf
https://www.blackhat.com/docs/us-16/materials/us-16-Munoz-A-Journey-From-JNDI-LDAP-Manipulation-To-RCE-wp.pdf
https://help.sap.com/docs/SAP_NETWEAVER_750/ff18034f08af4d7bb33894c2047c3b71/c6040065b1d34e75bdb21d2771e144f6.html?version=7.5.21
https://help.sap.com/docs/SAP_NETWEAVER_750/ff18034f08af4d7bb33894c2047c3b71/c6040065b1d34e75bdb21d2771e144f6.html?version=7.5.21
https://community.sap.com/topics/portal/enterprise-portal
https://me.sap.com/notes/1682613
https://www.slideshare.net/sproctor05/onapsis-ekopartyerp-securityhowhackerscanopenthesafeandtakethejewels
https://www.slideshare.net/sproctor05/dissecting-and-attacking-rmi-frameworksekoparty
https://me.sap.com/notes/1819822
https://me.sap.com/notes/2443673
https://codewhitesec.blogspot.com/2017/05/sap-customers-make-sure-your-sapjvm-is.html
https://codewhitesec.blogspot.com/2017/05/sap-customers-make-sure-your-sapjvm-is.html
https://github.com/codewhitesec/sap-p4-java-deserialization-exploit/blob/master/sapwn-disarmed.py
https://github.com/codewhitesec/sap-p4-java-deserialization-exploit/blob/master/sapwn-disarmed.py
https://me.sap.com/notes/2845377
https://conference.hitb.org/hitblockdown002/materials/D2T1%20-%20SAP%20RCE%20-%20The%20Agent%20Who%20Spoke%20Too%20Much%20-%20Yvan%20Genuer.pdf
https://conference.hitb.org/hitblockdown002/materials/D2T1%20-%20SAP%20RCE%20-%20The%20Agent%20Who%20Spoke%20Too%20Much%20-%20Yvan%20Genuer.pdf
https://codewhitesec.blogspot.com/2021/06/about-unsuccessful-quest-for.html
https://me.sap.com/notes/3022422
https://vulners.com/securityvulns/securityvulns:doc:25500
https://me.sap.com/notes/1439348
https://blog.c22.cc/2011/12/11/seczone-2011-sap-insecurity-slides/
https://github.com/rapid7/metasploit-framework/tree/master/modules/auxiliary/scanner/sap
https://github.com/rapid7/metasploit-framework/tree/master/modules/auxiliary/scanner/sap
https://me.sap.com/notes/2902645


[25] https://i.blackhat.com/USA-20/Wednesday/us-20-Artuso-An-Unauthenticated-Journey-To-Root-Pwning-Your-Companys-Enterprise-Software-Servers-wp.
pdf

[26] https://www.veracode.com/blog/research/exploiting-jndi-injections-java

[27] https://help.sap.com/doc/saphelp_nw73ehp1/7.31.19/en-US/48/
2d9ba88aef4bb9e10000000a42189b/content.htm?no_cache=true

[28] https://help.sap.com/saphelp_nwce10/helpdata/en/44/3bd73865524903e10000000a1553f7/
content.htm?no_cache=true

[29] https://help.sap.com/saphelp_SNC700_ehp01/helpdata/en/cd/
14c93ec2f7df6ae10000000a114084/content.htm?no_cache=true

[30] https://github.com/erpscanteam/SecStoreDec

[31] https://help.sap.com/docs/SAP_NETWEAVER_750/f2f3f4b4543a4803b9023e8c31f1e72a/
4a1c7aa139e11b42e10000000a42189c.html

[32] https://help.sap.com/docs/SAP_NETWEAVER_750/f2f3f4b4543a4803b9023e8c31f1e72a/
4a2b31ce2c4d1d0fe10000000a42189c.html

[33] https://help.sap.com/docs/SAP_NETWEAVER_750/f2f3f4b4543a4803b9023e8c31f1e72a/
4a26f7aa8d6f0455e10000000a421937.html

