
Close
Encounters
of the
Advanced
Persistent
Kind
Leveraging Rootkits for
Post-Exploitation

Valentina Palmiotti

@chompie1337

IBM X-Force Adversary Services

 Security Researcher

Weird Machine Mechanic

Ruben Boonen

@FuzzySec

IBM X-Force Adversary Services

Just a Windows Dev

Introduction

Kernel
Rootkits
A sliding scale of
BYOVD capabilities

30

ITW 0day 2023

Turla, Equation, Lamberts, ProjectSauron,..

Old Money

BitPaymer, Trickbot, RobbinHood, BlackByte,..

New Money

Not all groups are created equal

Degrees Of Exploitation

https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/08064459/Equation_group_questions_and_answers.pdf
https://www.welivesecurity.com/2022/01/11/signed-kernel-drivers-unguarded-gateway-windows-core/

Project Zero Trends

2525 25
2222 22

1212 12

2020 20
2525 25

6969 69

4040 40

3030 30

ITW 0days

2016 2017 2018 2019 2020 2021 2022 2023 ?

0

20

40

60

80

ITW Bugs are

https://googleprojectzero.blogspot.com/

Time-To-Patch (TTP)

77%
Not enough
resources to keep
up with the volume
of patches

76%
No common view of
applications and
assets across
security and IT
teams

74%

Not able to take
critical
applications &
systems off-line
so they can be
patched quickly

72%
It is difficult to
prioritize what
needs to be
patched

62%
We can’t easily
track whether
vulnerabilities
are being patched
in a timely manner

58% Human error

56%
Emails & spread
sheets are used to
manage the process
so things slip
between the cracks

High
16 days

Medium/Low
151 days

Ponemon Institute '18/'19, survey of 3000
IT security professionals

Kernel
vs User

Why operate in Ring0?

Mitigations &
Restrictions
Some mitigations only
exist in User Land

There are still actions
that are disallowed
by administrators in
user space.

Observability
User Land filesystem or
memory activity may be
observable from the Kernel

EDR
EDR is generally
specialized in User Land
analysis not Kernel
analysis

Opportunity Cost
Kernel tradecraft may survive longer, this
reduces the development efforts required to
be effective operationally

Complexity
Kernel sensors are complex and often
undocumented, this makes any potential
detections brittle, such detections may also
have an unacceptable performance cost

Kernel full-chain lifecycle

Do you have
Nday?

Do you have
0day?

You Win

Blind OS and
EDR
telemetry?

Go Next

Do you have
Admin?

Load
vulnerable
driver!

Do you have to worry
about signatures or

blocklist?

Do you have to worry
about mitigations

like HVCI?

Why care about Admin to Kernel?

Active
Directory
Initial
Access

Not if but when!

Elevate AD
privileges

Use the Rootkit as a
remote payload

Lateral
movement

Kill telemetry,
persist in Kernel
memory only

Persist

Can I get some insufficient
user-mode checks?

Case Study => CVE-2023-21768

24 hours of research and development for
weaponized exploit

Ancillary Function Driver Put an IORING on it!

Driving
operations
from Ring0
Shaping detections &
exercising capabilities

Rootkit

Capabilities

Injection

Patching

Process
Manipulation

Hardware

Telemetry Modules

Callbacks

ETW

DKOM

Network

Filesystem

Kernel

Tradecraft

Callbacks & ETW

AV / EDR products need OS
telemetry

Kernel mitigations have narrowed
vendor capabilities to implement
custom collection routines

Microsoft provides a number of built-in
mechanisms to collect information on
endpoint activity

Surfacing alerts

Subverting alerts

Native and 3rd party products ingest telemetry
and use magic heuristics to surface alerts

By manipulating data structures in Kernel
memory we can hide, reduce or eliminate
specific telemetry

There are OpSec considerations, better to
reduce or redirect telemetry than to eliminate

Kernel Callbacks
Registering for event notifications

Image, Process, Thread

Registry

Object

PsSet NotifyRoutine(Ex)

ObGetObjectType -> CallbackListHead

CmUnRegisterCallback -> CallbackListHead

PsSetLoadImageNotifyRoutineEx

Memory Pattern
Scan

Callback List Head

Callback Tampering

Function
Pointers

Object
Pointers

REDIRECT DETECTION EVENTS TO A DIFFERENT MODULE OR A
DIFFERENT FUNCTION OR MANIPULATE THE ARRAY ITSELF!

