
#BHUSA @BlackHatEvents

Kill Latest MPU-based Protections in Just One Shot:

Targeting All Commodity RTOSes
Speaker: Minghao Lin

#BHUSA @BlackHatEvents

Minghao Lin, Professional
Research Assistant, ,

University of Colorado
Boulder

Yueqi Chen, Assistant
Professor, University of

Colorado Boulder

Zicheng Wang, Professional
Research Assistant,

University of Colorado
Boulder

2

Who We Are

#BHUSA @BlackHatEvents

Minghang Shen,
Independent Security

Researcher

Chaoyang Lin,
Independent Security

Researcher

Jiahe Wang,
Independent Security

Researcher

3

Who We Are

#BHUSA @BlackHatEvents

4

Real Time Operating Systems Are Everywhere

#BHUSA @BlackHatEvents

Source: Abbasi, Ali, et al. "Challenges in designing exploit mitigations for deeply embedded systems." 2019 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 2019.

MPU is Commonly Found in RTOSes

5

#BHUSA @BlackHatEvents

● Hardware feature commonly found in
microcontrollers and processors

● Functionality
○ Manage the access permissions

and attributes, e.g., R/W of
different regions in memory
according execution state, i.e.,
Privileged (P) or Unprivileged (U)

○ Fault occurs when access
permission is violated

Region A (P:R-X)

Region B (PU:RWX)

Region C (U:RX)

RAM

Flash

U Task

Memory Protection Unit (MPU)
U : Unprivilieged
P : Privileged

6

#BHUSA @BlackHatEvents

Send malicious updated file

Internet

Server IOT devices

Speakers: Omri Ben-Bassat, Tamir Ariel

An Exploitation Case
- Over The Air Update

7

#BHUSA @BlackHatEvents

An Exploitation Case
- Vulnerability Details

Integer Overflow

2. FileSize could be very large
before malloc, causing integer
overflow and thereby a small
allocated memory

1. GetEntireFile() function is
used to parse the file sent
through Internet

Heap Overflow
3. Followed by Heap overflow

caused by memcpy

8

#BHUSA @BlackHatEvents

An Exploitation Case
- Find Function Pointer to Overwrite

Http handler function pointers

● httpRequest is an array of
http handler function pointers

● Overwrite function pointer of
the arrary to point shellcode

● httpGetHandler function is
used to handle different types
of http requests

9

#BHUSA @BlackHatEvents

An Exploitation Case
- Heap Layout

Size

Next
Free
Bloc

k

Vulnerable object Size
Next
Free

Block

Allocated Free

Original Heap Layout

RWX (R: Read W: Write X: Executable)

10

#BHUSA @BlackHatEvents

An Exploitation Case
- MPU Disables this Exploitation

SizeSize
Next
Free

Block
DataVulnerable objectYYYYYYYYYYYYYYYYYYYY

Func
Ptr
Addr

Func
Ptr

Allocate Free Shellcode

MPU
Size

Next
Free

Block
DataSize

Next
Free

Block
DataVuln objYYYYYYYYYYYYYYYYYYYY

Func
Ptr
Addr

Func
Ptr

NX (Non-Executable)RWX (R: Read W: Write X: Executable)

11

#BHUSA @BlackHatEvents

MPU becomes a
terminator for
exploitation?

12

#BHUSA @BlackHatEvents

No!

13

#BHUSA @BlackHatEvents

You first!

14

#BHUSA @BlackHatEvents

privileged data

General peripherals region MPU Region 4 | PU:RW-XN

Unprivileged flash region
MPU Region 5 | PU:R

Trampoline functions, Task
code

Privileged flash region
MPU Region 6 | P:R

Kernel code

Privileged data region
MPU Region 7 | P:RW-XN

Kernel stack, heap

 Background Region | P:RW

Task stack region MPU Region 3 | PU:RW-XN
Task stack MPU_0

User-defined regions

MPU_1 MPU_2

MPU region definitions of ARM-CM3 FreeRTOS-MPU

Predefined regions
15

Privilege Isolation In FreeRTOS Using MPU

#BHUSA @BlackHatEvents

Stack for task A

Stack for task (U) B

Kernel code
and data

Executing unprivileged task B

Stack for task C

Stack for task (P) A

Stack for task B

Kernel code
and data

Executing privileged task A

Task switching

Stack for task C

Memory View Per Task

Not accessible

1. Every Task has their own access
permission and execution state

2. When task switching happens, MPU
configuration will be changed to the
specific task

16

U : Unprivilieged
P : Privileged

#BHUSA @BlackHatEvents

Issue 1 Missing Legitimacy Check During Mode Switch
- Overview of Trampoline Function

● In FreeRTOS, kernel functions are
wrapped by trampoline functions with
“MPU_” prefix, which play the role as a
trampoline for switching from user
mode to kernel mode

Task A Task B

Kernel services

Un
pr

iv
ile

ge
d

Pr
iv

ile
ge

d
17

Trampoline
Functions

● Non-privileged tasks can call these
trampoline functions to request kernel
service

