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Intro to crypto wallets
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Cryptocurrency Wallets 101

Crypto Wallet Holding a 
Private Key

Sign Transaction
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What is MPC?
(through the lense of threshold signing)
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What is MPC?
(through the lense of threshold signing)

Generate public key and calculate 
signatures via an interactive protocol

The private key is 
NEVER assembled 

in one place 
Key 
Share 2

Key Share 3

Key 
Share 1
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MPC (Multi-Party Computation) is the crown jewel of modern cryptography

Anything solved by trusting a centralized party can be solved trustlessly with MPC

Small aside: MPC is much bigger than 
threshold signatures

MPC is invented
|

80s

MPC Wallets
|

Late 10s

Danish Sugar Beet Auction
|

2008

Auctions Games of Chance

Threshold SignaturesVoting

Nuclear Deterrence

Private ML
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● Denial of Service

● Signature Forgery

● Private Key Exfiltration

MPC Wallet Attack Outcomes
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MPC Threat model

Key 
Share 2

Key Share 3

Key 
Share 1

Malicious Alice wants to exfiltrate her 
counterparties’ shares



#BHUSA   @BlackHatEvents

Our Research Findings
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● Some of the biggest crypto exchanges (e.g. Coinbase WaaS)

● A number of crypto custodians (e.g. BitGo TSS)

● The most popular consumer MPC wallet (e.g. Zengo)

● Some of the most popular open source MPC libraries (e.g. Binance, Apache)

Affected Parties
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Our Findings
● Discovered 4 novel attacks (including three 0-day)

● Affecting 16 vendors / libraries

● Releasing 4 fully working PoC exploits

● Exfiltrated keys from 2 vendor production environments

● Most of our attacks are not implementation specific
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1. The most popular two-party signing protocol:     Lindell17   (high interactivity)

2. The most popular multi-party signing protocols: GG18&20  (med interactivity)

3. A DIY protocol used by a crypto custodian:        BitGo TSS (low interactivity)

The 3 attacks we’ll be covering today
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Cryptographic exploit development
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● We assume no familiarity with advanced mathematics
● Nothing about elliptic curves (or even abstract groups)
● The modulo operator

  

Math Background

Remainder of 
x divided by N

5 % 5 = 0

6 % 5 = 1
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HE is a special kind of encryption that allows computation on encrypted data

Homomorphic Encryption (HE)

Without decrypting 

the ciphertext
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ECDSA Signature Generation

ECDSA constant
Private key

Ephemeral key
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ECDSA signing with 2 parties

Key Shares

Keys
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● The most popular two-party signing protocol

● Affected: 5 vendors and open-source projects

Compromising Lindell17 
Implementations
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Lindell17 Key Generation (Step 1/2)

Chooses a random 
key share 

x1

Chooses a random
key share 

x2

Sample key shards
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Lindell17 Key Generation (Step 2/2)
Saving Bob’s key share under HE

(only bob can can decrypt it, 
but alice can operate on it)

Encrypts their x2 
using their HE key N
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Lindell17 Signing (Step 1/2)
Alice sends a encrypted partial signature
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Lindell17 Signing (Step 2/2)
Bob finalizes the signature

Bob then verifies the signature is valid
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What if alice deviates from the protocol?

Bob fails to verify the resulting signature!

Hey! the signature 
is invalid
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What does the paper say about that?
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Denial-of-Service Attack

Attack!
Thank you,Try again
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Back to the drawing board

…
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Hypothetical Attack Visualization

s’ that fails to finalize if x2’s lsb  = 0

Signed successfully

0b________________________________________________________________________________________________________________________________

  ________________________________________________________________________________________________________________________________

x2=

0
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Hypothetical Attack Visualization

s’ that fails to finalize if x2’s 2nd lsb = 0

Failed to finalize signature

0b________________________________________________________________________________________________________________________________

  _______________________________________________________________________________________________________________________________

x2=

01
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Hypothetical Attack Visualization

s’ that fails to finalize if x2’s 3rd lsb = 0

Failed to finalize signature

0b________________________________________________________________________________________________________________________________

  ______________________________________________________________________________________________________________________________

x2=

011
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Hypothetical Attack Visualization

s’ that fails to finalize if x2’s 4th lsb = 0

Signed successfully

0b________________________________________________________________________________________________________________________________

  _____________________________________________________________________________________________________________________________

x2=

0110
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Hypothetical Attack Visualization

s’ that fails to finalize if msb is 0 

Signed successfully

x2=
0b_1100101110100010110011111110100101010011010100000110011101110011001011010100000101011111001000001010000000011100100100011000001

0100010110111010001100111000110110101000110010110010001011000010110110010010100111001000100010110001001000001001111011001001100110

0
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Crafting a malicious partial signature

After  decrypts,
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Obtaining leakage on x2

Attack!

