blgt’zk hat

LUSA 2023

AUGUST S-10, 2023
BRIEFINGS

Over the Air, Under the Radar

Attacking and Securing the Pixel Modem

2

Xuan Xing Eugene Rodionov Xiling Gong Farzan Karimi

#BHUSA @BlackHatEvents

4]

blackhat

USsA =023

e Who We Are
e Pixel Modem Red Team Engagement Overview
o Why Modem?
o Goals & Methodology
e Proof of Concept Demonstrations
o CVE-2022-20170
o CVE-2022-20405
e How we secure the next generation of Pixel

All vulnerabilities mentioned in this presentation have
been fixed

4]

blackhat

USsA =023

components and features, identifying critical vulnerabilities before adversaries

[We are the eyes of Android Security: Increase Pixel and Android security by attacking key

daNno=0I1D

=GO TCEAm

—[Offensive Security Reviews to verify (break) security assumptions

(

Scale through tool development (e.g. continuous fuzzing)

Develop proof of concepts to demonstrate real-world impact

[l

Assess the efficacy of security mitigations

| S S S) ——

blé'c’:k hat

USsA =023

Why Modem?

#BHUSA @BlackHatEvents

blgc’:k hat

USsA =023

>y
\ZD Blogger

https://googleprojectzero.blogspot.com » m
. . . - Multlple Internet to Baseband Remote Code Execution ..
Qualcomm chip vulnerability found in millions ar 16, 2023 — In late 2022 and early 2023, Project Zero reported eighteen 0-day
of Google, Samsung, and LG phones vulnerabilities in Exynos Modems produced by Samsung Semiconductor.

Cybersecurity researchers with Check Point notified Qualcomm last year, and it was patched in December 2020.

Over The A| r Base ba nd EXpIOIt: Severe Ex;nos modem vul:érabllmes :found

Google Project Zero team found severe 0-day vulnerabilities with the Samsung

Modem has been an Gaining Remote Code R i e R
. . Execution on 5G Smartphones
emerging area of risk

Marco Grassi (@marcograss)
K) KEEN Xingyu Chen (@@xKira233) Samsung Smartphones Already Received Modem

syt Vulnerability Patch
The vulnerability in Qualcomm modems

68 5y Tja chadatia ay 2,202 affects 30 percent of mobile phones
Cp<iE> PUBLICATIONS ~ T0OLS ~ ABOUTUS CONTACTUS SUBSCRIBE UNDERATTACK?

SAMSUNG
X o m

#BHUSA @BlackHatEvents

Advanced SMS Phishing Attacks Against Modern Android-based
Smartphones
e 19

blaQ:khaf So What?

LUSA 2023

What an attacker would get:

e Over-the-air Remote Code Execution
e Running in Privileged Context

What that means:

DDoS Botnet

SMS/RCA Sniffing and Spoofing
MFA Compromise

Pivot Opportunities to Kernel

blaQ:khat So What?

LUSA 2023

2FA compromise led to $34M Crypto.com hack

Anita Ramaswamy @anitaramaswamy / 10:13 AM PST + January 20, 2022 O] comment

blg?:k hat

LUSA 2023

Timeline:

Multi-month Android Red Team engagement from late 2021 to early 2022

Mission

Gain remote code execution on baseband via the Pixel 6 modem stack
Suggest systemic security improvements to harden the Pixel 6+ modem
Bonus: Get everything patched before debrief

blg'?:k hat

USsA =023

Modem Overview

#BHUSA @BlackHatEvents

blaQ:khat‘ Modem Overview - -

LUSA 2023

Modem at a glance:

Dialing Progress

blgc’:k hat

USsA =023

Modem at a glance:

A critical component with access to sensitive
user data

Remotely accessible with various radio
technologies

A high profile target which could benefit from
security hardening mitigations

A historical source of vulnerabilities from
external researchers and modem owners
Many legacy protocols with outdated security
practice

