
#BHUSA @BlackHatEvents

Over the Air, Under the Radar
Attacking and Securing the Pixel Modem

Xuan Xing Eugene Rodionov Xiling Gong Farzan Karimi

#BHUSA @BlackHatEvents

● Who We Are
● Pixel Modem Red Team Engagement Overview

○ Why Modem?
○ Goals & Methodology

● Proof of Concept Demonstrations
○ CVE-2022-20170
○ CVE-2022-20405

● How we secure the next generation of Pixel

Agenda

All vulnerabilities mentioned in this presentation have
been fixed

#BHUSA @BlackHatEvents

We are the eyes of Android Security: Increase Pixel and Android security by attacking key
components and features, identifying critical vulnerabilities before adversaries

Offensive Security Reviews to verify (break) security assumptions

Scale through tool development (e.g. continuous fuzzing)

Develop proof of concepts to demonstrate real-world impact

Assess the efficacy of security mitigations

Mission

#BHUSA @BlackHatEvents

Why Modem?

#BHUSA @BlackHatEvents

2019-2023

Modem has been an
emerging area of risk

#BHUSA @BlackHatEvents

So What?

What an attacker would get:

● Over-the-air Remote Code Execution
● Running in Privileged Context

What that means:

● DDoS Botnet
● SMS/RCA Sniffing and Spoofing
● MFA Compromise
● Pivot Opportunities to Kernel

#BHUSA @BlackHatEvents

Why Modem?

MFA Compromise

 OTA RCE

So What?

#BHUSA @BlackHatEvents

Timeline:

• Multi-month Android Red Team engagement from late 2021 to early 2022

Engagement Overview

Mission

● Gain remote code execution on baseband via the Pixel 6 modem stack
● Suggest systemic security improvements to harden the Pixel 6+ modem
● Bonus: Get everything patched before debrief

#BHUSA @BlackHatEvents

Modem Overview

#BHUSA @BlackHatEvents

Modem Overview

Modem at a glance:

#BHUSA @BlackHatEvents

Modem Overview

Modem at a glance:

● A critical component with access to sensitive
user data

● Remotely accessible with various radio
technologies

● A high profile target which could benefit from
security hardening mitigations

● A historical source of vulnerabilities from
external researchers and modem owners

● Many legacy protocols with outdated security
practice

Image Credit: Pixel 6 X-ray Imablog

#BHUSA @BlackHatEvents

AP CP Base Station

Radio Services

Modem Drivers

Kernel Driver
Interface

AP/CP IPC Interface

Modem
Firmware Cellular Network

Modem Overview

#BHUSA @BlackHatEvents

Modem Overview

Communication Service Layer

Component

Attack Surface Covered by
Android Red Team

LEGEND

Proof of Concept

Telephony services IMS

Abstraction Layer
HLOS Interfaces

Protocol Level

Physical Layer
System Module System Tools

2G

Pre-
AKA

Post-
AKA

WCDMA

Pre-
AKA

Post-
AKA

4G-LTE

Pre-
AKA

Post-
AKA

ASN.1 and
other

low-level
decoders

5G

Pre-
AKA

Post-
AKA

SMS, MMS, etc

DSP

#BHUSA @BlackHatEvents

Our Methodology

#BHUSA @BlackHatEvents

St
at

ic
 a

na
ly

si
s

Fuzzing

M
anual code

review

● Fuzzing as the primary approach
○ Host based fuzzing has been proven effective

during first modem engagement
○ Full system emulation is complete
○ On-device fuzzing was cut due to schedule

constraint
● Static analysis using CodeQL

○ Exploring modem codebase
○ Variant analysis

● Manual code review
○ Only for areas identified by fuzzing or external

researches

Evaluation Approaches

#BHUSA @BlackHatEvents

Progress:

● 10 fuzzers created during the engagement and
running on our internal at-scale device fuzzing
platform.

● Fuzzers not only find great bugs, but also identify
high risk areas for manual code review.

● Developing an easy to use framework for host
based modem fuzzing.

Fuzzing Challenges:

● Low severity bugs blocking fuzzing from continuing
● Complex dependencies to other components
● Tasks dealing with internal messages no value for

fuzzing

Fuzzing Overview

Fuzzer Name Description

AsnDecoder Targets ASN.1 decoder which
reads and translates data
encoded in ASN.1 format by
feeding malformed inputs.