Signature is valid

Signature is invalid
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Exfiltrating the first bit
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Exfiltrating the next bit
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Offsetting previous leaked bits

The previously 
leaked bits
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Exfiltrating the i-th bit



#BHUSA  @BlackHatEvents

github.com/ZenGo-X/multi-party-ecdsa

https://github.com/ZenGo-X/multi-party-ecdsa
https://docs.google.com/file/d/1KaxVsDbFTBJv0RScMuZec5gmr6Ymnryg/preview
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1. Follow the paper’s recommendation (e.g. don’t sign again after failure)

How to mitigate the Attack
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Zero-Knowledge Proofs (ZKPs)

Proofs that yield the validity of a statement and nothing else

& ZKP that

Bob verifies the ZKP and is convinced that 
x is number between 1 and 42
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1.

2. Use a ZKP for proving correctness of Alice’s message

How to mitigate the attack

1. Follow the paper’s recommendation (never sign again after failure)
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● The most popular multi-party (2+) signing protocol

● Affected: more than 10 vendors and open source projects

Compromising GG18 / GG20
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The GG protocols are complicated

Only focus on

M-t-A

Multiplication to Addition
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Multiplication to Addition
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Implementing MtA

Bob gets Alice gets 

x & k are 256 bits, and mask is bigger than 512 bits
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How does it mask X?

x    = 0x1337

mask = 0x4242424242

k    = 0x6789

x*k  = 0x7c5696f

     = 0x424a07abb1
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x    = 0x1337

mask = 0x4242424242

k    = 0x100000000000
Key Insight: 
Alice has full 
control over k!

What happens if k > mask?

The most significant 
bits leak x

x*k  = 0x133700000000000

  = 0x133704242424242
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But… the there is a ZK range proof for k



#BHUSA  @BlackHatEvents

ZK Range Proof

Verifier accepts if … and z is small 
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How to Cheat in the ZKP

We want this value to be “zeroed out”
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Chinese Remainder Theorem (CRT)

If Then
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Choose k = q

If Thenq % q = 0
 by definition!

What if
hash(w) is a 
multiple of p
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Brute force w such that hash(w) % p = 0

If Then

Problem: p is too big!!

bitsize(N) = 2048

bitsize(p) = 16

bitsize(q) = 2032

bitsize(N) = 2048

bitsize(p) = 1024

bitsize(q) = 1024
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There is no “no small factors” ZKP
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Remember the MtA formula?
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k*x+m = 0x123404242424242

      =    0x404242424242

What happens if k ~ N?

x     = 0x1234

mask  = 0x4242424242

N     = 0x1000000000000

k     = 0x100000000000

The result only partially leaks x
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We can obtain a small leakage of x

p is a 16-bit prime
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x = 23

x mod 3 = 2
x mod 5 = 3
x mod 7 = 2

CRT((3,2),(5,3),(7,2)) = 23

* It will only work if x is smaller than the 
product of the primes (3*5*7=105)

Chinese Remainder Theorem



#BHUSA  @BlackHatEvents

In order to CRT encode a number of 
size 2256, we need 16 primes of 
size 216

Chinese Remainder Theorem
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So if we can get 16 remainders of x…

Problem: 
We only have the one N
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What if…
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There is no bi-primality ZKP
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How to extract x % Pi

When

To leak

We set

When

To leak

We set
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Reconstructing the full key using CRT

x mod p1  = 2
x mod p2  = 3
...
x mod p16 = 5

x = CRT((p1,2),(p2,3)...(p16,5))
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github.com/Safeheron/multi-party-ecdsa-cpp

https://github.com/Safeheron/multi-party-ecdsa-cpp
https://docs.google.com/file/d/1ErOBEev1V0Ys0GDvKb3KxmdVGuSR7grs/preview
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How to mitigate the attack

Add ZKPs for proving the well-formedness of Alice’s N
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Compromising the DIY protocol
● Impact: private key exfiltration

● Affected: BitGo TSS

● Published in March 2023
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DIY MtA

x & k are 256 bits, and mask is as big as N
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1-signature attack

1. Without the ZKP, Alice can send something that’s not even a ciphertext

2. By using a maliciously crafted N, Bob will inadvertently send back his x
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https://github.com/BitGo/BitGoJS
https://docs.google.com/file/d/1o1GkqVh7eyY8lt8HOk85fmZRRg8KNxAT/preview
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Concluding Remarks
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● MPC is not yet commoditized

● Together we raise the bar for MPC security

● All your keys are belong to us

Black Hat Sound Bytes
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Proof of concept exploits:

● Lindell17: github.com/fireblocks-labs/zengo-lindell17-exploit-poc

● GG20: github.com/fireblocks-labs/safeheron-gg20-exploit-poc

● DIY: github.com/fireblocks-labs/bitgo-tss-exploit-poc

Technical white paper (for the LaTeX lovers in the crowd):

● github.com/fireblocks-labs/mpc-ecdsa-attacks-23

Thank you

Follow our research

@nik_mak_

@orenyomtov

https://github.com/fireblocks-labs/zengo-lindell17-exploit-poc
https://github.com/fireblocks-labs/safeheron-gg20-exploit-poc
https://github.com/fireblocks-labs/bitgo-tss-exploit-poc
https://github.com/fireblocks-labs/mpc-ecdsa-attacks-23
https://twitter.com/nik_mak_
https://twitter.com/orenyomtov

