
New Key Extraction Attacks on Threshold ECDSA Implementations

Duy Hieu Nguyen

Verichains
Anh Khoa Nguyen

Verichains
Huu Giap Nguyen

Verichains

Thanh Nguyen Anh Quynh Nguyen

VNSecurity & Verichains Nanyang Technological University

Abstract
Threshold ECDSA, a Threshold Signature Scheme based pro-

tocol for the widely used digital signature algorithm ECDSA,

has gained much attention in the distributed ledger indus-

try. The use of this protocol was introduced as a means to

increase security in these systems, as many ledgers have a

dependency on ECDSA. However, as with any novel crypto-

graphic protocol, the security of Threshold ECDSA has not

been thoroughly tested over time. In light of this, a survey was

conducted to evaluate the security of various implementations

of Threshold ECDSA.

The survey conducted on the security of Threshold ECDSA

implementations yielded some unexpected results, revealing

the persistence of implementation flaws that can leave sys-

tems vulnerable to various attack vectors. Our research has

identified three potential attacks that have the potential to

recover the private key of ECDSA, depending on the partic-

ular implementation flaw. As a result, this paper provides a

comprehensive analysis of the security of Threshold ECDSA,

starting with a review of the cryptographic primitives utilized

in its implementation, followed by a detailed explanation of

the attack process and how to mitigate them.

Our research highlights the need for ongoing security eval-

uations in the distributed ledger technology field, especially

when it comes to new technologies like Threshold ECDSA.

Through our analysis, we have identified several implementa-

tion flaws that could be exploited to trigger attacks on these

systems. It is critical to understand the potential risks associ-

ated with the use of Threshold ECDSA and to take proactive

measures to ensure the security of assets stored in these sys-

tems. By sharing our findings and attack instructions, we

hope to raise awareness and encourage both the academic and

practical communities to prioritize security in their implemen-

tations.

1 Introduction

Threshold Signature Scheme (TSS) is a cryptographic scheme

allowing multiple parties to jointly generate keys and sign

messages. For signing a message, at least t (the threshold)

out of n (the number of parties participating in the generation

ceremony of the key in use) parties are required. There is

no trusted dealer as the TSS private key is never constructed

(each party only keeps a private key share).

In the blockchain ecosystem, ECDSA is the most popular

signature scheme as it is used by Bitcoin and Ethereum, to

name a few. Designing a TSS for ECDSA is not straight-

forward, since it requires MPC (multi-party computation)-

unfriendly operations over shared secrets such as inversion

or multiplication. To accomplish this, many cryptographic

toolboxes (e.g., homomorphic encryption, zero-knowledge

proof, ...) are involved, thus making the scheme complex and

adding more attacking surface. Most open-source TSS imple-

mentations today follow the research line of Rosario Gennaro

and Steven Goldfeder [1–3], which is also the only design of

concern throughout this paper.

Section 2 presents an overview of the cryptographic tech-

niques employed in the implementation of Threshold ECDSA.

Section 3 details the various attack vectors that can ex-

ploit commonly observed implementation flaws in Threshold

ECDSA. Specifically, we provide a comprehensive list of the

triggering flaws, attack flow, and potential mitigation strate-

gies for each of the three identified attacks. Finally, in Section

5, we summarize our contributions and highlight the signifi-

cance of our findings for the security of Threshold ECDSA

implementations in practical settings.

2 Background

This section provides the necessary details to understand the

attacks to be discussed. For complete specification of the

Threshold ECDSA protocol, please refer to [1–3].

2.1 Fiat–Shamir heuristic

Fiat-Shamir heuristic is a technique for removing interactivity

from interactive, public-coin proof systems.

In these systems, the verifier generates and sends to the

prover some random values acting as challenges which can

only be solved if the statement being proved is correct (the

soundness property). Usually if these random values are

known in advance, the prover will be able to forge proofs

for incorrect statements.

Fiat-Shamir heuristic replaces random values with outputs

from a cryptographic hash function, hashing the verifier con-

text whenever randomness is needed. Public parameters, the

statement being proved, previously exchanged messages, ...

all contribute to this context. Since randomness is removed,

the verifier becomes deterministic and simulatable, thus mak-

ing the proof system non-interactive.

2.2 dlnproof

dlnproof is used to verify, in zero-knowledge manner, that a

prover knows logg h modulo a composite number N.

At the key generation ceremony, each party is required to

generate and broadcast a triple Ñ,h1,h2, which is later used

in subsequent signing ceremonies, together with a dlnproof
proving that the party knows logh2

h1 mod Ñ. Some imple-

mentations also require an additional dlnproof for logh1
h2

mod Ñ.

Here is the interactive version of dlnproof:

1. Peggy (the prover) commits to a random value ρ ∈ Zφ(N)

(φ(N) known only to Peggy) by sending α = gρ mod N
to Victor (the verifier).

2. Victor chooses and sends Peggy a random challenge bit

c ∈ {0,1}.

