
#badiouring #BHUSA @BlackHatEvents

Bad io_uring: A New Era of
Rooting for Android

Zhenpeng Lin, Xinyu Xing, Zhaofeng Chen, Kang Li

#badiouring #BHUSA @BlackHatEvents

Who We Are
• Zhenpeng Lin
• Ph.D. from Northwestern University
• Specialized in kernel security

• Xinyu Xing
• Associate Professor at Northwestern University

• Zhaofeng Chen
• Principle Researcher at Cer0k

• Kang Li
• Chief Security Officer at Cer0k

#badiouring #BHUSA @BlackHatEvents

The io_uring
• Efficient I/O opera0ons
• Less Syscalls
• Under ACTIVE development

#badiouring #BHUSA @BlackHatEvents

The BAD io_uring

#badiouring #BHUSA @BlackHatEvents

The BAD io_uring
• Very buggy

#badiouring #BHUSA @BlackHatEvents

The BAD io_uring
• Very buggy

#badiouring #BHUSA @BlackHatEvents

The BAD io_uring
• Very buggy
• Ac0ve development, and ACTIVE exploita0on

#badiouring #BHUSA @BlackHatEvents

Exploitation Against io_uring

#badiouring #BHUSA @BlackHatEvents

Exploitation Against io_uring
• 60% submissions to KCTF VRP exploited io_uring as of June 2023
• Around 1 million USD paid out for those bugs
• All public exploits targeted desktop Linux kernel

https://security.googleblog.com/2023/06/learnings-from-kctf-vrps-42-linux.html
https://google.github.io/kctf/vrp.html

#badiouring #BHUSA @BlackHatEvents

Exploitation Against io_uring
• 60% submissions to KCTF VRP exploited io_uring as of June 2023
• Around 1 million USD paid out for those bugs
• All public exploits targeted desktop Linux kernel

• Measures taken by Google
• ChromeOS: io_uring disabled
• Google servers: io_uring disabled
• GKE AutoPilot: invesEgaEng disabling io_uring by default
• Android: io_uring restricted

https://security.googleblog.com/2023/06/learnings-from-kctf-vrps-42-linux.html
https://google.github.io/kctf/vrp.html

#badiouring #BHUSA @BlackHatEvents

Exploitation Against io_uring
• 60% submissions to KCTF VRP exploited io_uring as of June 2023
• Around 1 million USD paid out for those bugs
• All public exploits targeted desktop Linux kernel

• Measures taken by Google
• ChromeOS: io_uring disabled
• Google servers: io_uring disabled
• GKE AutoPilot: invesEgaEng disabling io_uring by default
• Android: io_uring restricted

• s"ll accessible from privileged context (e.g., adb)

https://security.googleblog.com/2023/06/learnings-from-kctf-vrps-42-linux.html
https://google.github.io/kctf/vrp.html

#badiouring #BHUSA @BlackHatEvents

Exploiting io_uring on Android
• A lot of bugs, a lot of poten0al!

#badiouring #BHUSA @BlackHatEvents

Exploiting io_uring on Android
• A lot of bugs, a lot of poten0al!
•🤓 Fun and profit!

#badiouring #BHUSA @BlackHatEvents

Exploiting io_uring on Android
• A lot of bugs, a lot of poten0al!
•🤓 Fun and profit!
•☹ No public writeup for exploi0ng it on Android

#badiouring #BHUSA @BlackHatEvents

CVE-2022-20409
• No difference than other io_uring bugs
• A stable invalid-free bug
• The bug I used to pwn Google Pixel 6 and Samsung S22 in 2022
• Fixed on 7/29/2022

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=linux-5.10.y&id=2ee0cab11f6626071f8a64c7792406dabdd94c8d

#badiouring #BHUSA @BlackHatEvents

io_uring’s AsyncIO
• Each I/O operation is a req in the submission queue
• Each req can be processed asynchronously
• Each req has its identity

#badiouring #BHUSA @BlackHatEvents

Initializing identity
• iden5ty stores in io_uring

#badiouring #BHUSA @BlackHatEvents

Initializing identity
• iden5ty stores in io_uring
• iden5ty references to the nested __iden5ty

#badiouring #BHUSA @BlackHatEvents

Initializing identity
• iden5ty stores in io_uring
• iden5ty references to the nested __iden5ty
• io_uring is referenced by task