ASN.1 is widely used in various
protocols and data formats

CdParseMsg Targets parser responsible for
processing and interpreting
messages received by the
modem from external sources

More fuzzers… More protocols…

#BHUSA @BlackHatEvents

CodeQL Overview:

CodeQL is a static analysis tool with powerful data-flow and taint analysis
engine to find code errors, check code quality, and identify vulnerabilities.

CodeQL

Modem Exploration Queries:

● Finding all task entry points
● Finding all Low-level Interrupt Service

Routines (LISRs)
● Finding all High-level Interrupt Service

Routines (HISRs)
● Graphing IPC between different tasks

General purpose bug finding queries:

● Identifying memcpy which write to a fixed-size
buffer, but use a non-constant size argument

● Identifying for loops writing to buffers, where
the loop could iterate more times than the
size of the buffer

#BHUSA @BlackHatEvents

● Unicorn-base full-stack emulation
○ Supports 5G Modem Chipset (Shannon

5123)
● Emulates some hardware layers

○ Hardware Registers
○ PCIE interface
○ OTP
○ Flash Memory (RFS)

● Software layer functionalities
○ Process snapshot and restore - useful

for high-speed fuzzing
○ ASAN-style instrumentation

● Accurate emulation with full symbols vs
FirmWire with guessed limited symbols

● Fuzzing - AFLPlusPlus unicorn mode
integration

○ Better code coverage

● Root Cause Analysis
○ Triaging & Investigation
○ Accurate and fast crash investigation

Benefits & UsagesTechnical Spec

Modem Emulator

https://github.com/FirmWire/FirmWire
https://github.com/AFLplusplus/AFLplusplus/

#BHUSA @BlackHatEvents

Modem Emulator
Root Cause Analysis

#BHUSA @BlackHatEvents

Our Findings

#BHUSA @BlackHatEvents

Re: ASN.1
“Maybe all the bugs are gone…?”

How to Hack Shannon Baseband (from a Phone)
OffensiveCon Presentation by Google Project Zero (May, 2023)

(~12 months after the Android Red Team Engagement)

#BHUSA @BlackHatEvents

Findings Summary

By the numbers:

122
Total Issues

50
Fuzzer Bugs

18%
Critical/High Severity

All vulnerabilities mentioned in this presentation have
been fixed

Two bugs in particular stood out in this engagement, and when chained, led to a Modem RCE.

● CVE-2022-20170 is a critical severity issue. This is an OOB write issue that occurs when
decoding the OTA packets from 2G (GSM).

● CVE-2022-20405 is a moderate severity issue that is the result of a mis-configuration in modem
code makes most of the memory space with RWX.

#BHUSA @BlackHatEvents

CVE-2022-20170 Details

● Linear OOB write in the heap
● Happens during ASN.1 parsing of Information

Element during call setup stage in 2G stack
● The attacker fully controls up to 255 bytes

written into 1-byte buffer in the heap

…
if (param_2 == 0x70) {

 target_buffer = AsnInnerMemAlloc(param_1, 1);

 if (target_buffer == 0x0) goto LAB_XXXXXXX;

 *(unsigned char *)target_buffer = 0;

 iVar1 = AsnDecodeInformationElement(param_1, param_3, target_buffer, 0);

…

int AsnDecodeInformationElement(void *param_1, int param_3, void *target_buffer, int param_4)

{

…
 target_lenght = 0;

 ret_val = BitUnpacking8(param_1, 0x5ca, &target_lenght, 8, ret_val);

 if ((ret_val != -1) &&

 ((target_lenght < 0x81 || (ret_val = Decoding_String_Lpart(param_1, ret_val, &target_lenght), ret_val != -1))))

 {

 ret_val = BitUnpacking(param_1, 0x5d2, target_buffer, target_lenght << 3, ret_val);

 return ret_val;

 }

…

Allocate 1-byte buffer

Extract number of bytes to write into the buffer

Overflow the buffer

#BHUSA @BlackHatEvents

Heap Management Overview

● Every heap allocation is prepended with a 0x20-byte header with the metadata
○ Allocation driver ID: partitioned memory driver, system dynamic memory driver, etc
○ Size of allocated chunk
○ Allocation-driver-specific metadata

Partitioned Memory Driver:

● manages arrays of fixed-size memory blocks
● tracks state of the memory blocks using a

separate bitmap
● not very convenient for exploitation

System Dynamic Memory Driver:

● uses a double-linked list to manage allocated/free
chunks

● heap header contains the double-linked list and
free function pointer!!!