3. Peggy computes and sends back τ = ρ+ c logg h.

4. Victor accepts if and only if gτ = αhc modulo N.

This protocol is sound since, given a successful prover, one

can apply the rewind technique to extract the discrete loga-

rithm value similar to proving soundness of the well-known

Schnorr protocol. Note that knowing c in advance allows

an attacker Eve, who does not have knowledge of logg h, to

trick Victor into accepting by sending him α = gτh−c for an

arbitrary τ of Eve’s choice in round 1.

The interactive proof above is converted to non-interactive

dlnproof by applying the Fiat-Shamir heuristic described

earlier. The proof is also repeated λ times (usually λ ≥ 80) to

reduce the soundness error from 1
2 (the chance of making a

correct guess for c at the beginning of the protocol) to 1
2λ .

2.3 MtA sub-protocol
MtA stands for multiplicative-to-additive, which is a sub-

protocol involving 2 parties Alice and Bob holding secret

values a,b respectively. At the end of MtA, Alice obtains α
and Bob obtains β such that ab = α+β mod q in which q is

Iteration Alice a Bob b

1 Pi ki Pj γ j

2 Pj k j Pi γi

3 Pi ki Pj w j

4 Pj k j Pi wi

Table 1: The 4 iterations of MtA between 2 parties Pi and Pj.

the order of the ECDSA group in use. During a TSS signing

ceremony, for each pair of 2 different parties Pi,Pj, MtA is

run four times (Table 1). The input secret values are:

• ki: Pi’s private share of the nonce inverse. If all ki are

leaked, the nonce inverse k could be reconstructed (k =
∑ki) and combined with the message hash m and the

signature r,s (m,r,s are public information) to recover

the private key d of the TSS group based on the ECDSA

formula s = k(m+ rd) mod q.

• γi: Pi’s private share of γ, a temporary secret value used

to calculate the shares of k−1mod q. Since δ = kγ is

published, the leakage of all γi also allows k to be recon-

structed (k = δ
γ = δ

∑γi
mod q).

• wi: a value depends on Pi’s private key share xi and

which members of the TSS group are currently running

the signing ceremony (requiring t/n members). If all wi
are leaked, the TSS private key d can be reconstructed

by d = ∑wi mod q.

As a conclusion, leaking MtA input a or b both lead to TSS

private key recovery.

In the MtA protocol, both parties need to exchange en-

crypted values with each other in order to perform the desired

computations. However, since there is a lack of trust between

the parties, it is difficult to ensure that the encrypted values

being sent are valid. To mitigate this problem, the protocol re-

quires both parties to also send a range proof of the encrypted

values.

At first glance, the requirement for a range proof may seem

unnecessary, but it has been shown in [4] that the absence of

a range proof can lead to a major breakdown in the security

of the protocol. The reason for this is that range proofs ensure

that the encrypted values are within a specified range, and

prevent attackers from tampering with the values or sending

invalid data.

2.4 Ñ,h1,h2

The triple Ñ,h1,h2 is used in MtA range proofs. Let

ÑA,h1A,h2A and ÑB,h1B,h2B denote Alice and Bob’s Ñ,h1,h2

Figure 1: This lattice (represented by black dots) in R
2 can

be constructed from either {u1,u2} or {v1,v2}.

respectively. It turns out that the following values are revealed

by the range proofs:

• zA = ha
1BhρA

2B mod ÑB via Alice range proof for a. ρA is a

random value in ZqÑB
.

• zB = hb
1AhρB

2A mod ÑA via Bob respondent range proof for

b. ρB is a random value in ZqÑA
.

It can be seen that if Bob is able to eliminate hρA
2B and compute

discrete logarithm modulo ÑB, then he could learn Alice’s

private input a. A similar result can be obtained when the

attacker plays on the side of Alice.

In many implementations of TSS protocols, the values of

h1 and h2 are chosen in such a way that there exists a value

x that satisfies the equation h1 = hx
2 mod Ñ. To ensure the

other parties that their chosen values are generated as such, a

dlnproof of logh2
h1 is appended when they broadcast these

values. This serves as a means of verifying that the values of

h1 and h2 were indeed generated as specified, and that there

are no discrepancies or malicious alterations made by any of

the parties.

2.5 Vector enumeration in lattice
A lattice in R

n is a set of linear combinations with integer

coefficients of n linearly independent vectors*:

{a1b1 +a2b2 + · · ·+anbn | ai ∈ Z,bi ∈ R
n for 1 ≤ i ≤ n}

These independent vectors are together called a lattice basis.

Different bases may generate the same lattice as shown in

Figure 1.

*Only full-dimensional lattices are considered.

A lattice basis is good if it consists of nearly orthogonal,

short vectors (e.g., {v1,v2} in Figure 1). To convert a bad

basis (e.g., {u1,u2} in Figure 1) to a good one, we need a

lattice basis reduction technique such as the well-known LLL

algorithm. LLL runs in polynomial time and guarantees some

qualities on the output basis. It is widely implemented and has

useful applications in many areas, especially cryptanalysis.

