Smashing the state machine

the true potential of web race conditions

James Kettle

PortSwigger

Warning / disclaimer

These slides are intended to supplement the presentation.
They are not suitable for stand-alone consumption.

You can find the whitepaper and presentation recording here:
https://portswigger.net/research/smashing-the-state-machine

If it’s not uploaded yet, you can get notified when it’s ready by
following me at https://twitter.com/albinowax

- albinowax

https://portswigger.net/research/smashing-the-state-machine
https://twitter.com/albinowax

The known potential of race conditions

What have you seen?

[transfer/withdraw, redeem voucher, apply discount, review/rate, login]

rebot Virtually all limit-overrun:
| euet , if (i < limit):
~ 'mnota robot it
robot :
 Eens do_action()

I NN LU

Exception: Race conditions on the web, by Josip Franjkovic
/confirmemail.php?e=user@gmail.com&c=13475&code=84751

Outline

The true potential
* Single-packet attack
* Strategy

Case studies / Demo
Future research

Defense / Takeaways / Questions

he true potential of race conditions

POST /login 302 Found
GET /role 200 OK
POST /role 302 Found

X
Y —

IS osT/iosin SANEEILS G /role SAESRTAILS PosT /role S TGN

The true potential of race conditions

POST /login 302 Found
GET /role 200 OK
POST /role 302 Found

L_[race window]

- - e o o o e

with race conditions, everything is multi-step

Making race conditions reliable: Single-packet attack

network latency jitter internal latency [race window

Request 1 >) !
Request 2 PHEEET

Single-packet attack
network latency jitter internal latency
Requests
110 30) D @
|

L,

...20 more requests i

Single-packet attack: under the hood

Last-byte sync

Timeless timing attack

Single-packet attack

TURBO»»?
INTRUDER

TCP packet B B8 B | TCP packet ¥

TCPpacket i M B | TCP packet .J

TCP packet

Request 1 headers & data

Request 2 headers & data

TCP packet TCP packet = TCP packet

TCP packet

.

.

Single-packet attack: the recipe

disable TCP_NODELAY // make the OS buffer packets

for each request with no body:
send the headers
withhold an empty data frame

// some servers process a request early if they see Scontent-length bytes
for each request with a body:

send the headers, and the body except the final byte

withhold a data frame containing the final byte

wait for 100ms

send a ping frame // the OS doesn't buffer the first frame after a delay

send the final frames

// reference implementation: https://github.com/portswigger/turbo-intruder

benchmark

20 requests ->

Melbourne > Dublin
17,208km

Last-byte sync:
Median spread: 4ms
Standard deviation: 3ms

Single-packet attack:

Median spread: 1ms > 4 to 10 times more effective
Standard deviation : 0.3ms 30 seconds vs 2+ hours of attempts

The single-packet attack makes remote races local

https://github.com/portswigger/turbo-intruder/benchmark.py ‘ ZZ-

Methodology

=3 - B3 B

J

Predict potential collisions
Probe for clues
Prove the concept

Predict potential collisions predict [probe Bl prove

ldentify stateful objects/systems & map endpoints

* Users, sessions, orders...

Edit vs Append

* Does password reset invalidate previous reset links?

Will our requests affect the same record? ({ .)
userid | token

session=b94, userid=hacker > hacker 5623ea2acfc0d8

session=b94, userid=victim > victim 677717aal6a917
\ Y

(4 ™\

session=b94, userid=victim b94. .. 227 227
- Y,

Probe for clues predict [l probe Bl prove

Craft chaotic blend of conflicting requests

Benchmark expected behavior

* Send request blend in sequence

* Analyze responses, timing, emails, side-effects...

Probe for clues

* Send request blend in parallel
* Look for anomalies
* No anomalies? Tune timing to tighten execution spread

Prove the concept predict [l probe Bl prove

Understand & clean
* Trim superfluous requests
* Tune the timing

e Automate retries

Explore impact
e Think of it as a structural weakness
 Look for chains & variations

 Don't stop at the first exploit
-$5,000

Case studies

Object-masking via limit-overrun
POST /api/../invitations HTTP/2

. 6X " t t Il:" 1)
-»>=p6x {"email":"a@psres.net"} | EEEENS 8 HUSEeEs

1x -

1x {"status":"success"}

| {"message”:"The member's
: 6x {"email":"b@psres.net"} 5X email address has
already been taken'}

2X D) //

“User was successfully removed from project”

.A multi-endpoint collision

Add to basket during checkout:

>
basket : payment basket
m POST /makePayment ' validated

Gitlab email verification:

p:rr:;:g POST /confirm

________ >

E token email
+ validated confirmed

Multi-endpoint collisions: handling internal latency

network latency jitter internal latency [race window

b D ow G

Initial probe

)) sow O

-~

) slow !

