
#BHUSA @BlackHatEvents

Small Leaks, Billions Of Dollars:
Practical Cryptographic Exploits That Undermine

Leading Crypto Wallets

Speakers:
Nikolaos Makriyannis

Oren Yomtov

#BHUSA @BlackHatEvents

Intro to crypto wallets

#BHUSA @BlackHatEvents

Cryptocurrency Wallets 101

Crypto Wallet Holding a
Private Key

Sign Transaction

#BHUSA @BlackHatEvents

What is MPC?
(through the lense of threshold signing)

#BHUSA @BlackHatEvents

What is MPC?
(through the lense of threshold signing)

Generate public key and calculate
signatures via an interactive protocol

The private key is
NEVER assembled

in one place
Key
Share 2

Key Share 3

Key
Share 1

#BHUSA @BlackHatEvents

MPC (Multi-Party Computation) is the crown jewel of modern cryptography

Anything solved by trusting a centralized party can be solved trustlessly with MPC

Small aside: MPC is much bigger than
threshold signatures

MPC is invented
|

80s

MPC Wallets
|

Late 10s

Danish Sugar Beet Auction
|

2008

Auctions Games of Chance

Threshold SignaturesVoting

Nuclear Deterrence

Private ML

#BHUSA @BlackHatEvents

● Denial of Service

● Signature Forgery

● Private Key Exfiltration

MPC Wallet Attack Outcomes

#BHUSA @BlackHatEvents

MPC Threat model

Key
Share 2

Key Share 3

Key
Share 1

Malicious Alice wants to exfiltrate her
counterparties’ shares

#BHUSA @BlackHatEvents

Our Research Findings

#BHUSA @BlackHatEvents

● Some of the biggest crypto exchanges (e.g. Coinbase WaaS)

● A number of crypto custodians (e.g. BitGo TSS)

● The most popular consumer MPC wallet (e.g. Zengo)

● Some of the most popular open source MPC libraries (e.g. Binance, Apache)

Affected Parties

#BHUSA @BlackHatEvents

Our Findings
● Discovered 4 novel attacks (including three 0-day)

● Affecting 16 vendors / libraries

● Releasing 4 fully working PoC exploits

● Exfiltrated keys from 2 vendor production environments

● Most of our attacks are not implementation specific

#BHUSA @BlackHatEvents

1. The most popular two-party signing protocol: Lindell17 (high interactivity)

2. The most popular multi-party signing protocols: GG18&20 (med interactivity)

3. A DIY protocol used by a crypto custodian: BitGo TSS (low interactivity)

The 3 attacks we’ll be covering today

#BHUSA @BlackHatEvents

Cryptographic exploit development

#BHUSA @BlackHatEvents

● We assume no familiarity with advanced mathematics
● Nothing about elliptic curves (or even abstract groups)
● The modulo operator

Math Background

Remainder of
x divided by N

5 % 5 = 0

6 % 5 = 1

#BHUSA @BlackHatEvents

HE is a special kind of encryption that allows computation on encrypted data

Homomorphic Encryption (HE)

Without decrypting

the ciphertext

#BHUSA @BlackHatEvents

ECDSA Signature Generation

ECDSA constant
Private key

Ephemeral key

#BHUSA @BlackHatEvents

ECDSA signing with 2 parties

Key Shares

Keys

#BHUSA @BlackHatEvents

● The most popular two-party signing protocol

● Affected: 5 vendors and open-source projects

Compromising Lindell17
Implementations

#BHUSA @BlackHatEvents

Lindell17 Key Generation (Step 1/2)

Chooses a random
key share

x1

Chooses a random
key share

x2

Sample key shards

#BHUSA @BlackHatEvents

Lindell17 Key Generation (Step 2/2)
Saving Bob’s key share under HE

(only bob can can decrypt it,
but alice can operate on it)

Encrypts their x2
using their HE key N

#BHUSA @BlackHatEvents

#BHUSA @BlackHatEvents

Lindell17 Signing (Step 1/2)
Alice sends a encrypted partial signature

#BHUSA @BlackHatEvents

Lindell17 Signing (Step 2/2)
Bob finalizes the signature

Bob then verifies the signature is valid

#BHUSA @BlackHatEvents

What if alice deviates from the protocol?