#BHUSA @BlackHatEvents

2. If not, it will raise privilege, then
call the kernel function. Finally, it
will drop privilege

A
ll tram

poline functions are in
FreeRTO

S-Kernel/include/m
pu_prototype.h

18

Issue 1 Missing Legitimacy Check During Mode Switch
- Implementation of Trampoline Function

1. Check if current execution state is
privileged or not

3. If current execution state is
privileged, it will directly call kernel
function

4. No check for parameters of
MPU_vTaskGetInfo

#BHUSA @BlackHatEvents

Issue 1 Missing Legitimacy Check During Mode Switch
- Arbitrary Read or Write in vTaskGetInfo

19

xTask == NULL ? xTask : current TCB

1. Unprivileged task can pass two
arbitrary pointers to parameters
xTask and pxTaskStatus

2. Then, pxTCB is later assigned as
xTask

3. pxTaskStatus and pxTCB is
dereferenced → arbitrary read
from or write to any pointers

#BHUSA @BlackHatEvents

Issue 1 Missing Legitimacy Check During Mode Switch
- Privilege Escalation

P : Privileged
U : Unprivileged
CTROL : Control registerTask (P) A

Task
switching

The execution state value (U)
stored in the top of Task C’s
stack is assigned to CTROL

Task (U) B

Task
switching

Task (U) C

The execution state value (U)
stored in the top of Task B’s
stack is assigned to CTROL

● A task is privileged or not depends
on the value stored in top of its
stack

● When task switching happens,
CTROL will be set to the execution
state of the next task

The execution state value (P)
stored in the top of Task C’s
stack is assigned to CTROL

Task
switching

Task (P) C

Modify execution state
value of task C

● Leverage arbitrary write to modify
the execution state value to be
privileged

20

#BHUSA @BlackHatEvents

Issue 1 Missing Legitimacy Check During Mode Switch
- Trampoline Functions DoS Other Tasks

Task (U) A

Task (U) B

Memory Map

Task (P) C
DoS

Suspend other tasks

TaskControlBlock
pointer

Trampoline
Functions

DoS

U : Unprivilieged
P : Privileged

21

#BHUSA @BlackHatEvents

Region 1 PU: RW

0x0000

0x3000

0x4000

Region 2 P:RW

● The two regions have different
permissions, the permissions
associated with region 2 are applied

22

MPU Region Overlapping

2 > 1

● For overlapping regions, a fixed
priority scheme determines
attributes and permissions for
memory access to the overlapping
region

#BHUSA @BlackHatEvents

Issue 2 Mistaken MPU Configuration

Task A
Background region
Memory of task C

MPU Region 0~2 are
user-defined MPU
regions

Victim task C

23

1. When creating a child task, the parent task can

configure MPU 0-2 regions of child task

Malicious task B

Trampoline
functions

Create
task

MPU region 0~2
Memory of task B

2. Unfortunately, the FreeRTOS kernel doesn’t

examine if this configuration has conflict with

other tasks, resulting in memory overlapping

between tasks

3. Adversaries can exploit this mistake to access

the memory of victim tasks, stealing or

tampering critical data

Overlapping region
Sensitive data of

task C

#BHUSA @BlackHatEvents

Report to Amazon Team And Got Response

2023-03-17
Submit the vuln

report

2023-03-21
Virtual call to

discuss potential
mitigations

2023-04-06
Provide automatic
tool and analysis

results with
Amazon team

2023-05-16
Provide source

code of a patched
FreeRTOS kernel

for audition

2023-05-17
Audited the source

code and
discovered some

issues

2023-05-27
Virtual call to

discuss
discovered new

issues

24

2023-07-06
Provide source

code of a patched
FreeRTOS kernel
for audition again

2023-07-16
Audited the source

code and
discovered some

issues again

2023-07-18
Final version of

FreeRTOS kernel

#BHUSA @BlackHatEvents

Amazon Team Mitigations for Fixing These Issues
- Limited Trampoline Functions

Unprivileged task

25

- MPU_xQueueCreateMutex
- MPU_xQueueCreateMutexStatic
- MPU_xQueueCreateCountingSemaphore
- MPU_xQueueCreateCountingSemaphoreStatic
- MPU_xQueueGenericCreate
- MPU_xQueueGenericCreateStatic
- MPU_xQueueCreateSet
- MPU_xQueueRemoveFromSet
- MPU_xQueueGenericReset
- MPU_xTaskCreate
- MPU_xTaskCreateStatic
- MPU_vTaskDelete
- MPU_vTaskPrioritySet
- MPU_vTaskSuspendAll
- MPU_xTaskResumeAll
- MPU_xTaskGetHandle
- MPU_xTaskCallApplicationTaskHook
- MPU_vTaskList
- MPU_vTaskGetRunTimeStats
- MPU_xTaskCatchUpTicks
- MPU_xEventGroupCreate
- MPU_xEventGroupCreateStatic
- MPU_vEventGroupDelete
- MPU_xStreamBufferGenericCreate

#BHUSA @BlackHatEvents

Amazon Team Mitigations for Fixing These Issues
- Added Function For Checking Access Permissions And Buffer Ranges