Image Credit: Pixel 6 X-ray Imablog

4]

blackhat

LUSA 2023

[Radio Services] (()
Kernel Driver Modem

Interface Firmware Cellular Network

[Modem Drivers y

O

black hat Modem Overvie

USsA =023

Communication Service

Telephony services SMS, MMS, etc

LEGEND

Abstraction Layer

HLOS Interfaces

Protocol Level

ASN.1 and
other

low-level
decoders

Physical Layer

System Module System Tools

Layer

Component

Proof of Concept

blgc’:k hat

USsA =023

Our Methodology

BBBBBBBBBBBBBBBBBBBBB

4]

blackhat Evaluation Approach’e‘sf

LUSA 2023

e Fuzzing as the primary approach
o Host based fuzzing has been proven effective
during first modem engagement
o Full system emulation is complete

o On-device fuzzing was cut due to schedule
constraint
e Static analysis using CodeQL

o Exploring modem codebase
o Variant analysis

e Manual code review
o Only for areas identified by fuzzing or external
researches

4]

black hat Fuzzing Overview -

USsA =023

Progress:

e 10 fuzzers created during the engagement and
running on our internal at-scale device fuzzing
platform.

e Fuzzers not only find great bugs, but also identify
high risk areas for manual code review.

e Developing an easy to use framework for host
based modem fuzzing.

Fuzzing Challenges:

e Low severity bugs blocking fuzzing from continuing

Complex dependencies to other components

e Tasks dealing with internal messages no value for
fuzzing

Fuzzer Name

AsnDecoder

CdParseMsg

More fuzzers...

Description

Targets ASN.1 decoder which
reads and translates data
encoded in ASN.1 format by
feeding malformed inputs.

ASN.1 is widely used in various
protocols and data formats

Targets parser responsible for
processing and interpreting
messages received by the
modem from external sources

More protocols...

bla‘:c’:k hat

LUSA 2023

CodeQL Overview:

CodeqQL is a static analysis tool with powerful data-flow and taint analysis
engine to find code errors, check code quality, and identify vulnerabilities.

Modem Exploration Queries:

e Finding all task entry points

e Finding all Low-level Interrupt Service
Routines (LISRs)

e Finding all High-level Interrupt Service
Routines (HISRs)

e Graphing IPC between different tasks

General purpose bug finding queries:

Identifying memcpy which write to a fixed-size
buffer, but use a non-constant size argument
Identifying for loops writing to buffers, where
the loop could iterate more times than the
size of the buffer

blgc’:k hat

USsA =023

Technical Spec

Unicorn-base full-stack emulation

©)

Supports 5G Modem Chipset (Shannon
5123)

Emulates some hardware layers

@)
@)
@)
@)

Hardware Registers
PCIE interface

OTP

Flash Memory (RFS)

Software layer functionalities

©)

©)

Process snapshot and restore - useful
for high-speed fuzzing
ASAN-style instrumentation

Benefits & Usages

Accurate emulation with full symbols vs
FirmWire with guessed limited symbols

Fuzzing - AFLPlusPlus unicorn mode
integration
o Better code coverage

Root Cause Analysis
o Triaging & Investigation
o Accurate and fast crash investigation

https://github.com/FirmWire/FirmWire
https://github.com/AFLplusplus/AFLplusplus/

bla‘:c’:k hat

LUSA 2023

Modem Emulator®e™ TG Gl
Root Cause Analysis

Heap header corruption at 50596c@1 (heap: 50596c00) size: 00000001 value: 000000ad @421e2860 BitUnpacking8+000000ch

None

Memory Dump @50596c00

00000000: DE 00 00 00 08 00 00 00 00 00 00 00 00 00 00 00

00000010: 00 00 00 00 40 00 00 00 00 00 00 00 AA AA AA AAQ@.:u:vesususs
* Debug Message: Output(@xAD) from Buffer(@xBE) with unpackinglLen(8)/unpackedLen(1206555239) @line @ (BitUnpackingl73)

12: BitUnpacking8 return: 0x00000180

12: BitUnpacking8(ProAsnParam_tx asnParam = 505a75a@, unsigned int line = 000005d2, u8 xoutput = 50596c02, int outputLen = 00000008,
* Instructions @421e285a
421e285a: b #0x421e2874
421e285c: mov fp, r5
421e285e: b #0x421e28ae

american fuzzy lop ++4.01a (python3) [fast]

421e2860:
421e2864:
421e2866:
421e286a:
421e286¢:
421e286e:
421e2872:

movw r6, #0x48ae
subs r7, r7, r3
movt r6, #0x4032
ldrb r6, [r6, r3l]
1sls r6, r7
and.w r6, r6, r8
lsrs r6, r7