Bob fails to verify the resulting signature!

Hey! the signature
is invalid

#BHUSA @BlackHatEvents

What does the paper say about that?

#BHUSA @BlackHatEvents

Denial-of-Service Attack

Attack!
Thank you,Try again

#BHUSA @BlackHatEvents

Back to the drawing board

…

#BHUSA @BlackHatEvents

Hypothetical Attack Visualization

s’ that fails to finalize if x2’s lsb = 0

Signed successfully

0b__

 __

x2=

0

#BHUSA @BlackHatEvents

Hypothetical Attack Visualization

s’ that fails to finalize if x2’s 2nd lsb = 0

Failed to finalize signature

0b__

x2=

01

#BHUSA @BlackHatEvents

Hypothetical Attack Visualization

s’ that fails to finalize if x2’s 3rd lsb = 0

Failed to finalize signature

0b__

 __

x2=

011

#BHUSA @BlackHatEvents

Hypothetical Attack Visualization

s’ that fails to finalize if x2’s 4th lsb = 0

Signed successfully

0b__

x2=

0110

#BHUSA @BlackHatEvents

#BHUSA @BlackHatEvents

Hypothetical Attack Visualization

s’ that fails to finalize if msb is 0

Signed successfully

x2=
0b_1100101110100010110011111110100101010011010100000110011101110011001011010100000101011111001000001010000000011100100100011000001

0100010110111010001100111000110110101000110010110010001011000010110110010010100111001000100010110001001000001001111011001001100110

0

#BHUSA @BlackHatEvents

Crafting a malicious partial signature

After decrypts,

#BHUSA @BlackHatEvents

Obtaining leakage on x2

Attack!

Signature is valid

Signature is invalid

#BHUSA @BlackHatEvents

Exfiltrating the first bit

#BHUSA @BlackHatEvents

Exfiltrating the next bit

#BHUSA @BlackHatEvents

Offsetting previous leaked bits

The previously
leaked bits

#BHUSA @BlackHatEvents

Exfiltrating the i-th bit

#BHUSA @BlackHatEvents

github.com/ZenGo-X/multi-party-ecdsa

https://github.com/ZenGo-X/multi-party-ecdsa
https://docs.google.com/file/d/1KaxVsDbFTBJv0RScMuZec5gmr6Ymnryg/preview

#BHUSA @BlackHatEvents

1. Follow the paper’s recommendation (e.g. don’t sign again after failure)

How to mitigate the Attack

#BHUSA @BlackHatEvents

Zero-Knowledge Proofs (ZKPs)

Proofs that yield the validity of a statement and nothing else

& ZKP that

Bob verifies the ZKP and is convinced that
x is number between 1 and 42

#BHUSA @BlackHatEvents

1.

2. Use a ZKP for proving correctness of Alice’s message

How to mitigate the attack

1. Follow the paper’s recommendation (never sign again after failure)

#BHUSA @BlackHatEvents

● The most popular multi-party (2+) signing protocol

● Affected: more than 10 vendors and open source projects

Compromising GG18 / GG20

#BHUSA @BlackHatEvents

The GG protocols are complicated

Only focus on

M-t-A

Multiplication to Addition

#BHUSA @BlackHatEvents

Multiplication to Addition

#BHUSA @BlackHatEvents

Implementing MtA

Bob gets Alice gets

x & k are 256 bits, and mask is bigger than 512 bits

#BHUSA @BlackHatEvents

How does it mask X?

x = 0x1337

mask = 0x4242424242

k = 0x6789

x*k = 0x7c5696f

 = 0x424a07abb1

#BHUSA @BlackHatEvents

x = 0x1337

mask = 0x4242424242

k = 0x100000000000
Key Insight:
Alice has full
control over k!

What happens if k > mask?

The most significant
bits leak x

x*k = 0x133700000000000

 = 0x133704242424242

#BHUSA @BlackHatEvents

But… the there is a ZK range proof for k

#BHUSA @BlackHatEvents

ZK Range Proof

Verifier accepts if … and z is small

#BHUSA @BlackHatEvents

How to Cheat in the ZKP

We want this value to be “zeroed out”

#BHUSA @BlackHatEvents

Chinese Remainder Theorem (CRT)

If Then

#BHUSA @BlackHatEvents

Choose k = q

If Thenq % q = 0
 by definition!