#badiouring #BHUSA @BlackHatEvents

identity COW
• If iden5ty changes (e.g., cred changes), new iden5ty is created

#badiouring #BHUSA @BlackHatEvents

identity COW
• If iden5ty changes (e.g., cred changes), new iden5ty is created
• iden5ty * will reference to the new iden5ty on heap

#badiouring #BHUSA @BlackHatEvents

The BUG

#badiouring #BHUSA @BlackHatEvents

The BUG

#badiouring #BHUSA @BlackHatEvents

The BUG

#badiouring #BHUSA @BlackHatEvents

The BUG

#badiouring #BHUSA @BlackHatEvents

The BUG

#badiouring #BHUSA @BlackHatEvents

The BUG

#badiouring #BHUSA @BlackHatEvents

The BUG

#badiouring #BHUSA @BlackHatEvents

The BUG

#badiouring #BHUSA @BlackHatEvents

The Memory Corruption Capability
• Invalid-free a kmalloc-256 object in the middle

#badiouring #BHUSA @BlackHatEvents

Exploitation on Android
• Restricted Access
• No user_ns
• No FUSE, userfaulJd
• No msg_msg, user_key_payload, etc.
• Very limited choice of syscalls

#badiouring #BHUSA @BlackHatEvents

Exploitation on Android
• Restricted Access
• No user_ns
• No FUSE, userfaulJd
• No msg_msg, user_key_payload, etc.
• Very limited choice of syscalls

• But we have pipe🧐
• pipe_buffer is an elas/c object --- good for spraying
• pipe_buffer contains a global pointer --- good for leaking

https://zplin.me/papers/ELOISE.pdf

#badiouring #BHUSA @BlackHatEvents

UAF from identity to pipe_buffer
• Trigger the invalid-free of identity, which frees io_uring_task in the

middle

#badiouring #BHUSA @BlackHatEvents

UAF from identity to pipe_buffer
• Trigger the invalid-free of identity, which frees io_uring_task in the

middle
• Spray pipe_buffer in kmalloc-256

#badiouring #BHUSA @BlackHatEvents

UAF from identity to pipe_buffer
• Trigger the invalid-free of iden5ty, which frees io_uring_task in the

middle
• Spray pipe_buffer in kmalloc-256
• Free io_uring_task, which frees pipe_buffer

#badiouring #BHUSA @BlackHatEvents

UAF from identity to pipe_buffer
• Trigger the invalid-free of iden5ty, which frees io_uring_task in the

middle
• Spray pipe_buffer in kmalloc-256
• Free io_uring_task, which frees pipe_buffer
• How to leak pipe_buffer out?

#badiouring #BHUSA @BlackHatEvents

Recap of The io_uring Design
• The ring buffer is accessible to both userspace and kernel

#badiouring #BHUSA @BlackHatEvents

The Shared Ring
• User pages shared between kernel and userspace
• The memory is allocated by buddy allocator and mapped to

userspace
• No copy_to/from_user is needed
• Date can be transported directly without copying
• Read/write kernel memory from userspace
• Read/write userspace memory from kernel

#badiouring #BHUSA @BlackHatEvents

The “DirtyPage” Technique
• Some user pages are recycled with slab pages
• Spraying pages to reclaim freed slab pages
• Spray objects? No! We spray pages now!
• Candidates: io_uring, pipe

• What is the advantage?
• Powerful 🤓 : Read/write slab objects from userspace
• Stable 🤓 : Spray once to have persist read/write on vicEm object
• Simple 🤓 : Just allocate more

#badiouring #BHUSA @BlackHatEvents

Achieving Read/Write on pipe_buffer
• Preparing the memory layout

#badiouring #BHUSA @BlackHatEvents

Achieving Read/Write on pipe_buffer
• Preparing the memory layout
• Triggering the invalid-free

#badiouring #BHUSA @BlackHatEvents

• Preparing the memory layout
• Triggering the invalid-free
• Freeing the slab page

Achieving Read/Write on pipe_buffer

#badiouring #BHUSA @BlackHatEvents

Achieving Read/Write on pipe_buffer
• Preparing the memory layout
• Triggering the invalid-free
• Freeing the slab page
• Reclaiming the freed slab page

#badiouring #BHUSA @BlackHatEvents

Achieving Read/Write on pipe_buffer
• Preparing the memory layout
• Triggering the invalid-free
• Freeing the slab page
• Reclaiming the freed slab page
• Reading pipe_buffer
• ops --- bypass kaslr