In practice, there are often times when we need to search or

enumerate through all vectors of a lattice (its basis is given)

inside a particular region (e.g., a hypersphere or box) until

some certain condition is met. To solve this kind of problem,

we may use the following approach:

1. Apply LLL to the given basis, obtain B = {b1,b2, ...,bn}.

The result vector v can now be represented by ∑n
i=1 cibi.

2. Determine the possible range [ci-min,ci-max] for each ci.

This is done by first projecting each bi and the searching

region onto the orthogonal line of the subspace generated

by B\{bi} to obtain b∗i and a line segment. Then, only

ci such that cib∗i lies in that segment is considered valid.

Note that the purpose of projection is to make sure that

we are working on a subspace that is only affected by bi.

In other words, if ci is out of range (cib∗i falls out of the

segment), then no combination of the remaining vectors

B\{bi} is able to fix that error.

3. Looping over all ci to search for the desired vector v.

Specifically, the search space S for v is equivalent to the

Cartesian product of the ranges [ci-min,ci-max]. Hence, its

size |S| is equal to ∏n
i=1(ci-max − ci-min +1).

One may figure out that the enumeration approach above is not

optimal since it does not make use of early-exit or pruning. For

example, when c1 is determined, the actual range for c2 may

be adaptively smaller than the generic range [c2-min,c2-max]
but this fact is ignored.

However, the approach allows for seamless integration of

the meet-in-the-middle technique (MITM) to significantly

improve its time complexity (possibly down to O(
√|S|))

when the required condition on v can be converted into some

form that allows separated working on 2 complementary sub-

spaces S1,S2 of S. For example, if v = c1b1 + c2b2 and the

condition on v can be expressed in c1,c2 as f1(c1) = f2(c2),
then S1 = [c1-min,c1-max], S2 = [c2-min,c2-max] and by apply-

ing MITM, the searching time will be reduced from O(|S|) to

O(|S1|+ |S2|) at the cost of some memory†.

For some optimization, one may consider applying a more

advanced lattice enumeration technique inside each of the

subspaces S1,S2 whenever possible.

†Basically, by the technique, we loop over S1 and cache all f1(c1) to

memory as a table (requiring O(|S1|) time and space), then loop over S2 until

an entry for f2(c2) is found (requiring O(|S2|) time).

Figure 2: Hashing (i1, i2) by simply concatenating their byte

representations.

Figure 3: (i1, i2) and (i′1, i
′
2) both produce the same hash out-

put.

3 Attacks

The Threshold ECDSA technology is a recent development in

the field of cryptography. As with any new technology, there

is a risk of implementation flaws that can lead to potential

attacks. In sections 3.1 and 3.3, we will discuss some poten-

tial attack vectors that can arise in the context of Threshold

ECDSA and their triggering conditions.

The focus of our attack will be on the leaking of secret

shared values x in z = hx
1hρ

2 mod Ñ during the MtA rounds.

This can be accomplished if a malicious party generates a

triple Ñ,h1,h2, where h1 and h2 are chosen in such a way

that it is possible to eliminate hρ
2 from z and compute discrete

logarithm to base h1 modulo Ñ.

For eliminating hρ
2, we let h2 = he

1 mod Ñ‡ in which e is a

divisor of ord(h1). Now, raising z to the power of f = ord(h1)
e ,

we have z f = (h f
1)

x mod Ñ. Solving it (logh f
1

z f) yields x mod

e. When e is greater than q (the ECDSA group order), x is

fully recovered. However, this approach will not work unless

we can forge a dlnproof for the inexistent logh2
h1 =

1
e mod

ord(h1). By utilizing some implementation flaws, we are able

to do so!

To make discrete logarithm easy to compute, we choose

Ñ to have one of the following properties, depending on the

exploitation context (e.g., which checks are performed on Ñ):

• (square) Ñ = p2. Computing a discrete log is similar to

how the Paillier cryptosystem decrypts a ciphertext, ex-

ploiting the fact that (1+ kp)x = 1+ kpx mod p2. Since

‡Currently, we consider working over Z∗̃
N . However, as Z∗̃

N can be de-

composed into a direct product of smaller subgroups, working over any

of these subgroups is also fine. In that case, only the projections of h1,h2

onto the working subgroup are of concern and it may not hold that h2 = he
1

modulo Ñ (it holds over the subgroup only). For example, let Ñ = p̃q̃, then

Z
∗̃
N = Z

∗̃
p ×Z

∗̃
q and one may consider working over Z∗̃

p instead of Z∗̃
N . In that

case, h1 and h2 mod q̃ are ignored, only h2 = he
1 mod p̃ holds.

the unknown x has been moved out of the exponent posi-

tion, solving for it becomes easy.