@ days, 7 hrs,
0 days, @ hrs,
@ days, @ hrs,
0 days, 4 hrs,

619.1 (96.9%)
1 (0.16%)

46 min, 31 sec
@ min, 34 sec
7 min, 0@ sec

39 min, 12 sec

5

0.83% / 11.21%
4.97 bits/tuple

421e2874: strb r6, [r2] splice 4 354 (55.40%)

421e2876: movw r2, #0x1042 188/441 (42.63%) 524 (82.00%)
421e287a: movs r7, #8 3.31M

421e287c: str r2, [sp, #0x18] 212.5/sec
421e287e: movw r2, #0x9464

54.3k (358 saved)

disabled (default, enable with -D) 12
disabled (default, enable with -D) 191
disabled (default, enable with -D) a
disabled (default, enable with -D) 638
n/a 0
547/1.68M, 119/1.61M

unused, unused, unused, unused

2.03%/3823, disabled

blé'c’:k hat

USsA =023

Our Findings

#BHUSA @BlackHatEvents

blg?:k hat

USsA =023

Re: ASN.1T
“Maybe all the bugs are gone...?”

How to Hack Shannon Baseband (from a Phone)
OffensiveCon Presentation by Google Project Zero (May, 2023)

(~12 months after the Android Red Team Engagement)

#BHUSA @BlackHatEvents

4]

blackhat

USsA =023

By the numbers:

[122 J[18% J[50 J
Total Issues Critical/High Severity Fuzzer Bugs

Two bugs in particular stood out in this engagement, and when chained, led to a Modem RCE.

e CVE-2022-20170 is a critical severity issue. This is an OOB write issue that occurs when
decoding the OTA packets from 2G (GSM).

e CVE-2022-20405 is a moderate severity issue that is the result of a mis-configuration in modem
code makes most of the memory space with RWX.

All vulnerabilities mentioned in this presentation have
been fixed

bl hat CVE-2022-20170 Details

USsA =023

Linear OOB write in the heap

if (param_2 == 0x70) {

¢ Happens du.rlng ASN1 parSIng Of Informatlon I target_buffer = AsnInnerMemAlloc(param_1, 1); | Allocate 1-byte buffer
Element during call setup stage in 2G stack I (target_buffer == 0x0) goto LAB_IOO00XX;
*(unsigned char *)target_buffer = 0;
L] The attaCkel’ fU”y ContrOIS Up to 255 byteS IiVarl = AsnDecodeInformationElement(param_1, param_3, target_buffer, 0); |

written into 1-byte buffer in the heap

int AsnDecodeInformationElement(void *param_1, int param_3, void *target_buffer, int param_4)

{

target_lenght = 0;
Iret_val = BitUnpacking8(param_1, ©x5ca, &target_lenght, 8, ret_val);l

if ((ret_val != -1) &&
((target_lenght < ox81 || (ret_val = Decoding_String_Lpart(param_1, ret_val, &target_lenght), ret_val != -1))))

Extract number of bytes to write into the buffer

{

Iret_val = BitUnpacking(param_1, ©x5d2, target_buffer, target_lenght << 3, r‘et_val);l Overflow the buffer

return ret_val;

}

blackhat

4]

USsA =023

)

Heap Management Overview

e Every heap allocation is prepended with a 0x20-byte header with the metadata
o Allocation driver ID: partitioned memory driver, system dynamic memory driver, etc
o Size of allocated chunk
o Allocation-driver-specific metadata
5079f380: 04 00 00 00 05 00 00 00 8F 2B 29 41 34 00 00 00
5079f390: (O 76 61 44 40 00 00 00 BO 4A 03 00 AA AA AA AA
5079f3a0: 00 01 3C 01 AA AA AA AA AA AA AA AA AA AA AA AA
5079F3b0: AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA AA Allocated heap buffer
Partitioned Memory Driver: System Dynamic Memory Driver:
e manages arrays of fixed-size memory blocks uses a double-linked list to manage allocated/free
e tracks state of the memory blocks using a chunks
separate bitmap heap header contains the double-linked list and
e not very convenient for exploitation free function pointer!!!

