
Smashing the state machine

James Kettle

the true potential of web race conditions

Warning / disclaimer

These slides are intended to supplement the presentation.

They are not suitable for stand-alone consumption.

You can find the whitepaper and presentation recording here:
https://portswigger.net/research/smashing-the-state-machine

If it’s not uploaded yet, you can get notified when it’s ready by
following me at https://twitter.com/albinowax

- albinowax

https://portswigger.net/research/smashing-the-state-machine
https://twitter.com/albinowax

What have you seen?
[transfer/withdraw, redeem voucher, apply discount, review/rate, login]

Exception: Race conditions on the web, by Josip Franjković
/confirmemail.php?e=user@gmail.com&c=13475&code=84751

The known potential of race conditions

if (i < limit):
 i++
 do_action()

Virtually all limit-overrun:

The true potential
• Single-packet attack
• Strategy

Case studies / Demo

Future research

Defense / Takeaways / Questions

Outline

The true potential of race conditions

POST /login 302 Found
GET /role 200 OK
POST /role 302 Found

???

X

???

X

with race conditions, everything is multi-step

The true potential of race conditions

POST /login 302 Found
GET /role 200 OK
POST /role 302 Found

Making race conditions reliable: Single-packet attack

Single-packet attack

Single-packet attack: under the hood

Timeless timing attack

Last-byte sync

Single-packet attack

Single-packet attack: the recipe

disable TCP_NODELAY // make the OS buffer packets

for each request with no body:
 send the headers
 withhold an empty data frame

// some servers process a request early if they see $content-length bytes
for each request with a body:
 send the headers, and the body except the final byte
 withhold a data frame containing the final byte

wait for 100ms
send a ping frame // the OS doesn't buffer the first frame after a delay
send the final frames
// reference implementation: https://github.com/portswigger/turbo-intruder

benchmark

Last-byte sync:
Median spread: 4ms
Standard deviation: 3ms

Single-packet attack:
Median spread: 1ms
Standard deviation : 0.3ms

4 to 10 times more effective
30 seconds vs 2+ hours of attempts

https://github.com/portswigger/turbo-intruder/benchmark.py

Melbourne Dublin
17,208km

20 requests ->

The single-packet attack makes remote races local

Methodology

Predict potential collisions
Probe for clues
Prove the concept

Predict potential collisions

Identify stateful objects/systems & map endpoints
• Users, sessions, orders...

Edit vs Append
• Does password reset invalidate previous reset links?

Will our requests affect the same record?

Craft chaotic blend of conflicting requests

Benchmark expected behavior
• Send request blend in sequence
• Analyze responses, timing, emails, side-effects…

Probe for clues
• Send request blend in parallel
• Look for anomalies
• No anomalies? Tune timing to tighten execution spread

Probe for clues

Understand & clean
• Trim superfluous requests
• Tune the timing
• Automate retries

Explore impact
• Think of it as a structural weakness
• Look for chains & variations
• Don't stop at the first exploit

Prove the concept

-$5,000

Case studies

Object-masking via limit-overrun

{"message":"The member's
email address has
already been taken"}

POST /api/…/invitations HTTP/2

{"status":"success"}

{"status":"success"}

6x

5x

✉

✉

{"email":"a@psres.net"}
6x

1x

6x {"email":"b@psres.net"}

1x

2x

“User was successfully removed from project”

A multi-endpoint collision

Add to basket during checkout:

Gitlab email verification:

Initial probe

Client-side delay

Server-side delay

Multi-endpoint collisions: handling internal latency

fast

slow

slow

change

fast

confirm

slow

fast

Multi-endpoint collisions: handling internal latency

To: x2@psres.net
Subject: confirmation
…
x1@psres.net, confirm
your email address

POST /-/profile HTTP/2

user[email]=x2@psres.net

GET /users/conf?token=vsz… HTTP/2

POST /-/profile HTTP/2

user[email]=x2@psres.net

GET /users/conf?token=vsz… HTTP/2

To: x2@psres.net
Subject: confirmation
…
x2@psres.net, confirm
your email address

90ms

demo: single-endpoint collision!