What if
hash(w) is a
multiple of p

#BHUSA @BlackHatEvents

Brute force w such that hash(w) % p = 0

If Then

Problem: p is too big!!

bitsize(N) = 2048

bitsize(p) = 16

bitsize(q) = 2032

bitsize(N) = 2048

bitsize(p) = 1024

bitsize(q) = 1024

#BHUSA @BlackHatEvents

There is no “no small factors” ZKP

#BHUSA @BlackHatEvents

Remember the MtA formula?

#BHUSA @BlackHatEvents

k*x+m = 0x123404242424242

 = 0x404242424242

What happens if k ~ N?

x = 0x1234

mask = 0x4242424242

N = 0x1000000000000

k = 0x100000000000

The result only partially leaks x

#BHUSA @BlackHatEvents

We can obtain a small leakage of x

p is a 16-bit prime

#BHUSA @BlackHatEvents

x = 23

x mod 3 = 2
x mod 5 = 3
x mod 7 = 2

CRT((3,2),(5,3),(7,2)) = 23

* It will only work if x is smaller than the
product of the primes (3*5*7=105)

Chinese Remainder Theorem

#BHUSA @BlackHatEvents

In order to CRT encode a number of
size 2256, we need 16 primes of
size 216

Chinese Remainder Theorem

#BHUSA @BlackHatEvents

So if we can get 16 remainders of x…

Problem:
We only have the one N

#BHUSA @BlackHatEvents

What if…

#BHUSA @BlackHatEvents

There is no bi-primality ZKP

#BHUSA @BlackHatEvents

How to extract x % Pi

When

To leak

We set

When

To leak

We set

#BHUSA @BlackHatEvents

Reconstructing the full key using CRT

x mod p1 = 2
x mod p2 = 3
...
x mod p16 = 5

x = CRT((p1,2),(p2,3)...(p16,5))

#BHUSA @BlackHatEvents

github.com/Safeheron/multi-party-ecdsa-cpp

https://github.com/Safeheron/multi-party-ecdsa-cpp
https://docs.google.com/file/d/1ErOBEev1V0Ys0GDvKb3KxmdVGuSR7grs/preview

#BHUSA @BlackHatEvents

How to mitigate the attack

Add ZKPs for proving the well-formedness of Alice’s N

#BHUSA @BlackHatEvents

Compromising the DIY protocol
● Impact: private key exfiltration

● Affected: BitGo TSS

● Published in March 2023

#BHUSA @BlackHatEvents

DIY MtA

x & k are 256 bits, and mask is as big as N

#BHUSA @BlackHatEvents

1-signature attack

1. Without the ZKP, Alice can send something that’s not even a ciphertext

2. By using a maliciously crafted N, Bob will inadvertently send back his x

#BHUSA @BlackHatEventsgithub.com/BitGo/BitGoJS

https://github.com/BitGo/BitGoJS
https://docs.google.com/file/d/1o1GkqVh7eyY8lt8HOk85fmZRRg8KNxAT/preview

#BHUSA @BlackHatEvents

Concluding Remarks

#BHUSA @BlackHatEvents

● MPC is not yet commoditized

● Together we raise the bar for MPC security

● All your keys are belong to us

Black Hat Sound Bytes

#BHUSA @BlackHatEvents

Proof of concept exploits:

● Lindell17: github.com/fireblocks-labs/zengo-lindell17-exploit-poc

● GG20: github.com/fireblocks-labs/safeheron-gg20-exploit-poc

● DIY: github.com/fireblocks-labs/bitgo-tss-exploit-poc

Technical white paper (for the LaTeX lovers in the crowd):

● github.com/fireblocks-labs/mpc-ecdsa-attacks-23

Thank you

Follow our research

@nik_mak_

@orenyomtov

https://github.com/fireblocks-labs/zengo-lindell17-exploit-poc
https://github.com/fireblocks-labs/safeheron-gg20-exploit-poc
https://github.com/fireblocks-labs/bitgo-tss-exploit-poc
https://github.com/fireblocks-labs/mpc-ecdsa-attacks-23
https://twitter.com/nik_mak_
https://twitter.com/orenyomtov