• (smooth) φ(Ñ) is smooth. It is well-known that the hard-

ness of the discrete logarithm problem depends on the

size of the largest prime factor of the base’s order. When

this order is a product of only small primes, computing

discrete logarithm becomes easy.

• (unbalanced) Ñ = p̃q̃ for just small p̃ (e.g., 256-bit p̃
compared to 2048-bit Ñ). Computing discrete logarithm

over Z p̃ instead of ZÑ drastically reduces the difficulty.

3.1 α-shuffle Attack
3.1.1 The Flaw

In practical context, the dlnproof is carried out in a non-

interactive manner by using the Fiat-Shamir heuristic, which

requires hashing a list of integers including N, g, h, α1, α2,

..., αλ (αi is α at the i-th iteration of the proof). To achieve

this, some implementations just concatenate the byte repre-

sentations of the integers with some delimiter before feeding

to a Cryptographic hash function as shown in Figure 2.

Let bytes(), int() denote integer-to-bytes and bytes-to-

integer conversion functions respectively. Let ’|’ denote byte

concatenation (should not be confused with ’|’ as ’divides’ in

the context of integers). Let rand() denote the function that

returns a random element from an input set. Let H() denote

the vulnerable hashing implementation and D denote the byte

representation of the delimiter used by H.

Recall that at the beginning of a dlnproof, Peggy (the

prover) is required to commit to an αi for each of the λ it-

erations of the corresponding interactive proof. The idea is,

Peggy first commits to a stream of bytes in the format of

a|D|a|D|a|...|D|a. When H is applied, the challenge bits ci
are determined and Peggy can then flexibly choose each αi to

be equal to int(a) or int(a|D|a), depending on which value

causes Victor (the verifier) to output ’accept’ for that iteration.

Figure 4 demonstrates this idea.

3.1.2 The Attack

Algorithm 1 allows Peggy to forge a valid dlnproof for

arbitrary g,N of his choice. The algorithm outputs h and a

dlnproof for logg h modulo N consisting of λ pairs of αi,τi.

Note that if the condition at step 4c of Algorithm 1 holds,

subsequent modification of αi will not affect the challenge

bits ci since H(g,h,N,α1,α2, ...,αλ) will be unaltered as long

as the number of instances of a remains the same (regard-

less of how they are interpreted). Moreover, it can be ver-

ified that gτi = αihci for all i when the algorithm returns,

hence the output dlnproof is correct. As the list of αi
(α,α, ...,α,β,β, ...,β) is rearranged based on the challenge

bits ci, we name this technique α-shuffle.

Figure 4: αi are chosen after the challenge bits ci are revealed.

Algorithm 1 α-shuffle dlnproof forging

Input: g,N.

Output: h, dlnproof for logg h mod N.

1. Let τ = rand(Zord(g)). Let α = gτ mod N. Set all τi = τ.

2. Let a = bytes(α). Let β = int(a|D|a).

3. Set h = α
β mod N (so that β = gτ

h mod N).

4. For l in {0,1,2, ...,λ}:

(a) Temporarily set αi =

{
α (1 ≤ i ≤ l)
β (l +1 ≤ i ≤ λ)

(assign

α to l first αi and β to the remaining).

(b) Let c1,c2, ...,cλ = H(g,h,N,α1,α2, ...,αλ).

(c) If ∑ci = λ− l (there are l challenge bits equal to

0), set αi =

{
α (ci = 0)

β (ci = 1)
and return.

5. Go back to step 1.

Now, we know how to forge a dlnproof. Ideally, an at-

tacker may execute the above algorithm with g = h2 = 1§

and a discrete-log-friendly Ñ to obtain h1 and a malicious

dlnproof for logh2
h1 that should be successfully verified by

other TSS parties. Additionally, h1 is likely to have large order

(it is just a virtually random element in ZÑ), allowing the full

MtA secret input x to be extracted from z = hx
1hρ

2 mod Ñ. As

explained in Section 2.3, this results in full recovery of the

TSS private key.

3.1.3 α-shuffle in practice

This part briefly describes how to bypass different checks

or policies (P) applied to Ñ,h1,h2 encountered in practical

Threshold ECDSA implementations.

§One may consider incrementing α by N (α = α+N) instead of picking

another random τ in step 1 of Algorithm 1 to avoid an infinity loop in this

case.

P1: h2 must not equal 1.

If h2 can be wrapped around, then just let h2 = Ñ +1. Other-

wise, let h2 = Ñ −1 (need z squared to eliminate h2).

P2: A dlnproof for logh1
h2 is also required.

Add an extra condition to ensure that Algorithm 1 will not

return unless logh g modulo Ñ exists. Since Ñ has already

been chosen to be discrete-log-friendly, testing this condition

should not be hard. As a result, it is feasible to compute and

build an ordinary dlnproof for logh1
h2 after forging one for

logh2
h1.

P3: αi must be smaller than Ñ.