Kernel ETW
Registering for event notifications

ntoskrnl.exe Memory
Pattern Scan

EtwRegister Call Offsets

0xCF7EF8

0xD17078

0xD17050

...

KASLR Leak

ETW_REG_ENTRY

ETW_REG_ENTRY

ETW_REG_ENTRY

ETW_REG_ENTRY

ETW_GUID_ENTRY

TRACE_ENABLE_INFO

ETW Tampering

Flag
Values

Entry
Pointer

GUID
Pointer

KILL DETECTION EVENTS BY ZEROING OUT THE REGISTRATION,
THE GUID OR BY MODIFYING THE CAPTURE FILTER!

Demo
(With 0day!)

X-Force disclosure policy

The Adversary Services team at X-Force has
vulnerability research as one of its operating
objectives

X-Force takes responsible disclosure seriously. We
follow a defined internal review processed followed by
a coordinated disclosure to vendors

We do not have details we can present on this
vulnerability yet

A blog post will be released once a patch is
available

Keylogging
Current known methods of keylogging can all be detected

User Mode - Low Level Hooks

User Mode - Polling
keystrokes via NT system
call (GetAsyncKeyState)

Detected by querying installed keyboard
hooks

Detected by monitoring WinAPI functions
or system calls (via hooking, call stack
unwinding, ETW, etc.)

Kernel Mode - Keyboard Filter
Driver

Detected by enumerating keyboard devices
and devices attached to them - can't be
hidden otherwise they are unlinked from the
I/O IRP stack

Keylogging
Reverse engineering a Ring3 implementation

global af
(sort of)

NtUserGetAsyncKeyState

gafAsyncKeyState

Keylogging
An undetectable method, simple to implement

Locate gafAsyncKeyState
Exported by win32kbase on Windows 10, stored
in win32ksgd -> gSessionGlobalSlots on Windows
11

win32kbase/win32ksgd is
a session driver, must
be attached to the
process running in the
correct session

1

2

Map the physical page
of the keystate array
to a usermode virtual
address
Create a MDL -> MmProbeAndLockPages
 -> MmMapLockedPagesSpecifyCache

Poll keystrokes in
Ring3 without calling
into the kernel
Avoids costly Kernel context switches

Almost impossible to detect

3

4

Feature Flags

Component of Windows
that can toggle

various
capabilities and
preview features.

Win32k GDI Rust
CLASSIC WIN32K OR RUST

WIN32K

Vulnerability
Patches

0 - DEFAULT BEHAVIOUR

1 - DISABLED

2 - ENABLED

Implementation

Feature Flag Manipulation

Can be set in User Mode
using undocumented
WinAPI's

ViVe, mach2 - open source
tools to manipulate
feature configurations
using WinAPI

RtlSetFeatureConfigurations

Requires elevated access

Restrictions on what features can be
toggled (Security and Image Override
features)

Restrictions can be bypassed
in Kernel Mode using DKOM

Take Care

Overwrite enabled flag value in feature table

Toggle patches and security features

Use of features is increasing over time and is all
over Windows

Changing global features can cause unexpected
behaviour in applications

Some applications cache features configurations
when accessed, and require a refresh or
application restart to take effect

Feature Flag Manipulation

nt!CmfcSystemManager

Boot Table

Feature ID: 0x1

Feature ID: 0x2

Feature ID: 0x3

...

Runtime Table

Feature ID: 0x1

Feature ID: 0x2

Feature ID: 0x3

...

Enabled Field
Update

0x2 → 0x1

Network Filtering
I don't always shape traffic, but when I do, I do it in the Kernel!

WinDivert is opensource
and offers robust
capabilities

Network & Socket related
manipulations not visible
in Ring3

Used in enterprise projects like Suricata

Rules based traffic shaping

Filter on port, source, destination, PID,
content

Drop, redirect, inject

Many possible use-cases!

What about the driver?

Drop/intercept/manipulate EDR cloud
telemetry

Traffic relay (SMB anyone?)

Covert persistence

Patch Kernel CI

Reflectively load the driver

Sign the driver

Demo

Userland Puppeteering

There are Kernel to
Userland operations which may be
useful in a variety of situations

Handle duplication

Kill/Start a process

Thread suspension

Process and object handles

Process adjustment

Shellcode injection

Token substitution

Token permission change

Protected status change

Virtualization Based
Security (VBS)

HVCI, KDP, HYPERGUARD
WHAT IT IS AND WHAT IT ISN'T

Mitigiations for Kernel Compromise
Specifically intended to weaken kernel exploits and rootkits

Virtualization Based Security
(VBS)
Hardware virtualization and the Windows hypervisor to create an
isolated virtual environment that becomes the root of trust of the
OS that assumes the kernel can be compromised.