#badiouring #BHUSA @BlackHatEvents

Achieving Read/Write on pipe_buffer
• Preparing the memory layout
• Triggering the invalid-free
• Freeing the slab page
• Reclaiming the freed slab page
• Reading pipe_buffer
• ops --- bypass kaslr

• Wri0ng pipe_buffer
• flags --- Dirty Pipe Retro!

https://github.com/veritas501/pipe-primitive

#badiouring #BHUSA @BlackHatEvents

Achieving Read/Write on pipe_buffer
• Preparing the memory layout
• Triggering the invalid-free
• Freeing the slab page
• Reclaiming the freed slab page
• Reading pipe_buffer
• ops --- bypass kaslr

• Wri0ng pipe_buffer
• flags --- Dirty Pipe Retro!
• page --- arbitrary r/w on kernel memory?

https://github.com/veritas501/pipe-primitive

#badiouring #BHUSA @BlackHatEvents

• kmap_atomic the page
• copy in/out the page

How Pipe Uses Pages

#badiouring #BHUSA @BlackHatEvents

• kmap_atomic the page
• copy in/out the page
• kmap_atomic is page_address

How Pipe Uses Pages

#badiouring #BHUSA @BlackHatEvents

• kmap_atomic the page
• copy in/out the page
• kmap_atomic is page_address
• page_address
• equals (page<<SHIFT)+OFFSET
• SHIFT is fixed
• OFFSET is also fixed on ARM64

How Pipe Uses Pages

#badiouring #BHUSA @BlackHatEvents

• Given a kernel address
• Calculate the its page
• Calculate the offset
• Overwrite the pipe_buffer with calculated data

• Read/Write by reading/wri0ng the pipe

Achieving Kernel Arbitrary R/W

#badiouring #BHUSA @BlackHatEvents

Escalating Privilege On Pixel 6

#badiouring #BHUSA @BlackHatEvents

Samsung’s KNOX
• Samsung has customized protec0on for their kernel --- KNOX
• KNOX protects cred integrity

#badiouring #BHUSA @BlackHatEvents

Samsung’s KNOX
• Samsung has customized protec0on for their kernel --- KNOX
• KNOX protects cred integrity

#badiouring #BHUSA @BlackHatEvents

Samsung’s KNOX
• Samsung has customized protection for their kernel --- KNOX
• KNOX protects cred integrity

#badiouring #BHUSA @BlackHatEvents

Samsung’s KNOX
• Samsung has customized protection for their kernel --- KNOX
• KNOX protects cred integrity

#badiouring #BHUSA @BlackHatEvents

Samsung’s KNOX
• Samsung has customized protec0on for their kernel --- KNOX
• KNOX protects cred integrity
• cred object is read-only, uid field is read-only

#badiouring #BHUSA @BlackHatEvents

Validating cred Integrity
• Cross-checking between task and cred
• Integrity is validated at syscall entry

#badiouring #BHUSA @BlackHatEvents

Validating cred Integrity
• Cross-checking between task and cred
• Integrity is validated at syscall entry
• How to prevent the cred is forged?

#badiouring #BHUSA @BlackHatEvents

Validating cred Integrity
• How to prevent the cred is forged?
• Checking if the cred is from cred_jar_ro/tsec_jar slab

#badiouring #BHUSA @BlackHatEvents

Validating cred Integrity
• How to prevent the cred is forged?
• Checking if the cred is from cred_jar_ro/tsec_jar slab
• This check is weak which could by bypassed

#badiouring #BHUSA @BlackHatEvents

Bypassing KNOX
• Forging a root cred with correct references
• Tampering the slab_cache of the forged cred’s page

#badiouring #BHUSA @BlackHatEvents

Escalating Privilege On S22

#badiouring #BHUSA @BlackHatEvents

Takeaways
• io_uring is a huge ahack surface not only to desktop but also to AOSP
• Restric0ng io_uring on Android doesn’t seem enough
• Object spray is not the only exploit op0on, try DirtyPage(page spray)!
• Android kernel exploita0on with DirtyPage is simple!

hhps://github.com/Markakd/bad_io_uring
@Markak_

hhps://zplin.me

https://github.com/Markakd/bad_io_uring
https://twitter.com/Markak_
https://zplin.me/