Instead of picking a random τ and computing α = gτ mod

N as in step 1 of Algorithm 1, one can pick a suitable α
first, then compute τ = logg α mod N. Here, ’suitable’ means

that α is small enough (so that β < N for a = bytes(α),
β = int(a|D|a)) and τ can be successfully computed. For

example, supposing that Ñ = p̃q̃, Ñ is 2048-bit, p̃ is 512-bit

and g = h2 = 1 mod p̃, we have 1, p+1, 2p+1, ... are some

candidates for α since they are small and α = 1 mod p is the

minimum requirement for the existence of logg α.

P4: The dlnproof hashing context must include an aux-
iliary input which is only determined after Ñ,h1,h2 are
committed.

The probability that Algorithm 1 succeeds in only one run is:

P = 1−
λ

∏
l=0

(
1−

λCl

2λ

)

For λ = 80, P ≈ 0.6441, which is also the probability that

Eve, an attacker, successfully applies α-shuffle in this situta-

tion. This is because Eve has to execute Algorithm 1 without a

complete definition of H since it depends on an unkown input.

To continue the attack, Eve has to break early (after step 3)

and broadcast a commitment for a might-be-working triple of

Ñ,h1,h2. Later on when the unknown input is revealed, Eve

resumes to step 4 of Algorithm 1 to check if a dlnproof can

be successfully forged with respect to the committed triple. If

Figure 5: Ñ,h1,h2 and Ñ, ĥ1, ĥ2 having the same commitment.

Eve is unlucky, the key-generation ceremony has to abort and

other TSS parties might be able to identify Eve as the culprit.

However, it is likely that the commitment scheme is hash-

based and also depends on the vulnerable hash implemen-

tation H (module/function reuse is common in software de-

velopment). If it is true, Eve will have a way to escape in

case the dlnproof can not be forged. The idea is to reveal

a different triple Ñ, ĥ1, ĥ2 such that it has the same commit-

ment as Ñ,h1,h2 and logĥ2
ĥ1 mod Ñ exists, allowing a correct

dlnproof to be built. Figure 5 demonstrates this idea. Note

that the commit function is supposed to simply return H(L)
in which L is a list constructed from a secret decommitment

and to-be-commited values.

Since the input g = h2 can be freely chosen, putting a de-

limiter inside its byte representation is usually not a problem.

However, if 0≤ h1,h2, ĥ1, ĥ2 < Ñ is required, the uncontrolled

output h= h1 will also need to be small enough so that ĥ1 < Ñ
can be satisfied¶. This can be achieved by carefully choos-

ing α,β such that b = bytes(β), α = int(b|D|b) and β |α
beforehand||. As a result, h = α

β is small regardless of Ñ.

To sum up, whenever Eve fails to complete an attack, she

can safely fallback to the usual workflow for not being de-

tected while trying to trigger (or simply wait for) another

key generation or re-sharing ceremony to conduct another at-

tack. Eve may keep repeating this process until success. The

expected number of failures is:

+∞

∑
ν=0

ν(1−P)νP =
1−P

P

For λ= 80,P= 0.6441, this value is approximately 0.5526.

3.1.4 Mitigation

To mitigate α-shuffle attack, it is necessary to adopt a non-

ambiguous encoding scheme to construct the list-of-integer

hashing function H. There should not exist two different lists

encoded into the same byte sequence. A rule of thumb is

that if you do not have a deterministic way to decode the

¶Another workaround is to choose small input g = h2, then brute-force

the first 3 steps of Algorithm 1 until a delimiter appears in the byte represen-

tation of the output h = h1. However, this approach is only suitable for short

delimiters.
||The correctness of Algorithm 1 does not rely on whether β =

int(a|D|a) (as in the original version) or α = int(b|D|b) (as in the ver-

sion being described).

byte sequence (back to the original list of integers), you are

likely doing it wrong. A simple fix is to always include the

length of each integer. Other popular encoding schemes like

Protocol Buffers (Protobuf [5]), Abstract Syntax Notation

One (ASN.1 [6]) or Tag-Length-Value (TLV [7]) are also

fine.

It is important to note that changing the way H works

requires an update to all existing systems and software in a

TSS group. However, the potential security benefits that result

from implementing such measures are substantial, and can

help to protect against the risks associated with hash collision.

3.2 c-split Attack
3.2.1 The Flaw

The dlnproof requires repeatedly generating random chal-

lenge bit c ∈ {0,1}. However, instead of repeating the in-

teractive proof with binary challenge ci ∈ {0,1}, the imple-

mentation decide to use a much larger challenge set (e.g., all

possible outputs of SHA-256 or Z2256) in only one run. It

turns out that a larger challenge set does not result in a bet-

ter soundness error (< 1
2). Let g ∈ Z

∗
N , h = g2 and 2 |ord(g).

Since 2 has no inverse modulo ord(g), logh g = 1
2 does not

exist. However, when 2 |c (probability 1
2), Peggy is able to

forge a correct dlnproof for it by having τ = ρ+ c
2 .