5079f380: 04 00 00 00 05 00 00 00 8F 2B 29 41 34 00 00 00

5079f390: C0 76 61 44 40 00 00 00 B0 4A 03 00 AA AA AA AA

5079f3a0: 00 01 3C 01 AA AA AA AA AA AA AA AA AA AA AA AA

5079f3b0: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA Allocated heap buffer

Allocation heap header

#BHUSA @BlackHatEvents

Getting Arbitrary Write Primitive

● Leverage the linear OOB write in the heap to obtain write-what-where primitive:
○ CVE-2022-20170 enables us to overwrite heap header of the next adjacent chunk with the

fully controlled data

● The overwritten adjacent heap chunk is:
○ Conveniently allocated by ASN.1 parsing code before the buffer overflow happens
○ Reliably freed after the overflow

● Use the “classic” heap unlink technique to overwrite free function pointer

5079f380: 04 00 00 00 05 00 00 00 8F 2B 29 41 34 00 00 00

5079f390: C0 76 61 44 40 00 00 00 B0 4A 03 00 AA AA AA AA

5079f3a0: 00 01 3C 01 AA AA AA AA AA AA AA AA AA AA AA AA

5079f3b0: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA

5079f3c0: 04 00 00 00 0C 00 00 00 8F 2B 29 41 3D 00 00 00

5079f3d0: C0 76 61 44 40 00 00 00 B1 4A 03 00 AA AA AA AA

5079f3e0: 3C 01 3C 01 00 00 01 00 AA AA AA AA AA AA AA AA

5079f3f0: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA

Overflow
direction

Vulnerable heap
buffer

Header of the adjacent
heap chunk

#BHUSA @BlackHatEvents

● Out-of-bounds write occurs in the ASN decoder
within the 2G stack (CVE-2022-20170). This
allows us to write a limited number of controlled
bytes in the heap and corrupt adjacent heap
objects.

● Corrupted adjacent heap objects give us
arbitrary pointer write primitive when those
objects are freed.

● Misconfiguration in MMU (CVE-2022-20405)
allows us to stage executable shellcode in the
heap.

● Overwrite the function pointer pointing to the
free function of the heap allocator to point to our
shell code

● When a heap object is freed, it will execute our
shellcode.

Getting RCE on Modem

CVE-2022-20170 + CVE-2022-20405 Overview

#BHUSA @BlackHatEvents

Shellcode Delivery

Malicious base station Victim device

Send stage 0 shellcode
Store stage 0 shellcode

in a global “attack” buffer*

Trigger CVE-2022-20170
Hook free function with

stage 0 shellcode

Send stage 1 shellcode chunk 0

Send stage 1 shellcode chunk N
Rehook free function
with stage 1 shellcode

...

Assemble stage 1 shellcode
in executable memory

* Global array of ~80 bytes at a known address used for storing stage 0 and chunks of stage 1 shellcode

#BHUSA @BlackHatEvents

Modem RCE Proof of Concept

#BHUSA @BlackHatEvents

Attack Chain

User connects their phone to a
cellular network (e.g. 4G/5G)

Attacker sets up a malicious
2G base station

User (victim) comes in proximity
of malicious base station.
Victim’s phone connects to the
malicious base station.

Attacker sends exploit
payload. Establishes foothold
on victim’s modem

Attacker can capture and forward
SMS messages (+more)

OTP:
1234

OTP:
1234

2G

1

2

3

4

5

#BHUSA @BlackHatEvents

http://www.youtube.com/watch?v=R-XXpG_mZZI

#BHUSA @BlackHatEvents

Issues utilized for this exploit:
● An attacker controlled heap OOB write in GSM

code (CVE-2022-20170)
● A mis-configuration of MMU allowing writable

and executable memory (CVE-2022-20405)
● Lack of standard security mitigations making the

exploiting easier

Prerequisites:
● 2G stack is enabled (default on Pixel 6)
● “Nearby range” to deploy the attack (<5 miles)