SN

blackhat

USA 2023

pAmEE N TS

e Leverage the linear OOB write in the heap to obtain write-what-where primitive:
o CVE-2022-20170 enables us to overwrite heap header of the next adjacent chunk with the
fully controlled data

e The overwritten adjacent heap chunk is:
o Conveniently allocated by ASN.1 parsing code before the buffer overflow happens
o Reliably freed after the overflow

e Use the “classic” heap unlink technique to overwrite free function pointer

50791380: 04 00 00 00 ©5 00 00 00 8F 2B 29 41
50791390: CO 76 61 44 40 00 00 00 BO 03 00
5079f3a0: 00 01 3C 01 AA AA AA AA AA AA AA
5079f3b0: AA AA AA AA AA AA AA AA AA AA AA

00 00
AA AA
AA AA
AA AA

Vulnerable heap
buffer

EEE
EEE R
EEES

Overflow

. . 5079f3cO: 04 00 00 00 OC 00 00 00 8F
direction

5079f3d0: CO 76 61 44 40 00 00 00 Bl
5079f3e0: 3C 01 3C 01 00 00 01 00 AA
5079f3f0: AA AA AA AA AA AA AA AA AA

29 41
03 00
AA AA
AA AA

00 00
AA AA
AA AA
AA AA

Header of the adjacent
heap chunk

EEIE &
ERIZY
EZ|IZS

4]

blackhat

USsA =023

- TN
L

o/
Getting RCE on Modem

CVE-2022-20170 + CVE-2022-20405 Overview

Out-of-bounds write occurs in the ASN decoder
within the 2G stack (CVE-2022-20170). This
allows us to write a limited number of controlled
bytes in the heap and corrupt adjacent heap
objects.

Corrupted adjacent heap objects give us
arbitrary pointer write primitive when those
objects are freed.

Misconfiguration in MMU (CVE-2022-20405)
allows us to stage executable shellcode in the
heap.

Overwrite the function pointer pointing to the
free function of the heap allocator to point to our
shell code

When a heap object is freed, it will execute our
shellcode.

Heap Area RW-

[HDR: BlockType=PMD }

Buffer A: User Bytes

Filler Bytes

\)

[HDR: BlockType=PMD

Buffer B: User Bytes
Filler Bytes

Global Data RWX

[HDR: BlockType=PMD }

Buffer A: Attacker controlled

Attacker controlled data

Attacker controlled data

[HDR: BlockType=SysDyn }

SysDyn Header
size
fnFree —

Attacker controlled |data

Attacker controlled data

SHELLCODE

4]

blackhat

USsA =023

Malicious base station Victim device

Send stage 0 shellcode
9 Store stage 0 shellcode

in a global “attack” buffer’

Trigger CVE-2022-20170 , ,
Hook free function with

=
stage 0 shellcode
Send stage 1 shellcode chunk 0 Assemble stage 1 shellcode
> in executable memory
Send stage 1 shellcode chunk N
> Rehook free function

with stage 1 shellcode

* Global array of ~80 bytes at a known address used for storing stage 0 and chunks of stage 1 shellcode

bl£¢’=k hat

USsA =023

ANoO=0ID
<CO TCAMm

Modem RCE Proof of Concept

BBBBBBBBBBBBBBBBBBBBB

4]

black hat Attack Chain

LUSA 2023

User (victim) comes in proximity
of malicious base station.
Victim's phone connects to the

malicious base station.
Attacker sets up a malicious

’
2G base station

/ '\ ore: Attacker sends exploit
payload. Establishes foothold

User connects their phone to a
cellular network (e.g. 4G/5G)

'—»
o

on victim’'s modem

Attacker can capture and forward
SMS messages (+more)

. —
e s s et B R R R R

sl b

Attacker can now target
victim's apps supporting
SMS MFA

aN230I1D
=CO TCAm

- —

MISRE. .]

T o 20 & 1C

http://www.youtube.com/watch?v=R-XXpG_mZZI

black hat Exploitation Details:

USsA =023

4]

Prerequisites:
e 2G stack is enabled (default on Pixel 6)
e “Nearby range” to deploy the attack (<5 miles)

Impact:
e Total modem firmware compromise
e Possible Android OS compromise with radio
driver/HAL side issues

Issues utilized for this exploit:
e An attacker controlled heap OOB write in GSM
code (CVE-2022-20170)
e A mis-configuration of MMU allowing writable
and executable memory (CVE-2022-20405)
e Lack of standard security mitigations making the
exploiting easier

bla‘:c’:k hat

LUSA 2023

Required hardware:
e SDR
e (Cables and USB hubs
e Faraday cage (not needed for real
attack)
Required software:

e OpenBTS (free, open source)