3.2.2 The Attack

The attack is straightforward. Let e be a small divisor of

ord(h1) (recall that h2 = he
1 mod Ñ). When building a

dlnproof for logh2
h1, one can just keep brute-forcing ρ

until c is divisible by e (probability 1
e). This will not be

hard if e is, say, only 32-bit long. Consequently, (α,τ) =
(hρ

2 mod Ñ,ρ+ c
e) is a valid dlnproof for the nonexistent

logh2
h1. Since e |c is required to forge the proof, we name

the technique c-split.

However, it is not quite done yet since only x mod e for

some secret MtA input x (ki,γi or wi) can be recovered during

a signing ceremony while e cannot be made arbitrarily large

or the brute-forcing step above becomes infeasible. To fully

recover the TSS private key, some extra work is needed.

Firstly, given a message-signature pair (m,(r,s)), one can

leverage the leaked information (ki, γi, wi mod e for 1 ≤ i ≤ t,
recall that t is the number of TSS parties participating in the

signing ceremony) to obtain the following equation:

aw̄ = b+ γ̄ mod q (1)

In which solving for the small unknowns w̄, γ̄ (bounded by⌊ tq
e

⌋
) would give the TSS private key**.

**Deriving (1) from the ECDSA formula s = k(m+ rd) mod q requires

some arithmetic:

1. Multiply both sides by γ to separate the product of 2 unknowns kd
(recall that δ = kγ is a public value).

And also:

w̄P = Q (2)

For some elements P,Q of the ECDSA group††.

Next, multiple pairs of message-signature must be collected.

Supposing that l pairs are given:

a jw̄ = b j + γ̄ j mod q for 1 ≤ j ≤ l (3)

Note that all w j need not be the same since each depends on

the set of participating parties that may change for each sign-

ing ceremony. However, they all equal d mod q. Therefore, a

single w̄ is used for all j to reflect this fact.

Rewriting (3) as a vector equation, one obtains (4).

This is exactly an instance of the lattice enumeration prob-

lem described in Section 2.5. The left-hand side columns are

basis vectors for a (l +1)-dimensional lattice. The required

condition on the result vector v is that its first entry w̄ must

satisfy (2). Since 0 ≤ w̄, γ̄1, γ̄2, ..., γ̄l ≤
⌊ tq

e

⌋
, the searching re-

gion is in fact a hypercube. Its edge has a length of
⌊ tq

e

⌋
and

(0,b1,b2, ...,bl) is one of its vertices.

Note that the equation (2) makes it very straightforward to

apply MITM in this case. After the lattice basis is reduced

with LLL, let ωi denote the first entry of the new basis’s

i-th vector, then w̄ = ∑ciωi. Let Wi = ωiP, from (2) we have

∑ciWi = Q. Decomposing the search space is now as simple

as shifting some ciWi from the sum on the left-hand side to

the right-hand side. To make the two subspaces balanced, one

may consider splitting a single ci, say c1 = cam+ cb for a

suitable m, then repartitioning the set of ci (has now become

{ca,cb,c2,c3, ...cl+1}) accordingly‡‡.

The only remaining question is how many message-

signature pairs are required (i.e., the minimum value for l) to

solve for w̄. The answer is that it depends on how much com-

putational power an attacker has or is willing to pay for. With

t fixed to 32§§, Table 2 gives the search space size (|S|) under

various configuration for e and l. From the cell corresponding

to (e, l) = (256,2), it can be understood that if the attacker is

willing to construct 256 different dlnproof challenges and

perform about 2×2
104.71

2 elliptic curve group additions, then

the TSS private key can be recovered with only 2 signatures.

w̄

⎡
⎢⎢⎢⎢⎢⎢⎣

1

a1

a2

...

al

⎤
⎥⎥⎥⎥⎥⎥⎦
+u1

⎡
⎢⎢⎢⎢⎢⎢⎣

0

q

0

...

0

⎤
⎥⎥⎥⎥⎥⎥⎦
+u2

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

q

...

0

⎤
⎥⎥⎥⎥⎥⎥⎦
+ ...+ul

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

0

...

q

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0

b1

b2

...

bl

⎤
⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎣

w̄

γ̄1

γ̄2

...

γ̄l

⎤
⎥⎥⎥⎥⎥⎥⎦
,u j ∈ Z (4)

3.2.3 c-split in practice

The c-split exploitation technique should work well in prac-

tice. One can even choose a small e, say 32-bit long, since

the required number of signatures is usually not a practical

issue. The payload of the attack (Ñ,h1,h2 and dlogproof for

2. Compute (γ̃, w̃) = (γ,w) mod e by summing up γi and wi mod e respec-

tively.