Added Function 26

I want to access
the memory

Accessed memory, memory size and
access operation read/write

Check if the memory is in MPU
region and access permission
of the memory is violated by
looking up MPU settings

#BHUSA @BlackHatEvents

Amazon Team Mitigations for Fixing These Issues
- Replace Object Pointer with Object ID

27

1. Trampoline functions retrieve
objects via ID rather than a raw
pointer value

ID

2. Check if the type of object to be
retrieved and object ID is valid,
if pass check, return an object
from the object pool

#BHUSA @BlackHatEvents

Amazon Team Mitigations for Fixing These Issues
- Adjust The Location of Context && Privileged Stack for Trampoline Functions

28

1. The task context including execution
state value is now stored in TCB which
is accessible to privileged code only

2. The trampoline function are now
executed on a separate privileged only
stack. When a task calls trampoline
function, the stack pointer register will
change from task stack to privileged
only stack.

 Privileged
stack

Task stack

SP

 Privileged
stack

Task stack

Calling trampoline
function

SP

SP: Stack pointer register

#BHUSA @BlackHatEvents

How about Other RTOSes?

29

#BHUSA @BlackHatEvents

You next!

30

#BHUSA @BlackHatEvents

Kernel services

Module 1

Task 1

Task 2

Task 3

Module N

Task 1

Task 2

Task 3

Un
pr

iv
ile

ge
d

Pr
iv

ile
ge

d

Kernel mode entry

Module Concept in ThreadX

● The smallest unit of memory
management is a module which
comprises a set of tasks
○ MPU 5, 6, 7 for module data
○ MPU 1, 2, 3, 4 for module code
○ MPU 0 for kernel mode entry

● Similar to FreeRTOS, unprivileged
tasks call kernel mode entry to
request kernel services

31

#BHUSA @BlackHatEvents

Trampoline Functions in ThreadX

Kernel mode entryUnprivileged
task

kernel_request that
represents different
kernel services and
other parameters to
kernel mode entry

ALIGN_TYPE _txm_module_manager_kernel_dispatch(ULONG

kernel_request, ALIGN_TYPE param_0, ALIGN_TYPE param_1,

ALIGN_TYPE param_2)

{

 switch (kernel_request)

 {

 case TXM_BLOCK_ALLOCATE_CALL:

_txm_module_manager_tx_block_allocate_dispatc

h(...);

 case TXM_BLOCK_POOL_CREATE_CALL:

_txm_module_manager_tx_block_pool_create_disp

atch(...);

. . .

}

32

#BHUSA @BlackHatEvents

Trampoline Functions’ Checks in ThreadX

Check the type
of pointers

Check the location of
pointers

WTF! I can not pass
arbitrary pointers

any more

33

#BHUSA @BlackHatEvents

Check if the thread_ptr is in kernel space

Function definition

Trampoline Functions’ Checks in ThreadX (cont.)

Check if the thread_ptr is valid

34

#BHUSA @BlackHatEvents

Is Trampoline Function in ThreadX Really Secure?

What about a pointer that
matches type and location, but

is just incorrect?

35

#BHUSA @BlackHatEvents

An Illustrative Example
Thread 1

Kernel services

Pass
Thread2_PTR

Success

Fail

Return

Delete thread 2
Thread2 is
destroyed

Kernel mode entry

1. Malicious thread 1 pass the
pointer of thread2 handler to
kernel mode entry.

2. Check if the PTR is in kernel
space and PTR is the
TX_THREAD* class based on
tx_thread_id

3. Matches the type and location
Thread2 is destroyed

36

#BHUSA @BlackHatEvents

Automatic Approach to Identify Similar Issues
- Use CodeQL to Do Code Audition

1. The source is the
parameters of trampoline
function

2. The sink is assign
expression including
arithmetic and bitwise
operation

3. Add additionalTaint. If A
object is taint, field B is
also taint after
accessing the field B like
A.B 37

#BHUSA @BlackHatEvents

Results From Automation

● We found 43 trampoline functions
causing arbitrary write, 29
trampoline function causing
arbitrary read, 23 trampoline
function causing other security
issues

● We have released our CodeQL
script and result of automation in
GitHub

● Git link:
https://github.com/MinghaoLin200
0/TrampolineFuncAnalyzer4FreeRT
OS 38

#BHUSA @BlackHatEvents

Key Takeaway: Comparison Among Different RTOSes

ThreadX MbedOS TIZenRT RT-Thread

Missing/Incomplete
Check

Mistaken MPU
configuration

RTOS
Issue

39

#BHUSA @BlackHatEvents

Future Work

● Continue exploitation
○ Identify different regions with different privileges in MPU_based RTOS firmware

■ Identify the trampoline functions in MPU_based RTOS firmware
■ Gadgets in kernel space are not accessed by user space

● Protection
○ Finer granularity isolation if performance allows

■ MPU Virtualization

40

#BHUSA @BlackHatEvents

Thank You !

Twitter: @Y1nKoc

Email: yenkoclike@gmail.com

Personal Page: https://minghaolin2000.github.io/

41

mailto:yenkoclike@gmail.com
https://minghaolin2000.github.io/

