
#BHUSA @BlackHatEvents

Reflections on Trust in the
Software Supply Chain

Speaker:
Jeremy Long

#BHUSA @BlackHatEvents

Jeremy Long
@ctxt/@ctxt.bsky.social

20+ years in security
Founder of OWASP Dependency-Check
Currently Principal Security Engineer @ ServiceNow

#BHUSA @BlackHatEvents

• “It has been estimated that Free and Open Source Software (FOSS) constitutes
70-90% of any given piece of modern software solutions.”1

• CI/CD Infrastructure and build management tools are also modern software and
are part of the supply chain

• Third Party Services used in the CI/CD are also modern software and are part of
the supply chain

The Software Supply Chain is Massive

#BHUSA @BlackHatEvents

Targeting the Supply Chain

#BHUSA @BlackHatEvents

“The moral is obvious. You can't trust code that you did not totally create yourself.”

-- Ken Thompson

Reflections on Trusting Trust

Compiler
Source

OS
Source

#BHUSA @BlackHatEvents

Executive Order on Improving the Nation's Cybersecurity:
Section 4 Enhancing Software Supply Chain Security

• Provenance of software code and components
• Software Bill of Materials (SBOM)
• Software Composition Analysis (SCA)

#BHUSA @BlackHatEvents

What is a dependency?

#BHUSA @BlackHatEvents

• Supply-chain Levels for Software Artifacts, or SLSA ("salsa")

• Software Component Verification Standard (SCVS)

Industry Frameworks

#BHUSA @BlackHatEvents

• SLSA Definition:

Attestation (metadata) describing how the outputs were produced, including identification
of the platform and external parameters.

• SCVS Definition:

The chain of custody and origin of a software component. Provenance incorporates the
point of origin through distribution as well as derivatives in the case of software that has
been modified.

Provenance

#BHUSA @BlackHatEvents

Provenance

#BHUSA @BlackHatEvents

Use a compromised runtime dependency
• Threat: The adversary injects malicious code into software required to run the

artifact.
• Mitigation: N/A - This threat is out of scope of SLSA v1.0.

Use a compromised build dependency
• Threat: The adversary injects malicious code into software required to build the

artifact.
• Mitigation: N/A - This threat is out of scope of SLSA v1.0, though the build

provenance may list build dependencies on a best-effort basis for forensic analysis.

SLSA v1.0 - Threats

#BHUSA @BlackHatEvents

• Analyze dependencies for known vulnerabilities

• Runtime dependencies are analyzed

• Build plugins and test dependencies?

• SCA tools that work at the repository level

• OWASP Dependency-Check
ü Maven Plugins
ü Gradle Plugins

Software Composition Analysis (SCA)

#BHUSA @BlackHatEvents

• CycloneDX and SPDX

• Describes the runtime dependencies

• CycloneDX v1.5 introduced Manufacturing Bill Of Materials (MBOM)

Software Bill of Materials (SBOM)

#BHUSA @BlackHatEvents

Modern Supply Chain Attacks

#BHUSA @BlackHatEvents

Malicious Dependencies

https://github.com/jeremylong/malicious-dependencies

https://github.com/jeremylong/malicious-dependencies

#BHUSA @BlackHatEvents

Demo Explanation

Build
Helper

Spring
Build

Analyzer

Demo
Application

#BHUSA @BlackHatEvents

• Not limited to Java

• Build Plugins: Maven, Gradle, Poetry, etc.

• Testing Frameworks: JUnit, NUnit, Mocking Frameworks

• Gradle/Maven Wrapper

Injecting Malicious Code @ Build Time

#BHUSA @BlackHatEvents

Use a compromised runtime dependency
• Threat: The adversary injects malicious code into software required to run the

artifact.
• Mitigation: N/A - This threat is out of scope of SLSA v1.0. You may be able to

mitigate this threat by pinning your build dependencies, preferably by digest rather
than version number. Alternatively, you can apply SLSA recursively, but we have
not yet standardized how to do so.

SLSA v1.0 - Threats

#BHUSA @BlackHatEvents

Apply SLSA Recursively

#BHUSA @BlackHatEvents

Reproducible Builds

#BHUSA @BlackHatEvents

Reproducibly Compromised Build

#BHUSA @BlackHatEvents

Vulnerable vs Malicious

#BHUSA @BlackHatEvents

binary-source validation

compile

#BHUSA @BlackHatEvents

binary-source validation: source model

Class: HtmlUtil
+ Method: bold
 - args: String
 - constants: "%s”
 - called:
 - java.lang.String.format

#BHUSA @BlackHatEvents

Java Class Files

#BHUSA @BlackHatEvents

binary-source validation: class model

Class: HtmlUtil
+ Method: bold
 - args: String
 - constants: "%s”
 - called:
 - java.lang.String.format

#BHUSA @BlackHatEvents

binary-source validation: Comparison

Class: HtmlUtil
+ Method: bold
 - args: String
 - constants: "%s”
 - called:
 - java.lang.String.format

Class: HtmlUtil
+ Method: bold
 - args: String
 - constants: "%s”
 - called:
 - java.lang.String.format

#BHUSA @BlackHatEvents

binary-source validation: Comparison
Class: HtmlUtil
+ Method: bold
 - args: String
 - constants: "%s",
 "echo 'Never gonna give you up'"
 - called:
 - java.lang.String.format
 - java.lang.Runtime.getRuntime()
 - java.lang.Runtime.exec()

Class: HtmlUtil
+ Method: bold
 - args: String
 - constants: "%s”
 - called:
 - java.lang.String.format

#BHUSA @BlackHatEvents

Binary Source Validation Challenges

• Compiler changes/optimization

• Code generators

• Model generation from a build artifact is technology specific
• May limit the types of comparison that can be done

#BHUSA @BlackHatEvents

• Reduce the number of dependencies

• Do not use code generators during the build
• Generate code and check it into your source repo
• Treat generated code as you do any other code

• Talk to your SAST and Supply Chain Vendors about build verification

What can we do today?

#BHUSA @BlackHatEvents

Summary

• The trusting trust problem is real very real

• Any code running during the build can affect the build output - reproducibly

• Use OWASP Dependency-Check to scan plugins for maven and gradle builds

• Support open-source developers

#BHUSA @BlackHatEvents

Questions?