Kernel Data Protection (KDP)

Protects important kernel structures

Hypervisor-Protected Code Integrity (HVCI)

Prevents the execution of unsigned code in the kernel

Secure Kernel Guard (HyperGuard)
Patch guard but in the trusted hypervisor

How much does the Hypervisor help
to prevent these attacks?

Virtualization
Based Security

(non-exhaustive listing)

Default

VBS (KDP, HVCI, ...)

DKOM/Data Only Techniques

Bypassing Driver Signing
Enforcement

Loading (signed) Kernel modules
with RWX sections

Calling Arbitrary Kernel Functions

Registering Kernel Callbacks

PTE manipulation, executable bit

PTE manipulation, R/W bit

VBS Bypasses
Modern Techniques to Bypass Virtualization Based Security

Page Swapping attacks
KDP does NOT protect how the virtual address that
maps a protected region is TRANSLATED.

Any protected region can be remapped.

Thread Context
Manipulation
Putting a thread into alertable state and
modifying its context to resume execution at a
chosen address.

Catch All VBS Bypass
Page Swapping

Virtual
Address

Guest
Physical
Address

Physical
Address

Protected Data

Malicious Data

Protected Data Protected Data

RW- RW-

R--

Modify page
table
(remap)

Malicious Data Malicious Data

Change Page Table
for user space
process SSDT to
point to a writable
physical page

Modify SSDT system
call pointer to
arbitrary kernel
address. Parameters
all controllable
from user space
(remember, Windows
doesn't have SMAP!)

Success! No need to
load a driver.
(Except if you
absolutely *need*
chained calls)

Example

Hardware Mitigations
Hardware enforced mitigations can block these attacks

Kernel Code Enforcement
Technology (kCET)

Intel processor feature, adds a second stack for
return address integrity

Kills ROP attacks (like thread context
manipulation)

Intel VT-rp

Not implemented by Windows! (yet)

Hypervisor Linear Address Translation (HLAT) -
sensitive data pages can't be remapped

Blocks page swap/remapping attacks

The most powerful mitigations require
specific hardware and are not enabled by

default - or not even implemented!

Hardening Advice
VBS configuration is unnecessarily hard! Does anyone understand this really?

Configuration
Create a policy in the Windows Defender
Application Control (WDAC) Wizard

Customize Driver Blocklist

In Group Policy, enable VBS and WDAC

Windows Security -> Core Isolation &
Memory Integrity

Configure the file-path in the WDAC policy
setting

Force Group Policy updates to synchronize

Reboot

Not a user-friendly experience,
the policy wizard is however an
improvement

Pre-Wizard process involves PowerShell &
XML

Even harder for home users, why though?

Hardening Configuration

Wizard - https://webapp-wdac-
wizard.azurewebsites.net/

GPO - https://learn.microsoft.com
/en-us/windows/security/hardware-
security/enable-virtualization-
based-protection-of-code-integrity

References
https://securityintelligence.com/posts/patch-tuesday-
exploit-wednesday-pwning-windows-ancillary-function-
driver-winsock/

https://securityintelligence.com/posts/direct-kernel-
object-manipulation-attacks-etw-providers/

https://googleprojectzero.blogspot.com/p/0day.html

https://www.virusbulletin.com/uploads/pdf/conference/
vb2022/papers/VB2022-Lazarus-and-BYOVD-evil-to-the-
Windows-core.pdf

https://i.blackhat.com/EU-21/Wednesday/EU-21-Teodorescu-
Veni-No-Vidi-No-Vici-Attacks-On-ETW-Blind-EDRs.pdf

https://windows-internals.com/one-i-o-ring-to-rule-them-
all-a-full-read-write-exploit-primitive-on-windows-11/

https://connormcgarr.github.io/hvci/

https://www.servicenow.com/content/dam/servicenow-
assets/public/en-us/doc-type/resource-center/analyst-
report/ponemon-state-of-vulnerability-response.pdf

https://reqrypt.org/windivert.html

https://datafarm-cybersecurity.medium.com/code-
execution-against-windows-hvci-f617570e9df0

https://tandasat.github.io/blog/2023/07/05/intel-vt-
rp-part-1.html

https://github.com/riverar/mach2

https://github.com/thebookisclosed/ViVe/tree/
f9a6fbc4d763665eef521273b9e4f2b3242b1d82

Questions?