3. Substitute γ = γ̄e+ γ̃ and d = w = w̄e+ w̃ mod q into the formula.

Note that a,b are just aliases for δr
s and

γ̃s−δm−δrw̃
es mod q respectively. Since

γ,w < tq, γ̄, w̄ ≤ ⌊ tq
e

⌋
. If w̄ is determined, the TSS private key d = w̄e+ w̃

mod q can also be recovered.
††Let G denote the group generator defined by the ECDSA signature

scheme and D = dG denote the public key corresponding to d, then (w̄e+
w̃)G=D. Therefore, P and Q are just aliases for eG and D− w̃G respectively.

‡‡This idea is similar to the baby-step-giant-step (BSGS) technique.
§§There is a known scalability issue with the TSS design as it has time

and communication complexity of O(t2). t = 32 is a quite high value in

practice.

logh2
h1) looks statistically the same as a legit one.

However, there is a case in which Bob respondent range

proof in MtA is omitted. As a result, an attacker no longer

has access to γi and wi mod e for each signing ceremony.

Note that omitting Bob respondent proof comes with its own

issues such as unidentifiable abort, i.e., a malicious party may

corrupt the signing ceremony without being detected.

In this situation, with enough malicious cooperating parties,

it’s possible to recover the TSS private key with just one

signature. The idea is to have a pairwise relatively prime set

{e1,e2, ...,el} (the e values from l malicious parties) so that ki
mod eπ = e1e2...el can be recovered by applying the Chinese

remainder theorem (CRT) to ki mod e j for 1 ≤ j ≤ l. Now,

the malicious parties need to solve for k satisfying:

e \l 1 2 3 4 5 6 7 8

232 202.48 177.24 151.26 126.03 100.40 76.13 51.57 27.56

240 186.62 152.43 119.23 85.72 52.61 20.06 0.00 0.00

248 171.01 128.52 87.74 46.29 1.58 0.00 0.00 0.00

256 154.39 104.71 54.78 4.75 0.00 0.00 0.00 0.00

264 138.40 80.74 22.96 0.00 0.00 0.00 0.00 0.00

Table 2: The search space size on the log2 scale for different (e, l). t is always 32. The data are generated by simulating the

signing and exploiting process with SageMath v9.5 [8]. Each test is repeated 1000 times for increased reliability.

{
k̃ = k mod eπ is known (by summing up ki mod eπ)

kR = G (since k−1G = R)

(5)

Similar to Section 3.3, let k̄ =
⌊

k
eπ

⌋
(k = k̄eπ + k̃), P = eπR

and Q = G− k̃R, then the rest of the attack is about searching

for k̄ <
⌊

tq
eπ

⌋
such that k̄P = Q. [9] is a very well-optimized

tool to tackle this kind of problem. It has been used to crack

a 114-bit secp256k1 private key for a reward of 1.15 BTC,

so one can expect 1.15 BTC to be a reliable upper bound on

the cost of solving for k̄ when
⌊

tq
eπ

⌋
≤ 2114 (assume that the

curve in use is also secp256k1).

Again, the only remaining question is how many malicious

parties are required. l = 3 is quite practical, while l = 2 is

also possible but the attack will be costly. In practice, making

a decision on l should depend on many factors such as the

benefit from a successful attack, the cost to become or corrupt

a member of the targeted TSS group, ...

3.2.4 Mitigation

In a proof system, the most important factor to determine the

number of proof iterations is its soundness error. Deciding

to not repeat a proof without proving that the proof has a

negligible soundness error is like taking a crazy risk.

It is therefore highly advised that protocols are imple-

mented in compliance with their specifications. Any attempt

to optimize the implementation without a proper understand-

ing of its security implications should be avoided, as this

might create vulnerabilities exploitable by attackers.

3.3 c-guess Attack
3.3.1 The Flaw

In dlnproof, each proof iteration requires the verifier to send

a binary challenge ci ∈ {0,1}. The probability for a success-

ful guess on all ci is 1
2λ for λ iterations. It is important to note

that applying Fiat-Shamir heuristic allows the prover to not

be punished for making an incorrect guess. Therefore, when

λ is low enough with regards to the computational power of a

malicious prover, the prover can then repeat the proof genera-

tion until a correct guess for all ci is found, thus successfully

forge a dlnproof.

3.3.2 The Attack

The attack is straightforward: the malicious prover chooses

random challenge bits ci and applies H (a hash function ac-

cording to the Fiat-Shamir transformation) to the correspond-

ing payload prepared for those guessed ci to check if the actual

output challenge bits are the same as the guessed ones. If they

are not, the prover simply makes another guess and retries

until a correct one is made. The expected number of trials is

2λ.

3.3.3 Mitigation

As discussed in 2.2, the dlnproof requires a minimum num-

ber of iterations to achieve a certain level of security. CG-

GMP21 recommends the number of iterations to be at least

80 which should be enforced by all implementations.