..+10 more requests i

@R s

Client-side delay

(wait)

Server-side delay

Multi-endpoint collisions: handling internal latency

POST /-/profile HTTP/2

user [email]=x2@psres.net

A/

GET /users/conf?token=vsz..

POST /-/profile HTTP/2

=p User[emall]=x2dpsres.net
90ms

=» GET /users/conf?token=vsz..

HTTP/2

HTTP/2

To: xZ2@psres.net
Subject: confirmation

x2@psres.net, confirm
your emall address

To: x2@psres.net
Subject: confirmation

x1@psres.net, confirm
your emall address

[4]

demo: single-endpoint collision!

https://gitlab.com/albinowax1

Single-endpoint collision code analysis

self.unconfirmed email = self.email // from 'email’ parameter
self.confirmation token = @raw confirmation token = Devise.friendly token
// this spins off a different thread to render & send the email (hint 1)
send devise notification(:confirmation instructions,

@raw confirmation token,

{ to: unconfirmed email })

To: unconfirmed email

// template engine reads the variables back from the database
- confirmation link = confirmation url(confirmation token: @token)
#content

= email default heading(@resource.unconfirmed email) // hint 2

%p= _('Click the link below to confirm your email address.')
#cta

= link to ('Confirm your email address'), confirmation link

Impact

Gitlab
Attack #1: Invitation hijack May 02, 2023 by

. . . . : X@psres.net James Kettlex Developer v
Attack #2: 'Sign in with Gitlab Awaiting user signup

Patched in 15.7.2 on 4t Jan 2023

Devise - "far and away the most popular authentication system for Rails"
Reported to 4 addresses 200+ days ago. No patch.

Easily detected via /users/confirmation
Case study highlights:

* Visible locking

* No-hint scenario

 Hidden endpoint

Deferred collisions

= {"email":"foo@psres.net"} To: bar@psres.net
20 min

=» {"email":"bar@psres.net"} To: bar@psres.net

u@» 12:00 \f: race window

Timing is irrelevant, so volume is critical

Second-order clues are extremely valuable

Further research

Partial construction attacks

Object creation may contain a race window:

datastore.set(sessionid, 'user', user)
datastore.set(sessionid, 'token', rand(32))

Requirement 1: uninitialized value/state doesn't trigger exceptions
Requirement 2: Attacker can provide a matching value

[nOo token parameter]
token

token=

token=null

token]|]=
{"token":null}

https://bugs.chromium.org/p/project-zero/issues/detail ?id=2085

Data-structures and race-condition defenses

Locking

Seen in: PHP native sessions, database transactions
* Masks races in other layers

Batching
Seen in: most major session handlers and ORMs
 Entire record is read in, cached, and written back afterwards
* Internally consistent during request lifecycle
* Inconsistent across parallel requests, and background threads

No defence
Seen in: databases, custom session-handlers
* Not consistent during request lifecycle!

What if the session handler has no defence?

Bypass code-based password reset
session['reset username'] = username

session['reset code'] = randomCode()

Exploit: Synced reset for S$victim and Sattacker

Bypass 2FA

session['user'] = username
1f 2fa enabled:
session|['require2fa'] = true

Exploit: Synced login and sensitive page fetch

Session-swap

session['user'] = username

set auth cookies for(session['user'])

Exploit: Force session cookie on victim, then sync login

Improving the single-packet attack

Breaking the 30-request barrier
* Achievable with custom TCP/TLS stack via fake dropped packets

» Simpler/easier strategies may exist

Developing server-side precision
* Micro-delays to counteract TLS decryption time
* Longer delays for staggered attacks

* Generic techniques especially valuable

Defense

Avoid sub-states
Avoid mixing data sources

Use datastore consistency features

* Transactions
* Atomic operations

* Unigqueness constraints

Know your session handler

References & further reading

Whitepaper, slides & academy topic Practice labs
//portswigger.net/research/smashing-the-state-machine N
//portswigger.net/web-security/race-conditions Rate-limit bypass
Multi-endpoint
Source code Templates Single-endpoint
Partial construction

//github.com/PortSwigger/turbo—intruderJsing|e_packet_attack\-
multi-endpoint
email-extraction
References & further reading: benchmark
//josipfranjkovic.com/blog/race-conditions-on-web —
//usenix.org/conference/usenixsecurity20/presentation/van-goethem
//aaltodoc.aalto.fi/bitstream/handle/123456789/47110/master Papli_Kaspar 2020.pdf
//googleprojectzero.blogspot.com/2021/01/the-state-of-state-machines.html
//soroush.me/downloadable/common-security-issues-in-financially-orientated-web-applications.pdf
//portswigger.net/research/how-I-choose-a-security-research-topic

Takeaways

ish

The single-packet attack makes race conditions reliable
With race conditions, everything is multi-step

Predict, probe, prove

¥ W @albinowax

k2 POI’tSWIggeF Email: james.kettle@portswigger.net
Paper: https://portswigger.net/research