Impact:
● Total modem firmware compromise
● Possible Android OS compromise with radio

driver/HAL side issues

Exploitation Details

<5 M
ile

 Range

2G

#BHUSA @BlackHatEvents

Proof of Concept Setup

Required hardware:

● SDR
● Cables and USB hubs
● Faraday cage (not needed for real

attack)

Required software:

● OpenBTS (free, open source)

Total cost: <$2,800

#BHUSA @BlackHatEvents

Exploitation Challenges

● Not that easy to pack SDR, the attacker and victim devices into the Faraday cage to avoid
interference

○ Subject to the value of the radio wavelength

● Reliability of the exploitation and time between iterations
○ Multiple complex systems involved into the exploitation: SDR + OpenBTS & modem

● Debugging shellcode on the production modem image
○ Collect ramdump when modem crash and then check the memory status
○ Patched an AT command handler in modem to confirm success of the exploitation

locally on the victim device

● 80 bytes of thumb2 instructions is very tight to implement stage 0 shellcode
○ Effective shellcode area is less than 80 bytes due to specifics on heap “unlink” primitive

#BHUSA @BlackHatEvents

Remediation & What Comes Next

#BHUSA @BlackHatEvents

What You Can Do

● 2G security is obsolete. The 2G standards
didn’t take in account rogue cell towers as
an attack vector (lack of mutual auth)

● Weak encryption combined with no
authentication between device and tower
means impersonation is easy over 2G.

● 2G is optional on Pixel devices. Disable the
“Allow 2G” toggle on your device. This
feature is supported in all Android (12+)
devices with Radio HAL >1.6

● 2G disablement isn’t enforced as it’s
required in certain locations

The best mitigation is to disable 2G
on your device

Google is committed to making the Pixel modem as secure as possible. Here’s what you can do:

http://go/android-feature-classification

#BHUSA @BlackHatEvents

Bare Metal Mitigations

Android Security prioritizes hardening
bare metal firmware

● System hardening and exploit mitigations
● Exploring and enabling compiler-based

sanitizers (BoundSan, IntSan) and other
exploit mitigations (CFI, kCFI, Shadow Call
Stack, Stack Canaries) in firmware.

● Enabling further memory safety features
(Auto-initialize Memory) in firmware.

● Exploring the application of Rust in bare
metal firmware.

https://security.googleblog.com/2023/02/hardening-firmware-across-android.html
https://security.googleblog.com/2023/02/hardening-firmware-across-android.html
https://source.android.com/docs/security/test/bounds-sanitizer
https://source.android.com/docs/security/test/intsan
https://source.android.com/docs/security/test/cfi
https://source.android.com/docs/security/test/kcfi
https://source.android.com/docs/security/test/shadow-call-stack
https://source.android.com/docs/security/test/shadow-call-stack
https://source.android.com/docs/security/test/memory-safety/zero-initialized-memory

#BHUSA @BlackHatEvents

Cross-Functional Coverage

Modem

Vulnerability
Rewards
Program

Vulnerability
Rewards
Program

Continuous
FuzzingContinuous

Fuzzing

Static
Analysis

Vendor
Security
Reviews

Android Red
Team

Vendor
Security

Workshops

Threat
Modeling

Upstream
Build

Support

#BHUSA @BlackHatEvents

Conclusion

#BHUSA @BlackHatEvents

Concluding Thoughts

Red Team to Secure Pixel

2G security is outdated Our Work is Never done

~100 security issues were identified and
fixed in Pixel 6 before its release

Exploit development helps articulate
impact

Fuzzing is the Way

We heavily invested in fuzzing, developing
8 fuzzers identifying >60% of bugs logged
during the engagement. These fuzzers run
continuously and find issues today.

Google has protections in place to limit
the outdated security and lack of mutual
authentication of 2G. Turning off 2G
protects you from most attacks.

Modem mitigations

We applied various mitigations to
eradicate entire classes of vulnerabilities,
with more hardening measures to come.

Many Google teams came together on
these security investments prioritizing
security and remediation

We’re never done! The team continues
testing new features and releases

#BHUSA @BlackHatEvents

Acknowledgements
● Android Red Team
● Connectivity Security Team
● Pixel Engineering & Security Team
● Android Security
● Project Zero
● External Partners

#BHUSA @BlackHatEvents

Thanks!