[34] https://docs.oracle.com/cd/E24329_01/web.1211/e24446/ejbs.htm

[35] https://github.com/erpscanteam/SecStoreDec

30

https://i.blackhat.com/USA-20/Wednesday/us-20-Artuso-An-Unauthenticated-Journey-To-Root-Pwning-Your-Companys-Enterprise-Software-Servers-wp.pdf
https://i.blackhat.com/USA-20/Wednesday/us-20-Artuso-An-Unauthenticated-Journey-To-Root-Pwning-Your-Companys-Enterprise-Software-Servers-wp.pdf
https://www.veracode.com/blog/research/exploiting-jndi-injections-java
https://help.sap.com/doc/saphelp_nw73ehp1/7.31.19/en-US/48/2d9ba88aef4bb9e10000000a42189b/content.htm?no_cache=true
https://help.sap.com/doc/saphelp_nw73ehp1/7.31.19/en-US/48/2d9ba88aef4bb9e10000000a42189b/content.htm?no_cache=true
https://help.sap.com/saphelp_nwce10/helpdata/en/44/3bd73865524903e10000000a1553f7/content.htm?no_cache=true
https://help.sap.com/saphelp_nwce10/helpdata/en/44/3bd73865524903e10000000a1553f7/content.htm?no_cache=true
https://help.sap.com/saphelp_SNC700_ehp01/helpdata/en/cd/14c93ec2f7df6ae10000000a114084/content.htm?no_cache=true
https://help.sap.com/saphelp_SNC700_ehp01/helpdata/en/cd/14c93ec2f7df6ae10000000a114084/content.htm?no_cache=true
https://github.com/erpscanteam/SecStoreDec
https://help.sap.com/docs/SAP_NETWEAVER_750/f2f3f4b4543a4803b9023e8c31f1e72a/4a1c7aa139e11b42e10000000a42189c.html
https://help.sap.com/docs/SAP_NETWEAVER_750/f2f3f4b4543a4803b9023e8c31f1e72a/4a1c7aa139e11b42e10000000a42189c.html
https://help.sap.com/docs/SAP_NETWEAVER_750/f2f3f4b4543a4803b9023e8c31f1e72a/4a2b31ce2c4d1d0fe10000000a42189c.html
https://help.sap.com/docs/SAP_NETWEAVER_750/f2f3f4b4543a4803b9023e8c31f1e72a/4a2b31ce2c4d1d0fe10000000a42189c.html
https://help.sap.com/docs/SAP_NETWEAVER_750/f2f3f4b4543a4803b9023e8c31f1e72a/4a26f7aa8d6f0455e10000000a421937.html
https://help.sap.com/docs/SAP_NETWEAVER_750/f2f3f4b4543a4803b9023e8c31f1e72a/4a26f7aa8d6f0455e10000000a421937.html
https://docs.oracle.com/cd/E24329_01/web.1211/e24446/ejbs.htm
https://github.com/erpscanteam/SecStoreDec

	Introduction
	SAP SE
	P4 protocol
	JNDI
	SAP Products and Components
	Solution Manager
	NetWeaver Java
	Enterprise Portal
	Start Service


	Previous work
	P4 Protocol
	[2012] Arbitrary file read in P4 service
	[2014] Dissecting and attacking RMI frameworks
	[2017] Java deserialization attack through P4
	[2020] Communication hijacking
	[2021] P4 Service listing and analysis

	Start Service
	[2009] Missing authentication
	[2020] Multiple Privileges Escalation

	JNDI
	[2016] A journey from JNDI/LDAP manipulation to Remote Code Execution Dream Land
	[2019] JNDI Reference injection through Local Classes


	Analysis
	P4
	Context
	Initial connection and services listing
	Strategy and Toolset
	Services inspection and findings
	RFC engine
	Analysis
	Findings

	Search Facade
	Analysis
	Findings

	Locking
	Analysis
	Findings

	Agent Simulation
	Analysis
	Findings


	Impact

	JNDI Reference injection in SAP Java based systems
	Listing of unauthenticated endpoints
	Analysis of Navigation Service
	Connectors and Redirectors

	JNDI arbitrary lookup injection points discovery
	JNDI Reference injection Exploitation
	Finding an SAP gadget
	EJBObjectFactory
	Exploitation illustration
	Findings and impact
	Exploitation variants
	JNDI reverseless exploitation


	Start Service
	Definition and tasks
	Findings
	Buffer Overflow
	OS command injection



	Vulnerability Chaining
	The importance of vulnerabilities sequences
	Root RCE on SAP system through Solman P4
	P4 exploitation through HTTP
	From unauthenticated HTTP access to root: Combining ‘em all!

	Staying protected
	SAP Security Patches
	P4 Protection

	Conclusions