4 Impact Factors

In this section, we will provide a comprehensive summary of

our study’s key findings. We will begin by recapping the im-

plementation flaws that enabled our attacks on the dlnproof
protocol. We will then discuss the detrimental impact of our

attacks. Finally, we will provide an estimate of the funds that

were saved due to our swift actions in contacting product

owners. By highlighting the critical importance of thorough

testing and robust security measures in threshold cryptogra-

phy, this section underscores the significance of our research.

4.1 Weaknesses

During our research, we identified several implementation

flaws of dlnproof that can be exploited, such as hash col-

lisions resulting from concatenating hash values. To avoid

this issue, we recommend using a non-ambiguous encoding

scheme. Moreover, reducing the number of rounds in the pro-

tocol can significantly undermine its security. It is imperative

to follow the protocol specifications and perform an adequate

number of binary challenges, which is 80 as specified in CG-

GMP21.

4.2 Key Recovery
The attacks we presented in this paper can rebuild the ECDSA

private key, despite it not being computed in the Threshold

ECDSA protocol. This is achievable because all private values

that pass through the MtA protocol can be recovered through

our attacks. These values play a significant role in the logic of

computing ECDSA signatures. With a series of signatures and

secret values, an attacker can quickly re-compute the private

key.

This has significant implications for the security of Thresh-

old ECDSA if implemented wrongly, as the reconstruction of

the private key would allow an attacker to forge arbitrary sig-

natures and gain complete control over the system. As such,

it is critical to identify if the implementation are vulnerable to

our attacks and take measures as we suggest to enhance the

security of the library.

4.3 Impacts
In our study, we developed proof-of-concept attacks on vari-

ous open-source projects that implement Threshold ECDSA.

Our PoCs demonstrated that, in most cases, a single malicious

party and one signing ceremony are enough to recover the

private key. The details of the affected implementations can

be found in Table 3. In addition to the PoC attacks on open-

source projects implementing Threshold ECDSA, we also

created demonstrations that successfully withdraw all funds

from a deployed development environment. These simula-

tions serve to illustrate the potential impact that such attacks

could have on a production level.

5 Conclusions

This paper introduces new attack vectors leveraging common

implementation flaws of Threshold ECDSA, a new crypto-

graphic protocol. The paper warns of the dangers of relying on

untested code and highlights the gap that often exists between

design and implementation. It emphasizes that modifications

made to the design to meet specific needs can lead to serious

bugs and that the implementation may not always be a direct

representation of the design. The paper stresses the impor-

tance of thorough testing of implementations to guarantee the

security and stability of the technology in use. The findings

of this paper have significant consequences for various ven-

dors who use Threshold ECDSA, which is widely adopted in

production environments. Our disclosure may have prevented

a potential major hack in the blockchain industry.

Implementations Attack Technique PoC
Required number of

Malicious parties (Re)sharing ceremonies Signing ceremonies

Axelar (tofn) c-split YES 1 1 2

Binance/BNBChain (tss-lib) α-shuffle YES 1 1 1

ING Bank (threshold-signatures) c-split YES 1 1 2

Keep Network/Threshold Network α-shuffle YES 1 1 1

Multichain (fastMPC)
α-shuffle YES 1 1 1

c-guess YES 1 1 1

Swingby (tss-lib) α-shuffle YES 1 1 1

Taurus (multi-party-sig) α-shuffle YES 1 1.5526 1

Thorchain (tss-lib) α-shuffle YES 1 1 1

ZenGo X (multi-party-ecdsa) c-split YES 2 1 1

Table 3: Affected implementations.

The table above was calculated based on the assumption that the attacker could practically break 64-bit security.

This table was last updated on March 2023. For the updated table, please visit verichains.io/tsshock.

References

[1] Rosario Gennaro and Steven Goldfeder. Fast Multiparty

Threshold ECDSA with Fast Trustless Setup. Cryptology

ePrint Archive, Paper 2019/114, 2019. https://epri
nt.iacr.org/2019/114.

[2] Rosario Gennaro and Steven Goldfeder. One Round

Threshold ECDSA with Identifiable Abort. Cryptology

ePrint Archive, Paper 2020/540, 2020. https://epri
nt.iacr.org/2020/540.

[3] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Niko-

laos Makriyannis, and Udi Peled. UC Non-Interactive,

Proactive, Threshold ECDSA with Identifiable Aborts.

Cryptology ePrint Archive, Paper 2021/060, 2021. http
s://eprint.iacr.org/2021/060.

[4] Dmytro Tymokhanov and Omer Shlomovits. Alpha-rays:

Key extraction attacks on threshold ecdsa implementa-

tions. Cryptology ePrint Archive, Paper 2021/1621, 2021.

https://eprint.iacr.org/2021/1621.

[5] Protobuf. https://protobuf.dev/.

[6] ASN.1. https://en.wikipedia.org/wiki/ASN.1.

[7] TLV. https://en.wikipedia.org/wiki/Type%E2%
80%93length%E2%80%93value.

[8] Sage Math. https://www.sagemath.org/.

[9] Kangaroo. https://github.com/JeanLucPons/Kan
garoo.