Total cost: <$2,800

4]

black hat Exploitation Challeng‘

USsA =023

e TN -
.
/)

Not that easy to pack SDR, the attacker and victim devices into the Faraday cage to avoid
interference
o Subject to the value of the radio wavelength

Reliability of the exploitation and time between iterations
o Multiple complex systems involved into the exploitation: SDR + OpenBTS & modem

Debugging shellcode on the production modem image
o Collect ramdump when modem crash and then check the memory status
o Patched an AT command handler in modem to confirm success of the exploitation
locally on the victim device

80 bytes of thumb2 instructions is very tight to implement stage 0 shellcode
o Effective shellcode area is less than 80 bytes due to specifics on heap “unlink” primitive

bl.gc’:k hat

USsA =023

Remediation & What Comes Next

BBBBBBBBBBBBBBBBBBBBB

blg?:k hat

LUSA 2023

(W T .

What You Can Do

Google is committed to making the Pixel modem as secure as possible. Here's what you can do:

2G security is obsolete. The 2G standards
didn't take in account rogue cell towers as
an attack vector ()

Weak encryption combined with no
authentication between device and tower
means impersonation is easy over 2G.

2G is optional on Pixel devices. Disable the
“Allow 2G” toggle on your device. This
feature is supported in all Android (12+)
devices with Radio HAL >1.6

2G disablement isn’t enforced as it's
required in certain locations

The best mitigation is to disable 2G

on your device

Allow 2G

2G is less secure, but may improve your
connection in some locations. For emergency
calls, 2G is always allowed.

http://go/android-feature-classification

4]

blackhat

LUSA 2023

Android Security prioritizes int bar[10];

int foo(size_t a) {
return bar[a+8];

e System hardening and exploit mitigations
e Exploring and enabling compiler-based
sanitizers (BoundSan, IntSan) and other

. -, . . r XU, TUX Compare
exploit mitigations (CFI, kCFI, Shadow Call 88 #0xa | index to
Stack, Stack Canaries) in firmware. 3 gl 103c <foo+0xlc> size

m »n

e Enabling further memory safety features
(Auto-initialize Memory) in firmware.

e Exploring the application of Rust in bare
metal firmware.

https://security.googleblog.com/2023/02/hardening-firmware-across-android.html
https://security.googleblog.com/2023/02/hardening-firmware-across-android.html
https://source.android.com/docs/security/test/bounds-sanitizer
https://source.android.com/docs/security/test/intsan
https://source.android.com/docs/security/test/cfi
https://source.android.com/docs/security/test/kcfi
https://source.android.com/docs/security/test/shadow-call-stack
https://source.android.com/docs/security/test/shadow-call-stack
https://source.android.com/docs/security/test/memory-safety/zero-initialized-memory

blg?:k hat

LUSA 2023

Upstream Threat Vendor
Build Modeling Security
Support Workshops

Vulnerability Android Red
Rewards Team

Program

Vendor
Security
RS

Static

Continuous Analysis
Fuzzing

blé'c’:k hat

USsA =023

Conclusion

#BHUSA @BlackHatEvents

blackhat

4]

LUSA 2023

Red Team to Secure Pixel

~100 security issues were identified and
fixed in Pixel 6 before its release

Exploit development helps articulate
impact

Fuzzing is the Way

We heavily invested in fuzzing, developing
8 fuzzers identifying >60% of bugs logged
during the engagement. These fuzzers run
continuously and find issues today.

Concluding Thoug

2G security is outdated

Google has protections in place to limit
the outdated security and lack of mutual
authentication of 2G. Turning off 2G
protects you from most attacks.

Modem mitigations

We applied various mitigations to
eradicate entire classes of vulnerabilities,
with more hardening measures to come.

~ 4

S

Our Work is Never done

Many Google teams came together on
these security investments prioritizing
security and remediation

We're never done! The team continues
testing new features and releases

blg'c’:k hat

USsA =023

Acknowledgements

Android Red Team

Connectivity Security Team

Pixel Engineering & Security Team
Android Security

Project Zero

External Partners

#BHUSA @BlackHatEvents

blg'c’:k hat

USsA =023

an>0D
RGO TEAn Thanks!

BBBBBBBBBBBBBBBBBBBBB