https://gitlab.com/albinowax1

Single-endpoint collision code analysis

self.unconfirmed_email = self.email // from 'email' parameter
...
self.confirmation_token = @raw_confirmation_token = Devise.friendly_token
...
// this spins off a different thread to render & send the email (hint 1)
send_devise_notification(:confirmation_instructions,
 @raw_confirmation_token,
 { to: unconfirmed_email })

// template engine reads the variables back from the database
- confirmation_link = confirmation_url(confirmation_token: @token)
#content
 = email_default_heading(@resource.unconfirmed_email) // hint 2
 %p= _('Click the link below to confirm your email address.')
 #cta
 = link_to _('Confirm your email address'), confirmation_link

To: unconfirmed_email

Impact

Devise - "far and away the most popular authentication system for Rails"
Reported to 4 addresses 200+ days ago. No patch.

Gitlab
Attack #1: Invitation hijack
Attack #2: 'Sign in with Gitlab'
Patched in 15.7.2 on 4th Jan 2023

Easily detected via /users/confirmation
Case study highlights:
• Visible locking
• No-hint scenario
• Hidden endpoint

Timing is irrelevant, so volume is critical

Second-order clues are extremely valuable

Deferred collisions

To: bar@psres.net✉{"email":"foo@psres.net"}

{"email":"bar@psres.net"} To: bar@psres.net✉
20 min

Further research

Partial construction attacks

datastore.set(sessionid, 'user', user)
datastore.set(sessionid, 'token', rand(32))

Object creation may contain a race window:

Requirement 1: uninitialized value/state doesn't trigger exceptions
Requirement 2: Attacker can provide a matching value

https://bugs.chromium.org/p/project-zero/issues/detail?id=2085

[no token parameter]
token
token=
token=null
token[]=
{"token":null}

Locking
Seen in: PHP native sessions, database transactions
• Masks races in other layers

Batching
Seen in: most major session handlers and ORMs
• Entire record is read in, cached, and written back afterwards
• Internally consistent during request lifecycle
• Inconsistent across parallel requests, and background threads

No defence
Seen in: databases, custom session-handlers
• Not consistent during request lifecycle!

Data-structures and race-condition defenses

What if the session handler has no defence?

Bypass code-based password reset
session['reset_username'] = username
session['reset_code'] = randomCode()
Exploit: Synced reset for $victim and $attacker

Bypass 2FA
session['user'] = username
if 2fa_enabled:
 session['require2fa'] = true
Exploit: Synced login and sensitive page fetch

Session-swap
session['user'] = username
set_auth_cookies_for(session['user'])
Exploit: Force session cookie on victim, then sync login

Breaking the 30-request barrier
• Achievable with custom TCP/TLS stack via fake dropped packets
• Simpler/easier strategies may exist

Developing server-side precision
• Micro-delays to counteract TLS decryption time
• Longer delays for staggered attacks
• Generic techniques especially valuable

Improving the single-packet attack

• Avoid sub-states

• Avoid mixing data sources

• Use datastore consistency features
• Transactions
• Atomic operations
• Uniqueness constraints

• Know your session handler

Defense

References & further reading
Whitepaper, slides & academy topic
//portswigger.net/research/smashing-the-state-machine
//portswigger.net/web-security/race-conditions

Source code
//github.com/PortSwigger/turbo-intruder

References & further reading:
//josipfranjkovic.com/blog/race-conditions-on-web
//usenix.org/conference/usenixsecurity20/presentation/van-goethem
//aaltodoc.aalto.fi/bitstream/handle/123456789/47110/master_Papli_Kaspar_2020.pdf
//googleprojectzero.blogspot.com/2021/01/the-state-of-state-machines.html
//soroush.me/downloadable/common-security-issues-in-financially-orientated-web-applications.pdf
//portswigger.net/research/how-I-choose-a-security-research-topic

single-packet-attack
multi-endpoint
email-extraction
benchmark

Limit-overrun
Rate-limit bypass
Multi-endpoint
Single-endpoint
Partial construction

Practice labs

Templates

The single-packet attack makes race conditions reliable

With race conditions, everything is multi-step

Predict, probe, prove

@albinowax
Email: james.kettle@portswigger.net
Paper: https://portswigger.net/research

Takeaways

ish

